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A B S T R A C T   

Background: The aim of this research is to understand the role played by vaccination in the dynamics of a given 
COVID-19 compartmental model. Most of all, how vaccination modifies the stability, sensitivity, and the 
reproduction number of a susceptible population. 
Methods: The proposed COVID-19 compartmental model (SVEIRD) has seven compartments. Namely, susceptible 
(S), vaccinated (V), exposed (E, infected but not yet infectious), symptomatic infectious (Is), asymptomatic in-
fectious (Ia), recovered (R), and dead by Covid-19 disease (D). 
We have developed a computational code to mimic the first wave of the coronavirus pandemic in a state like New 
York (NYS). 
Findings: First a stability analysis was carried out. Next, a sensitivity analysis showed that the more relevant 
parameters are birth rate, transmission coefficient, and vaccine failure. We found an alternative procedure to 
easily calculate the vaccinated reproductive number of the proposed SVEIRD model. Our graphical results allow 
to make a comparison between unvaccinated (SEIRD) and vaccinated (SVEIRD) populations. In the peak of the 
first wave, we estimated 21% (2.5%) and 6% (0.8%) of the unvaccinated (vaccinated) susceptible population was 
symptomatic and asymptomatic, respectively. At 180 days of the NYS pandemic, the model forecast about 25786 
deaths by coronavirus. A vaccine with 95% efficacy could reduce the number of deaths from 25786 to 3784. 
Conclusion: The proposed compartmental model can be used to mimic different possible scenarios of the 
pandemic not only in NYS, but in any country or region. Further, for an unvaccinated reproductive number R >
1, we showed that the vaccine’s efficacy must be greater than the herd immunity to stop the spread of the COVID- 
19 disease.   

1. Introduction 

Nowadays several vaccines intended to provide immunity against 
COVID-19 have been already authorized worldwide for emergency use. 
Clinical trials have shown that a given vaccine’s efficacy varies from 
60% to 95% [1]. Unfortunately, vaccines’ production cannot keep with 
the world demand, bringing consequently a slow immunization process, 
i.e., a low coverage rate. Furthermore, in many countries the total 
number of coronavirus positive cases are increasing due to the emerging 
of several new coronavirus strains. Because of this fact, coronavirus’ 
vaccines will need to be boosted, and perhaps the human population will 
have to be vaccinated periodically. These uncertainties suggest that the 
coronavirus disease will stay with us for many years to come. Therefore, 
a better understanding of the role played by a vaccine in the coronavirus 
epidemic is of great health interest. One step in that direction, it is to 
consider mathematical compartmental models to capture the key 

features of the coronavirus pandemic. Many authors already have 
applied different mathematical models to study the coronavirus 
pandemic 2–5] but only few have included vaccination [6–8]. 

In this paper, we have modified a SEIRD compartmental model by 
adding an extra vaccinated compartment to make a comparison between 
vaccinated and unvaccinated populations. In particular, we would like 
to have an answer for several queries related to the coronavirus dy-
namics. Namely: i) How much an unvaccinated infected population 
could be reduced by a vaccine? ii) How the reproduction number 
changes when the susceptible population is vaccinated? iii) For a given 
country or region what is the optimal vaccine (in terms of efficacy and 
coverage rate) to stop the spread of the coronavirus disease? 

This paper is organized as follows. In section 2, we write seven first 
order coupled differential equations to describe mathematically our 
proposed SVEIRD compartmental model (Fig. 1). Disease free and 
endemic equilibrium points are derived in a closed form in sections 3 
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and 4, respectively. The stability of these equilibrium points is discussed 
in Sec. 5. In section 6, we use an alternative procedure (other than the 
Next Generation Matrix [9,10]) to obtain an analytical expression of the 
vaccinated reproduction number (Rv). Finally, in section 7, we applied 
the proposed SVEIRD compartmental model to study the coronavirus 
epidemic in a state like New York. Because there are still many un-
certainties in the SVEIRD parameters values and in the understanding of 
the corona virus disease, we do not claim that our results for NYS should 
be considered definitive, Although we are aware that NYS had to endure 
two coronavirus waves, in this work we shall attempt only to simulate 
one wave of six months of duration. Moreover, our analytical, graphical, 
and numerical results could be useful as test-bed calculations of more 
complex and realistic corona-virus models. Here, we shall mention that 
Schneider et al. [11] have developed a COVID-19 pandemic simulation 
tool based on an extension of a SEIR model. 

