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branched-chain amino acids (BCAA), glutamate and pseu-
douridine, and decreased concentrations of glycine, dimeth-
ylglycine, fumarate and 4-imidazole-acetate compared with 
individuals diagnosed with BPH.
Conclusion  PCa patients have a specific urinary metabo-
lomic profile. The results of our study underscore the clini-
cal potential of metabolomic profiling to uncover metabolic 
changes that could be useful to discriminate PCa from BPH 
in a clinical context.
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BCAA	� Branched-chain amino acids
LC–MS	� Liquid chromatography–mass spectrometry
GC–MS	� Gas chromatography–mass spectrometry
GNMT	� Glycine-N-methyltransferase
SARDH	� Sarcosine dehydrogenase

Abstract 
Introduction  Prostate cancer (PCa) is one of the most 
common malignancies in men worldwide. Serum prostate 
specific antigen (PSA) level has been extensively used as 
a biomarker to detect PCa. However, PSA is not cancer-
specific and various non-malignant conditions, including 
benign prostatic hyperplasia (BPH), can cause a rise in PSA 
blood levels, thus leading to many false positive results.
Objectives  In this study, we evaluated the potential of uri-
nary metabolomic profiling for discriminating PCa from BPH.
Methods  Urine samples from 64 PCa patients and 51 
individuals diagnosed with BPH were analysed using 1H 
nuclear magnetic resonance (1H-NMR). Comparative anal-
ysis of urinary metabolomic profiles was carried out using 
multivariate and univariate statistical approaches.
Results  The urine metabolomic profile of PCa 
patients is characterised by increased concentrations of 

The original version of this article was revised due to a 
retrospective Open Access order.

Clara Pérez-Rambla and Leonor Puchades-Carrasco are joint first 
authors with equal contribution.

 *	 Antonio Pineda‑Lucena 
	 pineda_ant@gva.es

1	 Structural Biochemistry Laboratory, Centro de Investigación 
Príncipe Felipe, 46012 Valencia, Spain

2	 Laboratory of Molecular Biology, Fundación Instituto 
Valenciano de Oncología, 46009 Valencia, Spain

3	 Department of Urology, Fundación Instituto Valenciano de 
Oncología, 46009 Valencia, Spain

4	 Drug Discovery Unit, Instituto de Investigación Sanitaria La 
Fe, Avda. Fernando Abril Martorell, 106, 46026 Valencia, 
Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11306-017-1194-y&domain=pdf


	 C. Pérez‑Rambla et al.

1 3

52  Page 2 of 12

DMGDH	� Dimethylglycine dehydrogenase
TCA	� Tricarboxylic acid
SDH	� Succinate dehydrogenase
FH	� Fumarate hydratase

1  Introduction

Prostate cancer (PCa) is the most common cancer in men 
worldwide. The number of PCa cases is increasing, nowa-
days representing the sixth leading cause of cancer deaths in 
men (Zhang et al. 2014). Currently, the most frequently used 
tests for PCa screening include the determination of prostate 
specific antigen (PSA) serum levels and digital rectal exami-
nation (DRE) (Bunting 2002). The introduction of PSA 
testing revolutionised PCa screening and became widely 
adopted by the early 1990s. Since then, the European Rand-
omized study of Screening for Prostate Cancer (ERSPC) has 
reported a small absolute survival benefit with PSA screen-
ing (Ilic et al. 2013; Heijnsdijk et al. 2015). However, PCa 
screening suffers from a number of limitations, due to the 
poor specificity of PSA test for detecting cancer and for dif-
ferentiating indolent cancers from high risk ones.

The low specificity of serum PSA has translated into 
many unnecessary prostate biopsies and overtreatment 
of tumours with a low malignant potential, or with a low 
potential for morbidity or death if left untreated (Draisma 
et al. 2003; Zappa et al. 1998). It has been estimated that the 
overdiagnosis, and consequently the overtreatment, of PCa 
ranges between 30 and 84%, depending on the studies (Etzi-
oni et al. 2002; McGregor et al. 1998). Moreover, trans-rec-
tal ultrasound (TRUS)-guided biopsy following histopathol-
ogy-based Gleason score, the gold standard test providing 
histological confirmation (Gleason 1977), is also plagued 
by high false negative rates (Rabbani et  al. 1998; Schoen-
field et al. 2007). Early-stage PCa is generally not visible on 
ultrasound, thus meaning that many tumours are missed on 
initial biopsy and patients are required to undergo repeated 
prostate biopsies before definitive PCa detection.

