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Abstract: Cytolytic immune activity in solid tissue can be quantified by transcript levels of two genes,
GZMA and PRF1, which is named the CYT score. A previous study has investigated the molecular
and genetic properties of tumors associated CYT, but a systematic exploration of how co-expression
networks across different tumors are shaped by anti-tumor immunity is lacking. Here, we examined
the connectivity and biological themes of CYT-associated modules in gene co-expression networks
of 14 tumor and 3 matched normal tissues constructed from the RNA-Seq data of the “The Cancer
Genome Atlas” project. We first found that tumors networks have more diverse CYT-correlated
modules than normal networks. We next identified and investigated tissue-specific CYT-associated
modules across 14 tumor types. Finally, a common CYT-associated network across 14 tumor types
was constructed. Two common modules have mixed signs of correlation with CYT in different tumors.
Given the tumors and normal tissues surveyed, our study presents a systematic view of the regulation
of cytolytic immune activity across multiple tumor tissues.
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1. Introduction

Immune checkpoint blockade therapy has been proved successful in diverse tumors [1,2], but some
fractions of patients still fail to respond [3,4]. Efforts have been made to illuminate the tumor-immune
interactions [5] and provide clinical outcome predictors [6–9]. Recently, Rooney et al. proposed to
quantify the cytolytic activity (‘CYT’) of the local immune infiltrate by a measure of the expression
levels of two genes (GZMA and PRF1), which are hallmarks of cytotoxic T cells and natural killer cells
activation [10]. This measure is called CYT score. They aimed to explore how the genomic landscape
of tumor shapes and is shaped by anti-tumor immunity. They focused on identifying genetic and
environmental drivers of tumor-associated cytolytic activity and elucidating how this cytolytic activity
is selected for genetic resistance in tumors. Specifically, their results suggested that neoantigens, cancer
testis (CT) antigens and viruses are the potential drivers of cytolytic activity. They observed that tumors
adapt to cytolytic immune attack by enriching somatic genetic alterations that render them resistant
to immune attack. These genetic alterations can be divided into two subsets. One subset of genetic
alterations would enable tumors to evade killing but does not impact the infiltration. These alterations
include the mutations in antigen presentation machinery genes such as HLA and B2M, and extrinsic
apoptosis genes such as CASP8. They also include amplifications in regions of genes that function
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in immunosuppression such as PDL1/2. This subset of alterations is positively correlated with CYT.
The other subset of genetic alterations would suppress the immune infiltration and is negatively
correlated with CYT. These alterations include the mutations in IDO1, IDO2, p53 and ALOX gene loci.
All these interesting findings suggest that using CYT as trait may allow us to reveal molecular and
genetic properties of tumors associated with the local immune cytolytic activity. However, we note
that their study was conducted only at single-gene and single-mutation levels. An investigation of the
properties and the behaviors of immune cytolytic activity associated gene signatures across different
types of tumors at the systems level is lacking.

The past decade has witnessed great advances in high-throughput technologies and network
approaches have become a promising method to unravel the system-level properties of gene activities
in complex diseases [11–15]. A gene co-expression network is a network based on correlations of gene
expression levels [16,17]. In these networks, groups of genes, which are highly correlated in their
expressions, are clustered into modules. These modules can then be linked to external traits [18,19]
in order to identify trait-specific modules and functions. Furthermore, topological preservations of
connectivity of these modules across different networks can be measured, which allows revealing
conserved and specific network connections [20]. Highly correlated genes in one module are often
thought to reflect functional relationships [21,22], so trait-associated modules across networks of
different tissues can provide functional interpretations from the systems biology’s point of view.
Compared to other types of biological networks, a gene co-expression network has advantages such
that it can cover nearly the complete human transcriptome and does not rely on knowledge obtained
from published literature.