Notice that for Sections 2 to 3.5 all derivations are obtained in a 
closed form and presented as analytical expressions. This is to benefit 
any interested reader who could use these results in a country or region 
besides NYS. Numerical results and related figures for NYS are discussed 
in Section 4. 

2. Methods 

In Fig. 1, the proposed biomathematical (SVEIRD) compartmental 
model assumes vaccination only to the susceptible population, no 
reinfection, and neither inherited immunity. The seven compartments 
are: susceptible (S), vaccinated (V), exposed (E, infected but not yet 
infectious), symptomatic infectious (Is), asymptomatic infectious (Ia), 
recovered (R), and dead by coronavirus (D). 

The meaning of the parameters connecting the different compart-
ments is given bellow in Table 1. 

Eqns. (1)–(7) mathematically describe the dynamics among the 
different compartments showed in Fig. 1. All compartments’ pop-
ulations of Fig. 1, have been normalized by 

the total population (N = S + V + E + Is + Ia + R + D). The new 
normalized variables will be still denoted by the same letters as in Fig. 1. 
Namely, ∧→∧

N, S→S
N, V→V

N, E→E
N, I→ I

N, R→R
N, and D→D

N .

dS
dt

=Λ − S(γ1 +ω1 + β(Ia + Is)) (1)  

dV
dt

= Sω1 − V(γ1 + θ1β(Ia + Is)) (2)  

dE
dt

= βS(Ia + Is)+Vθ1β(Ia + Is) − ET1 (3)  

dIs

dt
= εkE + k2φIa − IsT2 (4)  

dIa

dt
= ε(1 − k)E − IaT3 (5)  

dR
dt

= k3α2Ia + k1α1Is − γ1R (6)  

dD
dt

=(1 − k1)γ2Is + k4γ3Ia (7)  

where 

T1 = ε + γ1 (8)  

T2 =(1 − k1)γ2 + k1α1 + γ1 (9)  

T3 = k2φ + k4γ3 + k3α2 + γ1 (10) 

Fig. 1. The SVEIRD compartmental mode.  

Table 1 
The SVEIRD model’s parameters of Fig. 1.  

Parameters Name 

Λ Recruitment 
В COVID-19 transmission coefficient rate 
γ1 Natural mortality rate 
γ2 COVID-19 symptomatic mortality rate 
γ3  COVID-19 asymptomatic mortality rate 
ω1 Vaccine coverage rate 
θ1 Vaccine failure 
Е Incubation rate 
K Proportion of exposed to the symptomatic population 
k1  Proportion of symptomatic to recovered population 
k2  Proportion of asymptomatic to symptomatic population 
k3  Proportion of asymptomatic to recovered population 
k4  Proportion of asymptomatic to death by COVID-19 population 
Φ Proportion of symptomatic to symptomatic 
α1 Recovery rate of the symptomatic population 
α2 Recovery rate of the asymptomatic population  
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k4 = 1 − k2 − k3 (11) 

Adding Eqns. (1)–(7) we obtain dN
dt = Λ − γ1N. This implies dN

dt < 0 
when N > Λ

γ1 
, and therefore solutions of Eqns. (1)–(7) must be in the 

following positively invariant subset of R7: {(S,V,E,Is,Ia,R,D)/ S,V,E,Is, Ia,

R,D ≥ 0, S+ V+ E+ Is + Ia + R+ D ≤ Λ
γ1

} 

3. Results 

3.1. Equilibrium points 

To obtain the equilibrium points (Sp,Ep,Vp, Iap, Isp,Rp) we set Eqns. 
(1)–(7) to zero. For example, by setting to zero Eqn. (5) we solve it for Ep 

and inserted into Eqn. (4), to obtain Eqn. (13). From there, it easily 
follows Eqn. (12). Using a similar algebraic procedure, we obtain Eqns. 
14–16 

Ep =
T6T3Isp

ε (1 − k)T5
(12)  

Iap =
T6

T5
Isp (13)  

Sp =
Λ

γ1 + ω1 + β
(
Iap + Isp

) (14)  