Very few biomarkers are currently validated for use in 
PCa diagnosis. A recent FDA clinical-grade urine-based 
assay for the non-coding transcript PCA3 (overexpressed 
in >95% of PCa) has demonstrated utility when combined 
with serum PSA for PCa detection (Loeb and Partin 2011). 
Another potential biomarker is the specific TMPRSS2 and 
ERG rearrangement at 21q22, which is 100% indicative of 
PCa (Barbieri et  al. 2012). However, it is only present in 
approximately 50% of PCa cases. Hence, additional clini-
cally robust biomarkers able to differentiate between indo-
lent and aggressive PCa are urgently needed.

In this context, metabolomics could represent an alter-
native and very powerful approach for the understand-
ing of the biological pathways and molecular mechanisms 

involved in the onset and progression of PCa. Metabo-
lomics focuses on the characterisation of metabolic signa-
tures in biofluids or tissues and is leading to advanced diag-
nostic and therapeutic procedures (Nicholson et al. 2005). 
Recent studies have shown the potential of metabolomic 
approaches in the PCa field (Kumar et  al. 2015; Stabler 
et al. 2011; Struck-Lewicka et al. 2015; Zhang et al. 2013). 
However, so far, no comprehensive PCa studies have been 
performed on urine, the most accessible and least invasive 
biofluid, using Nuclear Magnetic Resonance (1H-NMR) 
spectroscopy, a robust and reliable technological platform 
allowing the simultaneous measurement and quantification 
of metabolites with minimal sample handling (Duarte and 
Gil 2012).

To that end, in this study, a thorough analysis of the uri-
nary metabolomic profile of PCa patients was compared 
with that corresponding to individuals diagnosed with 
benign prostatic hyperplasia (BPH), a prostatic condition 
that cannot be easily distinguished from PCa based on the 
current PSA screening (Roehrborn et  al. 1999). Using a 
metabolomic approach based on 1H-NMR, it was possible 
to identify a set of specific metabolites that could contrib-
ute to a better understanding of the pathophysiological pro-
cesses involved in the onset and progression of this disease.

2 � Materials and methods

2.1 � Patient selection

Patient recruitment was carried out through the Department 
of Urology and the Biobank of the Instituto Valenciano de 
Oncología (Valencia, Spain), and measurement and analy-
sis of the urinary metabolomic profiles were performed 
at the Centro de Investigación Príncipe Felipe (Valen-
cia, Spain) and the Instituto de Investigación Sanitaria La 
Fe (Valencia, Spain). Urine samples were collected from 
64 PCa patients and 51 age-matched individuals. Patient 
recruitment and sampling procedures were performed in 
accordance with the Declaration of Helsinki and applicable 
local regulatory requirements and laws and after approval 
from the Ethics Committee of the Instituto Valenciano de 
Oncología. Written informed consent was obtained from 
each participant before being included in this study.

Clinical diagnosis of individuals was performed accord-
ing to serum PSA, DRE, biopsy results and Gleason score. 
Biopsy was performed using at least 6 cores and classi-
fication of the individuals included in the study was car-
ried out according to the EAU-ESTRO-SIOG Guidelines 
on Prostate Cancer (Mottet et al. 2016). The control group 
consisted of men with no proven PCa based on PSA lev-
els, negative findings on DRE and no malignant find-
ings in prostate tissue biopsies. Based on their clinical 



Non-invasive urinary metabolomic profiling discriminates prostate cancer from benign…

1 3

Page 3 of 12  52

characteristics, all of them were diagnosed with BPH. 
Clinical and demographics characteristics of the individu-
als included in the study are shown in Table 1.

2.2 � Sample preparation and 1H‑NMR acquisition

Urine samples were immediately frozen after collection and 
stored at −80 °C. At the time of 1H-NMR analysis, urine 
samples were thawed on ice and centrifuged at 6000  rpm 
for 5 min at room temperature. 60 µL of 1.5 mol/L potas-
sium phosphate buffer (pH 7.4) containing 0.1% trimethyl-
silylpropionic acid-d4 sodium salt (TSP) and 0.05% NaN3 
were added to 540 µL of urine sample supernatant. After 
this, 500  µL of the mixture were transferred to a 5-mm 
NMR tube for analysis.