By using the RNA-Seq data from the “The Cancer Genomic Atlas” (TCGA) project, we investigated
CYT-associated co-expression networks of 17 tumor and normal tissue types. These tissue types
are: lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), kidney renal clear cell
carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), breast invasive carcinoma (BRCA),
colon adenocarcinoma (COAD), stomach adenocarcinoma (STAD), head and neck squamous cell
carcinoma (HNSC), liver hepatocellular carcinoma (LIHC), prostate adenocarcinoma (PRAD), thyroid
carcinoma (THCA), skin cutaneous melanoma (SKCM), glioblastoma multiforme (GBM), ovarian
serous cystadenocarcinoma (OV), and normal lung, breast and kidney (Supplementary Table S1).
Here we set out to address three cytolytic immune activity relevant questions by interrogating the
CYT-associated co-expression networks. First, are there any differences of CYT-associated modules
between tumor and normal networks? Second, do tumors have tumor-specific CYT-associated modules,
and if so, what are the functional themes of these specific modules? Third, do different tumors
have a common CYT-associated sub co-expression network and what are its functional themes?
To answer these three questions, we followed a systematic method of gene co-expression network
analysis [15,23–25]: first we identified the modules significantly associated with CYT scores; then we
interpreted the biological meanings of the identified modules by using pathway enrichment analysis;
finally, we summarized the specific and common CYT-associated modules across different tissues.
From systems biology’s point of view, our network analyses aim to provide a comprehensive survey
of immune cytolytic activity-associated gene signatures.

2. Result

2.1. Gene Co-Expression Network Construction for Tumor and Normal Tissues

In this study, we analyzed 17 types of tumor and normal tissues with large sample sizes (>100),
which are LUAD, LUSC, lung, KIRC, KIRP, kidney, BRCA, breast, COAD, STAD, HNSC, LIHC, PRAD,
THCA, SKCM, GBM, and OV. For these data sets, we filtered out genes which had low expression
levels, and constructed co-expression network for each tissue type under the protocol of WGCNA
(Weighted Gene Co-expression Network Analysis) [17–19] based on these selected genes (method).
As a result, we constructed 17 tissues-specific co-expression networks containing the same set of
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15,677 genes (nodes). These co-expression networks are weighted networks, so any two nodes are
connected with an edge weight (from 0 to 1). Modules were defined as a cluster of highly connected
genes (nodes) and were considered as biologically related. We plotted colorful bands which represent
modules and bands of gene-CYT correlations (Figure 1). We hypothesized that tumor and normal
networks might have different characteristics. To further investigate the properties of CYT-associated
co-expression networks, we summarized biology themes and connectivity preservations of common
and specific modules in tumor and normal networks. The somatic mutation burden, cancer stage,
and survival of these CYT-associated modules were also summarized (Supplementary Figures S2–S4).
We observed that the genes in CYT-associated modules tended to have higher somatic mutation
burdens in most tumors. Many CYT-associated modules were observed to be correlated with cancer
stages and survival too.
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Figure 1. Modules defined in gene co-expression networks and corresponding gene-CYT
(cytolytic immune activity) correlations. In each paired two bands, the upper colorful band represents
modules in the network, with the largest module in turquoise, second largest in blue, then brown,
green, yellow and so on. Grey is not a module, which represents un-grouped genes. The lower
band represents the Pearson correlation between genes and CYT scores, red is positively correlated,
and green is negatively correlated.
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2.2. Tumor Networks Have More Diverse Cytolytic Immune Activity (CYT)-Associated Gene Signatures than
Normal Networks

To examine the commonality and differences between tumor and normal networks, we studied
CYT-associated modules in three types of tissues which have enough sample sizes (>100) of the tumor and
corresponding normal tissues: LUAD and LUSC vs. lung, BRCA vs. breast, KIRC and KIRP vs. kidney.