Vp =
ω1Sp

γ1 + θ1β
(
Iap + Isp

) (15)  

Rp =

(
1
γ1

)
(

α2Iap +α1Isp
)

(16)  

where 

T4 = kk4γ3 + kk3α2 + k2φ + kγ1 (17)  

T5 = k T3 + (1 − k) k2φ (18)  

T6 =(1 − k)T2 (19) 

Next, we set Eqn. (3) to zero and substitute Eqns. 12–15 to obtain the 
following cubic equation 

C1I3
sp +C2I2

sp + C3Isp = 0 (20)  

where 

C1 = β2T1T3T6(T5 + T6)
2θ1 (21)  

C2 = βT5(T5 + T6)(βε(− 1+ k)(T5 + T6)λθ1 +T6T1T3(γ1 + γ1θ1 + θ1ω1))

(22)  

C3 = T2
5 (γ1T6T1T3(γ1 +ω1)) − T2

5 (βΛε(kT3 +(1 − k)(T5 +T6))(γ1 +ω1θ1))

(23)  

3.2. Disease free equilibrium points 

The trivial solution of Eqn. (20); i.e., Isp = 0 defines the disease 
equilibrium point (DFE). Thus, from Eqns. 12–16 the only non-zero so-
lutions are 

S* =
Λ

γ1 + ω1
(24)  

V* =
Λω1

γ1(γ1 + ω1)
(25)  

3.3. Disease endemic equilibrium points 

To obtain the disease endemic equilibrium points (Isp ∕= 0) we first 
must solve from. 

Eqn. (20) the quadratic equation. Namely 

C1I2
sp +C2Isp + C3 = 0 (26)  

where C1, C2 and C3 are given by Eqns. 21–23. Then Isp is to be 
substituted in Eqns. 12–16 to obtain the remaining endemic point 
values. 

3.4. Stability 

To study the stability of the disease free and endemic equilibrium 
points we built the Jacobians Jdf and Jend, respectively. They are 
explicitly given bellow in Eqns. (27) and (28). 

Jdf =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− γ1 − ω1 0 0 0 − βS∗ − βS∗

ω1 0 0 − γ1 − βθ1V∗ − βθ1V∗

0 0 − T1 0 βS∗ + βθ1V∗ βS∗ + βθ1V∗

0 0 ε  κ 0 k2φ − T2
0 0 ε − ε  κ 0 − T3 0
0 − γ1 0 0 k3α2 k1α1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(27)   

As is well known, a local stable equilibrium is achieved when all the 
eigenvalues of matrices Jdf and Jend are negative. Otherwise, there is an 
unstable equilibrium. By setting θ1 = ω1 = 0 in Eqns. (27) and (28) we 
shall obtain the respective Jacobians for the unvaccinated population. 
Here, we shall point out that the eigenvalues of matrices given by Eqns 
27 and 28 are numerically calculated for NYS in Section 4. 

3.5. An alternative procedure to calculate the effective reproductive 
number 

The Basic Reproductive Number (R) is perhaps one of the most 
important variables in epidemiology. It is related to the average number 
of secondary infections and allows to estimate the spread of the disease. 
In fact, if R > 1 the disease will persist, and it will die out when R < 1. 
Although the majority of the scientists agree with this interpretation of 
R, there are some caveats that some authors still have [12,13]. Although 

Jend =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

− γ1 − β
(
Iap + Isp

)
− ω1 0 0 0 − βSp − βSp

ω1 0 0 − γ1 − β
(
Iap + Isp

)
θ1 − βθ1Vp − βθ1Vp

β
(
Iap + Isp

)
0 − T1 β

(
Iap + Isp

)
θ1 βSp + βθ1Vp βSp + βθ1Vp

0 0 ε  κ 0 k2φ − T2
0 0 ε − εκ 0 − T3 0
0 − γ1 0 0 k3α2 k1α1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(28)   
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the Next Generation Matrix method [9,10,14] is widely used to obtain R, 
there are other methods to make the same calculation [12]. They are: 
The Survival Function, the Jacobian, Constant Term of the Characteristic 
Polynomial, The Graph-Theoretic Method, and the Existence of the Endemic 
Equilibrium. The pro and cons of using these methods to obtain R, are 
discussed by Jing et al. [12]. 