1H-NMR spectra were acquired using a Bruker Avance 
II 500  MHz spectrometer. 1H-NMR experiments were 
acquired at 310  K for every sample. Carr-Purcell-Mei-
boom-Gill (CPMG) spin-echo pulse sequence (Meiboom 
and Gill 1958), which generates spectra edited by T2 
relaxation times with reduced signals from high molecu-
lar weight species and giving improved resolution of low 
molecular weight metabolite resonances, was collected for 
each sample with a total of 16 accumulations and 72 K data 
points over a spectral width of 16  ppm. A 4-s relaxation 
delay was included between free induction decays (FIDs). 
The total spin–spin relaxation delay was 40  ms. A one-
dimensional (1D) NOESY pulse sequence that generates 
an unedited spectrum with improved solvent peak suppres-
sion (Nicholson et al. 1995) was collected using the same 
parameters as the CPMG experiment, with a 4-s relaxation 
delay and 10 ms of mixing time. For both experiments, a 
water presaturation pulse of 25 Hz was applied throughout 
the relaxation delays to improve solvent suppression. In 
addition, two-dimensional (2D) J-resolved spectra, homo-
nuclear 2D 1H–1H total correlation spectroscopy and 2D 
1H, 13C heteronuclear single quantum correlation were 

acquired for selected samples to facilitate the identifica-
tion of biochmemical substances (Beckonert et  al. 2007). 
All spectra were multiplied by a line-broadening factor of 
1 Hz and Fourier transformed. Spectra were automatically 
phased and baseline corrected, and chemical shift internally 
referenced to the methyl group signal of TSP at 0.00 ppm 
using TOPSPIN 3.0 (Bruker Biospin).

2.3 � Data modelling and statistical analysis

The main steps of the data modelling and statistical 
analysis procedures followed in this study are shown 
in Fig.  1. 1D CPMG spectra were binned using Amix 
3.9.7 (Bruker Biospin) into 0.001  ppm wide rectangu-
lar buckets over the region δ 9.50–0.15 ppm. The water 
(δ 5.09–4.55  ppm) and urea signal (δ 6.10–5.52  ppm) 
regions were excluded from the analysis to avoid interfer-
ences arising from differences in water suppression and 
variability from urea signal, respectively. Spectra were 
aligned using the “Speaq” R package, a hierarchical clus-
ter-based peak alignment algorithm that minimizes chem-
ical shift variations (Vu et al. 2011), and normalization of 

Table 1   Characteristics of the individuals included in the study

BPH benign prostatic hyperplasia, PCa prostate cancer, PSA prostate-
specific antigen, BMI body mass index, NA not applicable

BPH group (n = 51) 
(median, range)

PCa patients 
(n = 64) (median, 
range)

Age (years) 62.1 (41.4–74.5) 66.2 (50.0–86.3)
BMI (kg m−2) 27 (22.8–34) 27.5 (23–33)
Prostate volume (ml) 52 (24–171) 40.5 (2–134)
PSA (ng/mL) 4.86 (1.02–11.29) 5.11 (0.85–71.41)
Number of cores 12 (10–19) 12.5 (6–54)
Positive cores NA 25% (0.05–100)
Tumor burden NA 3.71% (0.14–67.74)
Tumor gleason score NA 6 (5–9)

Fig. 1   General scheme of the data modeling and statistical analysis 
procedures with the main steps highlighted (n number of samples, k 
number of variables)
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the aligned spectra was performed according to the prob-
abilistic quotient normalization method (PQN) (Diet-
erle et  al. 2006). Finally, the resulting bucket table was 
transformed into a data matrix containing 0.01 ppm wide 
rectangular buckets using the “Chemospec” R package 
(Hanson 2014) to facilitate the statistical analysis.