Correlation analysis of module eigengenes (first principle components of the modules) with
CYT scores identified CYT-associated modules. We defined a strong module-trait correlation
as that absolute of correlation coefficients that are not less than 0.1 and adjusted p-values that
are not greater than 0.1 (false discovery rate (FDR) ≤ 0.1). As a result, we found varied
CYT-associated modules in LUAD, LUSC, and lung (Figure 2), and these modules were annotated
by different biological themes (Table 1). The preservations of connectivity were summarized
by Z-summary and medianRank, which were referred to one another [20] (Figure 2A). To see
the overlap between modules from tumor and cancer networks, we highlighted the significant
levels of overlapping (Figure 2B). The corresponding modules can be identified by significant
overlapping (overlapping −log10 (p-value) > 2). The gene ontology (GO) themes of common
modules across 3 networks were summarized (Supplementary Material). When compared to the
lung network, we found LUAD and LUSC had more diverse CYT-associated modules, namely having
no corresponding modules in the lung network or having them, but not significantly associated
with CYT. These extra CYT-associated modules were themed by “defense response” (“LUAD:
turquoise”, corresponding to “lung: lightgreen”, “LUAD: purple”, no corresponding module in lung),
“extracellular matrix” (“LUAD: green”, corresponding to “lung: purple”), “vasculature development”
(“LUAD: black”, “LUSC: blue”, “lung: lightyellow”), “chromosome segregation” (“LUAD: blue”,
corresponding to “lung: tan”), “lamellar body” (“LUSC: black”, no corresponding module in lung),
“mRNA processing” (“LUSC: brown”, corresponding to “lung: yellow”, “lung: green”, and “lung:
lightcyan”), “oxidoreductase activity” (“LUSC: red”, no corresponding module in lung), “nucleoplasm”
(“LUSC: pink”, corresponding to “lung: lightcyan”). These observations suggest that compared
to the normal lung, LUAD and LUSC had different gene signatures associated with the immune
cytolytic activity, especially tumor networks that had more diverse CYT-correlated gene signatures
(tumor CYT-associated modules have more diverse functional themes). To rule out the possibility that
missing corresponding modules in the lung was due to the module detection procedure, we further
surveyed low preserved modules which had a small Z-summary statistic. Most CYT-associated
modules show strong preservation (Z-summary > 10) if we compare the tumor to normal networks.
Interestingly, we found “LUSC: red” module was not preserved and did not have the corresponding
module in the lung network. “LUSC: red” module was enriched by genes from the “oxidoreductase
activity” pathway and negatively correlated with CYT, which was evidence that LUSC has different
oxidation metabolic regulation from lung. Oxidoreductase activity is known to be dysregulated in
tumors [26], and serves as scavenging reactive oxygen species (ROS) which can promote immunity [27].
So, a negative correlation between oxidoreductase activity module and cytolytic immune activity is not
surprising. We illustrated a dysregulation of this module in LUSC by showing its different connectivity
property when compared to the normal lung network, which indicated that in LUSC oxidoreductase
activity was activated abnormally (Supplementary Figure S2). We also found some modules only
shown moderate preservation (2 < Z-summary < 10) such as “LUAD: purple”, “LUSC: black”. “LUSC:
black” themed “lamellar body” and was positively correlated with CYT. Lamellar bodies are secretory
organelles in type II alveolar cells which are squamous in the lung. They store and release pulmonary
surfactant into the extracellular space [28]. Pulmonary surfactant is a lipoprotein complex that plays
a role in host defense against infection and inflammation [29]. So, a positive correlation of the module
themed by “lamellar body” with cytolytic immune activity is reasonable. Meanwhile, “LUSC: black”
was also observed to be correlated with cancer stages (Supplementary Figure S3). Visualization of
“LUSC: red” and “LUSC: black” in normal and tumor lung tissues concluded that these genes are
highly co-expressed in LUSC only (Supplementary Figure S5).
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Figure 2. Visualization of CYT-associations and preservations of modules in lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), and lung. (A) In each panel, below band is a plot
of module-CYT correlation, with red indicating positively correlated and green indicating negatively
correlated. The bar plot in middle shows Z-summary statistics. Red dashed line indicates 2, black
dashed line indicates 10. The dot plot in upper shows medianRank statistics. (a) CYT correlation and
preservation in lung network of LUAD modules. (b) CYT correlation and preservation in lung network
of LUSC modules. (c) CYT correlation and preservation in LUAD network of lung modules. (d) CYT
correlation and preservation in LUAD network of lung modules. (B) Correspondence of (a) LUAD and
(b) LUSC modules and lung modules. Numbers in the table indicate gene counts in the intersection of
the corresponding modules. The coloring of the table encodes –log(p), with p being the Fisher’s exact
test p-value for overlap of two modules.