We argue here, that in the case of an infectious disease with no more 
than three forces of infection the Existence of the Endemic Equilibrium may 
be the best method to calculate R. This is because, to obtain R all 
remaining methods face cumbersome calculations. Also, notice that the 
standard procedure to obtain R is the Next Generation Matrix method [8, 
9,12]. This procedure does not provide a clear biological interpretation, 
and occasionally it gives a wrong result [12]. 

In this section, we shall use a simpler although not trivial calculation 
within the framework of the Existence of the Endemic Equilibrium method 
to calculate Rv. To fulfill this purpose, we shall solve Eqn. (20) to obtain 
the equilibrium point Isp. Notice, Isp >0 means an infectious population 
threshold which is maintained at a certain baseline level. As is well 
known, the quadratic equation solutions of Eqn. (20) can be written as 
showed in Eqn. (29), where C1, C2, and C3 = C3a − C3b, are explicitly 
given by Eqns. (21)–(23), respectively. Thus, 

Isp=−
C2

2C1
±

C2

2C1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+
4C1(C3b − C3a)

C2
2

√

=−
C2

2C1
±

C2

2C1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+
4C1C3a

(
C3b
C3a

− 1
)

C2
2

√
√
√
√
√

(29) 

Notice from Eqns. (21) and (23) that C1>0, and 

C3a =T2
5 (γ1T6T1T3(γ1 +ω1)) > 0 (30)  

C3b =T2
5 (βΛε (kT3 +(1 − k)(T5 +T6))(γ1 +ω1θ1)) > 0 (31)  

where 

T5 = kT3 + (1 − k)k2φ (32)  

T6 =(1 − k)T2 (33) 

Now we can easily from Eqn. (29) identify the vaccinated repro-
duction number as 

Rv = C3b
C3a

> 1to satisfy the necessary condition Ip > 0. Therefore, from 
Eqns. 29–31 

Table 2 
This Table shows for NYS the positive (Λ, β, θ1, k1,

ε), and negative sensitivities (γ1,α1,α2,k,k2,k3,k4,φ,
γ2, γ3,w1).

Parameter Sensitivity 

Λ 1 
В 1 
θ1 0.990774 
κ1  0.447102 
ε  0.00016164 
γ3  − 0.0002613 
κ4  − 0.0002613 
κ2  − 0.0076717 
Φ − 0.0076717 
ω1  − 0.0087607 
γ2  − 0.0124228 
κ  − 0.0829919 
κ3  − 0.196499 
α2 − 0.196499 
α1 − 0.782753 
γ1  − 0.991793  

Table 3 
The SVEIRD parameters values for NYS first wave coronavirus pandemic.  

Parameters Estimated Values References 

Λ  0.3640 10− 4(1/day)  www.osc.state.ny.us [20] 

β 0.55/day (first period), 0.09/day 
(second period) 

Estimated 

γ1 0.2328 10− 4 (1/day)  https://webbi1.health.ny. 
gov [22] 

γ2 0.0949 (1/day) [23] 
γ3  0.0697 (1/day) [23] 
ω1 0.0500 (1/day) Estimated 
θ1 0.050 Estimated 
ε 0.144 [23] 
k 0.749 [23] 
k1  0.001 Estimated 
k2  0.100 Estimated 
k3  0.899 Estimated 
Φ 0.200 (1/day) Estimated 
α1 0.0604 [23] 
α2 0.0583 [23]  

Fig. 2. In red and blue, unvaccinated, and vaccinated susceptible populations, respectively. In green, the vaccinated population. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of this article.) 
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Rv =
(βΛε(kT3 + (1 − κ)(T2 + k2φ))(γ1 + ω1θ1)

γ1T1T2T3(γ1 + ω1)
(34) 

Of course, we have verified (Appendix 1) that the value of Eqn. (34) 
agrees with the one obtained using the standard method i.e., the Next 
Generation Matrix [9,10,14]. 