Multivariate statistical analysis was carried out using 
SIMCA-P 12.0 (Umetrics AB). Before statistical analysis, 
data were scaled to unit variance by dividing each vari-
able by 1/SD, where SD represents the standard deviation 
value of each variable, so that all variables were given 
equal weight regardless of their absolute value. Principal 
component analysis (PCA), a nonsupervised statistical 
approach, was performed on normalized data for finding 
potential patterns, intrinsic clusters, and outliers. Orthog-
onal partial least squares discriminant analysis (OPLS-
DA) was applied to minimize the possible contribution 
of inter-group variability and to further improve separa-
tion between the groups of samples. The default method 
of sevenfold internal cross validation was applied, from 
which Q2Y (predictive ability parameter, estimated by 
cross-validation) and R2Y (goodness of fit parameter) 
values were extracted. Those parameters, together with 
the corresponding permutation tests (n = 100), were 
used for the evaluation of the quality of the OPLS-DA 
models obtained. Variable selection was based on the 
regression coefficient (b-coefficient) method (Diaz et  al. 
2013), retaining only those variables with a quotient |b/
bcvSE| > 1.0, being bcvSE the standard error associated with 
the b-coefficients.

2.4 � Identification and quantification of relevant 
metabolites

The identification of the variables responsible for the sep-
aration between groups of samples in the OPLS-DA mod-
els was performed according to the corresponding load-
ing plots and the variable importance in projection (VIP) 
list of each model. Metabolites of interest were identified 
using Analysis of MIXtures (AMIX; Bruker) in combina-
tion with the Bruker NMR Metabolic Profiling Database 
BBIOREFCODE 2.0.0 database (Bruker Biospin, Rhein-
stetten, Germany), as well as other existing public data-
bases and literature reports (Bouatra et  al. 2013; Salek 
et al. 2007). Metabolites contributing to group discrimi-
nation in each model were integrated using MestReNova 
(Cobas and Sardina 2003) to enable comparison between 
sample groups. Statistical significance of the observed 
changes was assessed using the Mann–Whitney U test. A 
p value lower than 0.05 (confidence level 95%) was con-
sidered statistically significant.

3 � Results

3.1 � Urinary metabolomic profile of PCa patients

1H-NMR CPMG spectra were acquired for all urine sam-
ples included in the study. Good quality spectra, charac-
terized by the presence of signals with varying degrees of 
overlapping, were obtained for most of the samples. Fig-
ure  2 displays a representative urine 1H-NMR spectrum 
from a PCa patient and the assignment of the most relevant 
metabolites identified in these samples. In general, spec-
tra corresponding to this biofluid contain signals from a 
wide range of low-molecular-weight metabolites of diverse 
chemical classes (Bouatra et  al. 2013), including organic 
acids, simple sugars and polysaccharides, amino acids, and 
low-molecular-weight proteins. In particular, urine spectra 
are dominated by urea, creatinine, trimethylamine-N-oxide, 
dimethylamine, hippuric acid, and citric acid resonances, 
among others (Fig. 2).

3.2 � Non‑supervised analysis of the urinary 
metabolomic profiles

Sample homogeneity within the groups of samples was 
based on the PCA analysis of the 1H-NMR CPMG urine 
spectra. Using this approach, it was possible to identify 
urine samples exhibiting metabolic profiles unusually dif-
ferent to the rest of the samples within their groups. Care-
ful inspection of those samples revealed their spectra con-
tained signals corresponding to several contaminants (e.g., 
manitol, ethanol, drugs, etc.), or exhibited bad quality due 
to acquisition problems. These samples were classified as 
outliers and excluded from the study.

PCA analysis was also used to evaluate the potential 
influence of different clinical variables on the metabolic 
profiles obtained for the urine samples of PCa patients and 
individuals diagnosed with BPH. None of the variables 
assessed (i.e., age, PSA level, body mass index (BMI), 
Gleason score) had an impact in the clustering of the sam-
ples from both groups. Finally, a non-supervised analysis of 
the global data did not reveal any significant clustering of 
the samples based on the urine metabolomic profiles of the 
two sample groups in this study.

3.3 � Supervised analysis of the urinary metabolomic 
profiles

To better examine potential differences between the groups 
of samples, an OPLS-DA model aiming to discriminate the 
urinary profiles from PCa patients and individuals diag-
nosed with BPH was built. This OPLS-DA model (Fig. 3) 
showed a reasonable fitting of the data (R2 = 0.586), but 
it did not exhibit any predictive power (Q2 = −0.230). 
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OPLS-DA model significance was assessed using a cross-
validated ANOVA (p ≤ 0.01 was considered significant) 
and a permutation test (n = 100). The results of this inter-
nal validation (R2 = 0.600, Q2 = −0.101; p value >0.01) 
revealed overfitting of the data, most probably reflecting 
the elevated number of variables (823) over samples (115) 
used to build this model (Andersen and Bro 2010).