Table 1. Gene ontology (GO) analysis of CYT-associated modules in LUAD, LUSC and lung networks.

LUAD CYT
Correlation CYT Adjust p Size Representative GO Intersect

Number
Enrichment

Adjust p

brown 0.824296 2.22 × 10−145 261
GO:0019221:

cytokine-mediated
signaling pathway

45 <2.2 × 10−16

turquoise 0.59894496 1.25 × 10−51 398 GO:0006952: defense
response 141 <2.2 × 10−16

purple 0.522830484 7.96 × 10−37 25 GO:0002250: adaptive
immune response 7 0.017494691
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Table 1. Cont.

LUAD CYT
Correlation CYT Adjust p Size Representative GO Intersect

Number
Enrichment

Adjust p

black 0.156820899 0.001366798 53 GO:0001944: vasculature
development 20 1.69 × 10−11

blue 0.152476114 0.001569748 331 GO:0007059:
chromosome segregation 93 <2.2 × 10−16

green 0.1433875 0.002702892 103 GO:0005615:
extracellular space 54 <2.2 × 10−16

red 0.113753405 0.018649506 74 GO:0031012:
extracellular matrix 16 5.74 × 10−6

LUSC CYT
Correlation CYT Adjust p Size Representative GO Intersect

Number
Enrichment

Adjust p

turquoise 0.747554212 3.95 × 10−98 1622 GO:0006952: defense
response 432 <2.2 × 10−16

blue 0.329301026 3.60 × 10−13 999 GO:0001568: blood vessel
development 100 <2.2 × 10−16

yellow 0.2925106 1.40 × 10−10 379 GO:0005615:
extracellular space 106 <2.2 × 10−16

black 0.189279714 6.43 × 10−5 41 GO:0042599: lamellar
body 3 0.01760483

brown −0.10539746 0.023468284 796 GO:0006397: mRNA
processing 59 2.36 × 10−10

red −0.136069487 0.003582747 45 GO:0016491:
oxidoreductase activity 21 <2.2 × 10−16

pink −0.18133647 0.000111756 23 GO:0005654: nucleoplasm 16 0.011973696

Lung CYT
Correlation CYT Adjust p Size Representative GO Intersect

Number
Enrichment

adjust p

salmon 0.685802999 5.03 × 10−16 76 GO:0002250: adaptive
immune response 23 <2.2 × 10−16

royalblue 0.252541858 0.074263653 29 GO:0030198: extracellular
matrix organization 14 0.000755567