The unvaccinated reproductive number (R) is found by setting ω1 =

θ1 = 0 in Eqn. (34). Thus 

R=
(βΛε(kT3 + (1 − κ)(T2 + k2φ))

γ1T1T2T3
(35) 

Now, from Eqns. 34 and 35 we obtain a relationship between Rv and 
R as follows 

Rv =R
γ1 + ω1θ1

γ1 + ω1
(36) 

Eqn. (36) implies that for any 0 < θ1 < 1, Rv < R. This shows 

analytically that a vaccine diminishes the spread of the coronavirus 
disease. Also notice, when γ1 << ω1 Eqn. (36) reduces to Eqn. (37) 

Rv =Rθ1 (37) 

Therefore, in Eqn. (37), the vaccine’s efficacy (1 − θ1) will stop the 
spread of the coronavirus provides the following inequality is satisfied. 
Namely 

Vaccine’s  efficacy  > 1 −
1
R

(38) 

Eq. (38) can also be written as follows  

Vaccine’s efficacy > Herd immunity                                                (39) 

Without a vaccine the coronavirus will die out when the population 
reach herd immunity. However, Eqn. (39) provides an additional 
interpretation. Namely, to stop the spread of COVID-19 the optimal 
vaccine’s efficacy must be greater than the herd immunity. In other 

Fig. 3. The unvaccinated symptomatic (red) population. Vaccination reduces the symptomatic population (blue). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 

Fig. 4. The unvaccinated asymptomatic (red) population. Vaccination reduces the asymptomatic population (blue). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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words, the optimal vaccine will move the endemic disease equilibrium 
to the disease-free equilibrium. A similar conclusion was discussed by 
Beckley et al. [15]. 

Thus, provide R > 1, Eqn. (39) allows to choose the optimal vaccine 
to stop the coronavirus spread in each country or region. 

3.6. Sensitivity analysis 

For the sensitivity analysis we have used the method: Normalized 
Forward Sensitivity Index of a Variable [16–18]. The vaccinated repro-
duction number (Rv) as given by Eqn. (34) depends on several param-
eters. To obtain the most relevant parameters of Rv, a sensitivity analysis 
is carried out. The sensitivity of each parameter xn is given by S(xn)

Sv(xn)=

(
xn

Rv

)
∂Rv

∂xn
(40) 

From Eqn, (36), the relationship between the unvaccinated (S(xn))

and vaccinated (Sv(xn))sensitives between is 

Sv(xn)=
xn

f
∂f
∂xn

+ S(xn) (41)  

where f =
γ1+ θ1ω1

γ1+ω1
. 

Therefore, for all parameters except θ1, ω1, and γ1, Sv(xn) =

S(xn).Also notice that Sv(xn) does not depend of β, Λ, and ε. For NYS 
model’s parameters sensitives are given in Table 2. 

The most sensitive parameters for Rv are Λ, β and θ1. To diminish 
(increase) the value of Rv we must diminish (increase) the positive 

Fig. 5. The accumulated unvaccinated (Red) COVID-19 deaths. Vaccination reduces the number of COVID-19 deaths (blue). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 6. The unvaccinated (red) and vaccinated (blue) reproductive numbers in function of the transmission coefficient rate (β).In green.. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.)R = 1.
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Fig. 7. In blue, the vaccinated reproduction number (Rv). In green, a plane of value 1. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the Web version of this article.) 

Fig. 8. In red, the unvaccinated reproduction number (R). In green, a plane of value 1. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the Web version of this article.) 
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(negative) sensitivities. 

4. Discussion 

One of the aims of the proposed model is to understand how vacci-
nation change the dynamics of a SEIRD compartmental models. In Sec-
tion 1., we have provided analytical expressions to describe the disease 
free and endemic equilibrium points for SVEIRD and SEIRD compart-
mental models. These results are needed to study the stability of these 
solutions and to determine whether the epidemic will persist (i.e., Ip∕= 0). 
If Rv >1 there is only one biological meaningful solution of Eqn. (29). 
When Rv<1, there are two real negative or two imaginary solutions. This 
means that there are not endemic points and therefore the disease died 
out. 

We have also developed a novel procedure to derive Rv which is 
easier to understand and calculate than the standard method, i.e., the 
Next Generation Matrix [9,10]. We have check that this new alternative 
procedure to derive analytically Rv, it is valid for any compartmental 
model with three or less forces of infection. 