To overcome this limitation, a variable selection strat-
egy, based on the regression coefficient method (b-coeffi-
cient) (Diaz et al. 2013), was followed to remove uninform-
ative variables. The application of this variable selection 
method reduced the number of variables to 108, and the 
OPLS-DA then provided a model with significant reduction 
in sample scores dispersion and improved predictive power 
(Q2 = 0.416) (Fig. 4). The results of the internal validation 
of this new OPLS-DA model (R2 = 0.358, Q2 = −0.234; 
p value <0.01) confirmed its robustness (Szymanska 
et al. 2012). The value of R2 of this new model remained 
unchanged (R2 = 0.600) when compared with the original 
one, confirming that the discarded variables were not rel-
evant for explaining the differences between the metabo-
lomic profiles of PCa patients and individuals diagnosed 
with BPH.

3.4 � Metabolite identification and quantification

Examination of the corresponding loading plot and VIP list 
of the new OPLS-DA model facilitated the identification 
of the most relevant variables that were contributing to the 
discrimination of the PCa patients and the individuals diag-
nosed with BPH. Following this strategy, a total of 40 out 
of the 108 variables were identified as relevant regions in 
the discrimination, and used to identify the spectral signals 
corresponding to the altered metabolites in pathological 
conditions. The metabolites corresponding to those regions 
were identified through a combination of their 1H chemical 
shifts in the 1H-NMR CPMG spectra and the spin system 
patterns obtained from the 2D spectra acquired for repre-
sentative samples of each group.

Further analysis of the data was carried out with the 
use of variable-size bucketing to assess if the metabolites 
associated with the relevant variables were also signifi-
cant when comparing the two sample groups. This analy-
sis revealed a total of 8 metabolites (Table 2) whose con-
centrations exhibited statistically significant differences 
when comparing the urinary metabolomic profiles of PCa 
patients and individuals diagnosed with BPH. Thus, it was 

Fig. 2   Representative 500  MHz 1H-NMR spectrum and assign-
ment of a urine sample from a PCa patient. Assigned metabolites: 
1 branched-chain amino acids; 2 3-hydroxyisovalerate; 3 lactate; 4 
2-hydroxyisobutyrate; 5 alanine; 6 acetate; 7 N-acetyl groups; 8 glu-
tamate; 9 2-hydroxy-glutarate; 10 pyruvate; 11 citrate; 12 dimethyl-
amine; 13 sarcosine; 14 dimethylglycine; 15 creatinine; 16 cis-aco-

nitic acid; 17 trimethylamine-N-oxide; 18 methanol; 19 trans-aconitic 
acid; 20 taurine; 21 glycine; 22 serine; 23 hippurate; 24 pseudouri-
dine; 25 threonine; 26 dihydroxyacetone; 27 trigonelline; 28 U1; 29 
fumarate; 30 2-furoylglycine; 31 4-hydroxybenzoate; 32 3-methylhis-
tidine; 33 phenylalanine; 34 histidine; 35 hypoxanthine; 36 formate; 
37 4-imidazole-acetate
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found that urine from PCa patients, compared with individ-
uals diagnosed with BPH, was characterized by increased 
concentrations of branched-chain amino acids (BCAA), 
glutamate and pseudouridine, and decreased concentrations 
of glycine, dimethylglycine, fumarate, 4-imidazole-acetate, 
and one unknown metabolite (U1).

4 � Discussion

Efforts to identify non-invasive PCa biomarkers that can 
stratify patients with high sensitivity and specificity for 
screening, diagnosis, prognosis, prediction and monitoring 

remain a fundamental goal in this area (Thapar and Titus 
2014). In this context, our study represents the first com-
prehensive study focused on the characterisation and com-
parison of the specific urinary metabolomic profile of PCa 
patients with that of patients diagnosed with BPH using 
1H-NMR. The only other report focused on the analysis 
of a relatively similar set of urine samples to that included 
in our study suggested that “fingerprints” (i.e., global pro-
files) based on the analysis of urinary NMR metabolomic 
profiles could be a suitable and promising method for PCa 
detection (Zaragoza et al. 2014). The in-depth analysis car-
ried out in our study, based on non-invasive urinary metab-
olomic studies, reveals that the discrimination between PCa 

Fig. 3   Multivariate modelling 
resulting from the analysis of 
urine 1H-NMR spectra before 
variable selection (823 vari-
ables). a OPLS-DA score plot 
for the comparison between PCa 
patients (red circle) vs. individ-
uals diagnosed with BPH (blue 
circle); b internal validation of 
the corresponding OPLS-DA 
model by permutation analysis 
(n = 100), R2 (green diamond), 
Q2 (blue square)



Non-invasive urinary metabolomic profiling discriminates prostate cancer from benign…

1 3

Page 7 of 12  52

patients and individuals diagnosed with BPH actually relies 
on specific urinary metabolites, an information that could 
eventually contribute to the early diagnosis of PCa. Our 
results show that the urinary metabolomic profile of PCa 
patients, compared with individuals diagnosed with BPH, 
is characterised by statistically significant changes in the 
concentration of several metabolites. The analysis of those 
metabolic alterations reveals that PCa is associated with 
profound changes in energy metabolism.

Thus, in our study, we observed decreased levels of 
glycine and dimethylglycine when the urinary metabo-
lomic profiles of PCa patients and individuals diagnosed 
with BPH were compared. This result is in agreement 

with recent studies performed in serum (Kumar et  al. 
2015) and urine (Struck-Lewicka et  al. 2015) of PCa 
patients and healthy individuals. Kumar et  al. (Kumar 
et  al. 2015) found increased levels of sarcosine and 
decreased levels of glycine in serum samples of PCa 
patients compared with healthy individuals. Furthermore, 
Struck-Lewicka et  al. (Struck-Lewicka et  al. 2015) have 
reported decreased levels of glycine, in a study performed 
by liquid chromatography–mass spectrometry (LC–MS) 
and gas chromatography–mass spectrometry (GC–MS), 
when comparing the urinary metabolomic profiles of PCa 
patients and healthy individuals.

Fig. 4   Multivariate modelling 
resulting from the analysis of 
urine 1H-NMR spectra after 
variable selection (108 vari-
ables). a OPLS-DA score plot 
for the comparison between PCa 
patients (red circle) vs. individ-
uals diagnosed with BPH (blue 
circle); b internal validation of 
the corresponding OPLS-DA 
model by permutation analysis 
(n = 100), R2 (green diamond), 
Q2 (blue square)
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Glycine is converted to sarcosine, an N-methyl deriva-
tive of glycine that has been previously linked to PCa 
(Sreekumar et  al. 2009), by the enzyme glycine-N-meth-
yltransferase (GNMT). Sarcosine levels are also regulated 
by sarcosine dehydrogenase (SARDH), the enzyme that 
converts sarcosine back to glycine, and dimethylglycine 
dehydrogenase (DMGDH) which generates sarcosine from 
dimethylglycine (Sreekumar et al. 2009). The involvement 
of sarcosine in PCa has been the subject of many studies 
(Khan et al. 2013; Miyake et al. 2012; Issaq 2011; Bianchi 
et  al. 2011; Lucarelli et  al. 2012; Sreekumar et  al. 2009; 
Kumar et al. 2015; Jentzmik et al. 2010). However, its role 
as a potential biomarker of PCa remains controversial and 
unclear (Ploussard and de la Taille 2010). In our study, we 
found elevated levels of sarcosine in PCa patients, although 
this variation was not statistically significant. Taken 
together, our results would support the idea of an inter-
conversion between glycine/dimethylglycine and sarcosine 
through the activation of both DMGH and GNMT, and the 
down-regulation of SARDH.

There are also other mechanisms that could contribute to 
a reduction in the levels of circulating glycine. Recent work 
on cancer metabolomics has shown that glycine uptake is 
associated with cancel cell proliferation through its involve-
ment in one-carbon metabolism (Zhang et  al. 2012). This 
pathway has been traditionally considered a “housekeep-
ing” process, and encompasses a complex metabolic net-
work based on the chemical reactions of folate compounds. 
Recent findings also suggests that hyperactivation of this 
pathway could potentially be a driver of oncogenesis and 
tumor maintenance (Locasale 2013). In this context, gly-
cine metabolism has been reported to be involved in cell 
transformation and tumorigenesis. This process would be 
mediated by the activity of glycine dehydrogenase (decar-
boxylating) (GLDC) that links glycine cleavage with the 
charging of the folate cycle.