To illustrate our theoretical procedure, we have chosen the first wave 
of the NYS corona-virus pandemic. In the first 65 days we expect a highly 
contagious environment and we have assumed a value of R = 14.6. Thus, 
using Eqn. (35) we obtained a value of β = 0.55/day. The next 115 days, 
social distance, masks, and the lockdown will diminish the value of R 
and β to 2.39 and 0.09, respectively. Next, a MATHEMATICA [19] code 
is developed to plot the numerical solutions of Eqns. (1)–(7). In Table 3 
we list the parameters’ values used in the simulations. 

Figs. 2–5, summarize for NYS first wave the dynamics of the sus-
ceptible, vaccinated, infectious and death populations during a six- 
month period. 

We show in Fig. 2, the evolution on time of the vaccinated (blue) and 
unvaccinated (red) susceptible populations. After 180 days about 80% of 
the initial susceptible population will be vaccinated. As can been seen in 
Figs. (3) and (4), vaccination will diminish the symptomatic (from 0.21 
to 0.025) and asymptomatic (from 0.06 to 0.008) population’s pro-
portions) in the peak of the first wave. Accumulated covid-deaths are 
plotted in Fig. (4). The proposed model forecast for the first six months 
of the NYS pandemic 25785 deaths due to the coronavirus. Vaccination 
could have reduced the number of deaths from 25785 to 3784. The total 
NYS coronavirus deaths reported in the web, after six-months is 33139 
[24]. 

For NYS, vaccination reduces the unvaccinated reproductive number 
from 14.6 to 0.76 (first 65 days), and from 2.39 to 0.12 for the remaining 
period (65 days–180 days). It is showed that for R = 2.39, only exist one 
real positive endemic equilibrium point (Sp, Ep, Isp, Iap, Rp). Thus, 
without vaccination the Covid-19 disease will persist and converge to 
the endemic equilibrium point (Sp = 0.00362, Ep = 0.00015, Isp =

0.00029, Iap = 0.00007, Rp = 0.90782). It is expected that all mean-
ingful solutions of Eqns. (1)–(7) will converge to this unique equilibrium 
point and the disease will become endemic. Regarding the unvaccinated 
disease-free solutions all of them will converge to the value of S* = Λ

γ1
=

1.56. Using the respective Jacobians we found that both of these equi-
librium points are unstable. For Rv = 0.12 all solutions of Eqns. (1)–(7) 
will converge to the disease-free equilibrium points (S* = 0.0036, V* =

1.5599)and the Covid-19 disease will be died out. 
In Eqn. (38), we showed that the optimal vaccine (1- θ1) must be 

greater than the herd immunity to stop the coronavirus spread in a given 
country or region. This information may be useful in choosing what 
Covid-19 vaccine’s must be acquired. Notice that herd immunity values 
depend on R, and thus, on the mathematical models and parameters 
obtained for a specific country. For example, in NYS, at the beginning of 
the pandemic our model estimated an unvaccinated reproduction 
number of 14.60. Therefore, our SVEIRD proposed model advocates that 
the optimal vaccine for NYS should have at least 93% efficiency. 

Fig. 6 shows in red (without vaccination) that β must be greater than 

0.05/day to become endemic. On the other hand, if the population was 
vaccinated β should be less than 1.1/day to died out. Therefore, after the 
second period, a second wave was expected. 

In Figs. (7)-(8), we plot three-dimensional figures of the Rv inter-
secting a plane of value 1. These figures are useful to determine what are 
the values of the transmission coefficient, vaccine failure, or recruitment 
rate to stop the coronavirus disease. 

4.1. Limitations 

There are several limitations in this paper. First, as any compart-
mental model, it cannot make a perfect forecast. The proposed SVEIQRD 
compartmental model only provides an approximation that is accurate 
enough for a better understanding of the pandemic’s first wave. 
Although there is NYS coronavirus data published in different websites 
[24–26] we cannot make it a direct comparison with our respective 
results (except for COVID-deaths). This is because the number of 
symptomatic and asymptomatic patients reported in the literature is 
based on the number of tests taken daily. There is some reliable data 
available: the number of COVID-19 cumulative deaths, and the average 
number for the reproductive number. The compartments’ parameters 
describing the biology of the disease are perhaps the more reliable 
because they are based in COVID-19 clinical data. In summary, there is 
not yet high-quality data for the SVEIRD compartmental model pa-
rameters. Regarding the effective reproductive number, its value de-
pends on the compartmental model chosen. 