Furthermore, the rapid, dysregulated cell growth found 
in cancer cells, demands extra sources of energy to sustain 
proliferation (Zhang et al. 2012). Thus, in addition to pyru-
vate derived from glycolysis, fatty acids and particularly 
amino acids can supply substrates to the tricarboxylic acid 
(TCA) cycle to maintain mitochondrial production in can-
cer cells (Chen and Russo 2012).

One of the factors contributing to the availability of 
amino acids is a metabolic syndrome experienced by 
approximately 60% of PCa patients termed cachexia (Utech 
et al. 2012). This process involves a net increase in protein 
catabolism along with activation of proteolysis, and has 
a tremendous impact in the levels of BCAAs (O’Connell 
2013). Under normal conditions, BCAA oxidation in skel-
etal muscle provides 6–7% of the energy needs, but under 
highly catabolic circumstances, such as cancer cachexia, 
the contribution can be as high as 20% (Lam and Poon 
2008). In these conditions, it would be expected an increase 
in circulating BCAAs, thus being in perfect agreement 
with our observation and other studies carried out in pros-
tate tissue (Giskeødegård et al. 2013; McDunn et al. 2013) 
and serum samples (Giskeødegård et  al. 2015) from PCa 
patients. It would also explain the results obtained in previ-
ous studies showing that the levels of BCAAs are signifi-
cantly increased in certain neoplastic processes (e.g., gas-
tric and esophageal cancers) (Fan et al. 2012; Zhang et al. 
2013). Interestingly, BCAAs can be converted into acetyl-
CoA and other organic molecules that enter the TCA cycle. 
The metabolic flexibility afforded by multiple inputs into 
the TCA cycle allows cancer cells to adequately respond to 
the fuels available in the changing microenvironment dur-
ing the evolution of the tumor (Boroughs and DeBerardinis 
2015).

Furthermore, the catabolism of BCAAs also provides 
an important source for the generation of amino acids, 
especially glutamine and alanine. Different cancer studies 

Table 2   Mean intensities and 
variations for the statistically 
significant metabolites involved 
in the discrimination between 
individuals diagnosed with BPH 
and PCa patients

BCAA branched-chain amino acids, ppm parts per million, s.e.m. standard error of mean. P values calcu-
lated using the Mann–Whitney U test. *P < 0.05
a Chemical shift range for integration
b Spectral intensity in arbitrary units

Metabolite δ 1H (ppm)a BPH group 
(mean ± s.e.m.)b

PCA patients 
(mean ± s.e.m.)b

p value % variation

BCAA 0.930–0.842 13.10 ± 0.26 14.33 ± 0.37 0.011* 9.37
Glutamate 2.115–2.081 11.72 ± 0.18 12.42 ± 0.21 0.012* 5.98
Dimethylglycine 2.944–2.922 20.56 ± 0.91 17.17 ± 1.11 0.034* −16.48
Glycine 3.582–3.567 23.29 ± 1.01 20.49 ± 0.94 0.015* −12.00
Pseudouridine 4.309–4.277 6.88 ± 0.13 7.68 ± 0.41 0.049* 11.65
U1 6.496–6.478 0.69 ± 0.09 0.45 ± 0.04 0.027* −34.50
Fumarate 6.551–6.498 0.99 ± 0.05 0.87 ± 0.03 0.021* −12.54
4-Imidazole-acetate 8.567–8.517 1.77 ± 0.11 1.37 ± 0.62 0.006* −22.52
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(Lasagna-Reeves et  al. 2010; Gao et  al. 2008; Zira et  al. 
2010) have shown alterations in glutamine levels that are 
presumably associated with increased metabolic activity 
derived from the conditions of hypoxia and hypermetabo-
lism observed in the tumor environment (Eigenbrodt et al. 
1998). Proliferating cancer cells take up glutamine and 
convert it to glutamate through a variet of deamidation and 
transamidation reactions, most notably the mitochondrial 
amidohydrolase glutaminase (Hensley et al. 2013). It leads 
to the production of ammonia and glutamate to balance the 
pH in tumor cells and could explain the increase of glu-
tamate observed in the urine of PCa patients. This result 
is also in agreement with previous PCa studies performed 
in serum (Giskeødegård et  al. 2015) and prostate tissue 
(McDunn et  al. 2013). Glutamate is subsequently trans-
formed into α-ketoglutarate through a series of biochemical 
reactions termed glutaminolysis that contribute to replen-
ish depleted intermediates of the TCA cycle (DeBerardinis 
et al. 2008).