5. Conclusions 

In this paper, we focus on how vaccination modifies the dynamics of 
a coronavirus SEIRD compartmental model. To this purpose a simple but 
not trivial SVEIRD compartmental model was built. In the first part, we 
derived in a closed form analytical expressions for the endemic and 
disease-free equilibrium points and its respective Jacobians. Next, we 
derive an alternative procedure to obtain the reproductive number. This 
approach is easier to calculate and understand than the standard 
method: The Next Generation Matrix. Moreover, we show that the 
optimal vaccine (in terms of efficacy and coverage rate) for a region or 
country must be greater than the herd immunity to stop the spread of the 
Covid-19. 

As an application, we developed a MATHEMATICA code to mimic 
the first wave of the coronavirus pandemic in a state like New York. Two 
periods (65 days, 65 days-180 days) were considered. We assumed for 
the first two months a highly infectious (R = 14.6) period, which 
diminish to R = 2.39 in the subsequent four months. 

As expected, Figs. (1)-(4) shows that the vaccine reduces the prev-
alence of the disease. At the peak of the first wave (Figs. 3–4), the 
program forecasts that a quarter of the susceptible population will be 
infectious (symptomatic and asymptomatic). Vaccination (95% efficacy, 
1% daily coverage rate) will reduce the number of infectious patients for 
an approximate factor of 10. Accumulated COVID-19 deaths (25785) 
after six months of the pandemic have a 22% difference with the re-
ported values (33139) [24]. Vaccination (95% efficacy, 1% daily 
coverage rate) will reduce the number of deaths from 25785 to 3784. 

Finally, to contain the pandemic in NYS, the optimal vaccines should 
have at least 93% and 60% efficacies for the first and second period, 
respectively. 
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APPENDIX 1 

1. Vaccinated Reproductive Number 

The next-generation matrix was introduced by Diekmann, Driessche and Watmough [9] to obtain the basic reproductive number of a given 
compartmental model. Since then, it has been the standard way to derive an analytical value of the basic reproductive number. Following closely this 
approach, we shall obtain Rv for our proposed biomathematical compartmental model. First, Eqns. (A3), (A4), (A5), and (A6) in the paper are written 
in a matrix form as seen bellow. 
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

dE
dt
dIs

dt
dIs

dt
dR
dt

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=F(x⇀) −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

V − (x⇀) − V+(x⇀)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(A1)  

where F, V+and V− are as follow 

F =

⎛

⎜
⎜
⎝

Isβ(S + θ1V) + Iaβ(S + θ1V
0
0
0

⎞

⎟
⎟
⎠ (A2)  

V+ =

⎛

⎜
⎜
⎝

0
εκE + kφIa
ε(1 − κ)E
α1k1Is + α2k3Ia

⎞

⎟
⎟
⎠ (A3)  

V − =

⎛

⎜
⎜
⎝

T1E
T2Is
T3Ia
γ1R

⎞

⎟
⎟
⎠ (A4) 

Next, the linearized Jacobian around the disease free equilibrium point is given by matrix J 

J =

⎛

⎜
⎜
⎝

− T1 β(S* + θ1V*) β(S* + θ1V*) 0
εκ − T2 φk2 0
ε(1 − κ) 0 − T3 0
0 α1k1 α2k3 − γ1

⎞

⎟
⎟
⎠ (A5)  

and S* and V* are given in the paper by Eqns. (24) and (25), respectively. Following the Next Generation Matrix Method J = F1 − G1, where F1 and G1 
are given by 

F1 =

⎛

⎜
⎜
⎝

0 β(S* + θ1V*) β(S* + θ1V*) 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ (A6)  

G1 =

⎛

⎜
⎜
⎝

T1 0 0 0
− εκ T2 − φk2 0
− ε(1 − κ) 0 T3 0
0 − α1k1 − α2k3 γ1

⎞

⎟
⎟
⎠ (A7) 

Finally, the largest eigenvalue value of F1G− 1
1 defines the vaccinated reproductive number (Rv). Thus 

Rv =
Λβε((1 − κ)(φ + T2) + κT3)(γ1 + ω1θ1)

γ1(γ1 + ω1)T1T2T3
(A8)  
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