Regarding amino acids metabolism, a significant 
decrease of 4-imidazole-acetate, a compound linked to his-
tidine metabolism, was also observed in the urine of PCa 
patients. Interestingly, this metabolite was also identified in 
a previous study carrried out with serum samples collected 
up to 20 years prior to PCa diagnosis (Mondul et al. 2015). 
In this study, it was associated with both the overall risk 
of PCa (odds ratio 1.33) and aggressive PCa (odds ratio 
1.40). Previous studies have also shown that histidine levels 
are increased in serum (Giskeødegård et al. 2015) and tis-
sue (McDunn et al. 2013) samples from PCa patients, our 
finding perhaps reflecting a limited ability to process this 
amino acid by PCa cells. Alterations in histidine metabo-
lism, as well as in BCAA (valine, leucine and isoleucine) 
metabolism, have also been observed in other cancers (e.g., 
ovarian cancer, breast cancer) (Ke et  al. 2015; Schramm 
et al. 2010).

An increase in the urinary levels of pseudouridine, an 
isomer of the nucleoside uridine in which the uracil moiety 
is attached through a carbon–carbon bond, was found to be 
elevated in the urine metabolomic profile of PCa patients 
compared with individuals diagnosed with BPH. Increased 
levels of uracil, or other uracil-containing metabolites (e.g., 
2′-deoxyuridine) (Mondul et  al. 2015), have been found 
in previous PCa studies (Jiang et al. 2010; McDunn et al. 
2013; Spur et al. 2013; Sreekumar et al. 2009) suggesting 
an important role of the metabolism of this compound in 
this disease. Alterations in the levels of pseudouridine have 
also been observed in other pathological processes (Ras-
muson and Bjork 1995; Vicente-Munoz et al. 2015; Masaki 
et al. 2006) and have been associated with disease activity, 
tumor burden, and clinical status (Tamura et al. 1987).

Finally, the analysis of the urinary metabolomic pro-
files of PCa patients and individuals diagnosed with BPH 

also revealed significant variations in the levels of fuma-
rate, a key molecule in the TCA cycle. Within this cycle, 
the succinate dehydrogenase (SDH) complex converts 
succinate to fumarate, that is further down transformed 
to malate by the fumarate hydratase (FH). Mutations in 
these enzymes have been previously linked to renal cell 
carcinomas, uterine and skin cancer (Tomlinson et  al. 
2002). Previous studies have also shown decreased levels 
of other TCA metabolites (isocitrate, aconitate and suc-
cinate) in the urine of PCa patients, all the data support-
ing a disruption in energy metabolism (Struck-Lewicka 
et  al. 2015). Moreover, the decreased levels of fumarate 
in the urine of PCa patients, compared with individuals 
diagnosed with BPH, positively correlates with previous 
studies showing an accumulation of this metabolite in 
PCa bone metastases (Thapar and Titus 2014) and pros-
tate tissue (McDunn et  al. 2013), a process that would 
lead to a reduction in the levels of circulating fumarate. 
Interestingly, succinate, another metabolite exhibiting 
decreased levels in the urine of PCA patients, also tends 
to accumulate in cancer cells. Both metabolites belong to 
a family of compounds termed oncometabolites that are 
known to accumulate in cancer cells and facilitate cancer 
progression (Yang et  al. 2013). In particular, these two 
oncometabolites have been associated with the aberrant 
stabilization of HIF-1a (Semenza 2010), a key protein 
in cancer that is commonly overexpressed in PCa cells 
(Thomas and Kim 2008).

5 � Concluding remarks

In summary, the present study reveals for the first time 
that the analysis of urinary metabolomic profiles provides 
a non-invasive tool for characterizing PCa-associated 
biomarkers and for getting a better understanding of the 
metabolic alterations underlying this neoplastic process. 
Although further validation of the results, using an inde-
pendent set of samples, will be necessary to increase 
the robustness of this analysis, our data support the idea 
that multivariate statistical analysis of 1H-NMR urinary 
metabolomic profiles obtained from PCa patients could 
be used for objectively discriminating individuals with 
BPH or PCa.
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