black 0.231568485 0.099027542 324 GO:0000139: Golgi
membrane 31 2.50 × 10−2

Next, we compared KIRC, KIRP, and kidney networks (Supplementary Figure S6, Table 2). Kidney,
KIRC, and KIRP had common CYT-associated modules (Supplementary Figure S6B, Supplementary
Material). Interestingly, modules themed by “mitochondrion” were negatively correlated with CYT
in the kidney (“kidney: lightcyan”) but positively correlated with CYT in KIRC (“KIRC: yellow”).
We also found KIRC and KIRP had more diverse CYT-associated modules than the kidney
(Supplementary Material). In terms of connectivity preservation, we found some CYT-associated
modules in the kidney network were not preserved in KIRC and KIRP: “kidney: greenyellow”
(themed by “cell periphery” and positively correlated with CYT), “kidney: salmon” (themed by
“nephron development” and positively correlated with CYT). An association between glomerular
disease membranous nephropathy and malignancy has long been appreciated, and occasional
findings of tumor antigens within glomerular immune deposits are supportive of this association [30].
Our network analysis also supported positive correlations between immune activity and cell periphery
and nephron development in the kidney, and confirmed KIRC and KIRP networks had such modules
disturbed which suggests dysregulation of these two pathways. Visualization of “kidney: greenyellow”
and “kidney:salmon” in normal and tumor kidney tissues suggested these genes are co-expressed
in kidney only (Supplementary Figure S7). Meanwhile “kidney: darkred” (theme “mitochondrial
envelope”) and “kidney: turquoise” (theme “nucleosome”) showed relatively low preservation in
KIRC and KIRP networks.
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Table 2. Gene ontology analysis of CYT-associated modules in kidney renal clear cell carcinoma (KIRC),
kidney renal papillary cell carcinoma (KIRP) and kidney networks.

KIRC CYT
Correlation CYT Adjust p Size Representative GO Intersect

Number
Enrichment

Adjust p

black 0.853237771 7.92 × 10−175 442 GO:0006952: defense response 147 <2.2 × 10−16

purple 0.540851383 1.38 × 10−40 371 GO:0006952: defense response 123 <2.2 × 10−16

light yellow 0.483655412 3.41 × 10−31 24
GO:0008064: regulation of actin

polymerization or
depolymerization

6 0.006282833

salmon 0.334088519 4.48 × 10−14 122 GO:0007059: chromosome
segregation 55 <2.2 × 10−16

yellow 0.195625539 2.79 × 10−5 895 GO:0005739: mitochondrion 265 <2.2 × 10−16

magenta 0.181397917 9.45 × 10−5 378 GO:0005634: nucleus 202 7.71 × 10−5

blue 0.132458919 0.005354675 1718 GO:0005929: cilium 70 0.003733141

cyan −0.149121774 0.001600027 106 GO:0046395: carboxylic acid
catabolic process 16 8.63 × 10−8

turquoise −0.190383188 4.25 × 10−5 2322 GO:0005654: nucleoplasm 630 <2.2 × 10−16

KIRP CYT
Correlation CYT Adjust p Size Representative GO Intersect

Number
Enrichment

Adjust p

magenta 0.890605949 7.90 × 10−121 261 GO:0042110: T cell activation 57 <2.2 × 10−16

green 0.765114172 3.91 × 10−61 810 GO:0006952: defense response 254 <2.2 × 10−16

lightcyan 0.455276412 3.39 × 10−15 43 GO:0072359: circulatory system
development 20 1.52 × 10−9

tan 0.351260084 6.85 × 10−9 107 GO:0005578: proteinaceous
extracellular matrix 21 2.31 × 10−11

pink 0.150757415 0.019363345 311 GO:0005654: nucleoplasm 94 0.00567888

green yellow 0.1482446 0.020133545 113 GO:0003735: structural
constituent of ribosome 64 <2.2 × 10−16

brown −0.113504399 0.081563375 1623 GO:0005929: cilium 73 0.000130924

blue −0.17038931 0.007845967 2117 GO:0005794: Golgi apparatus 285 4.72 × 10−13

yellow −0.235236938 0.000162479 1124 GO:0051252: regulation of RNA
metabolic process 391 <2.2 × 10−16

turquoise −0.242691756 0.000120124 2258 GO:0006355: regulation of
transcription, DNA-templated 651 <2.2 × 10−16

Kidney CYT
Correlation CYT Adjust p Size Representative GO Intersect

Number
Enrichment

Adjust p

red 0.901777428 2.39 × 10−47 762 GO:0006952: defense response 237 <2.2 × 10−16

green yellow 0.642030403 5.42 × 10−13 264 GO:0071944: cell periphery 119 1.20 × 10−7

dark green 0.43921949 1.18 × 10−5 30 GO:0006412: translation 20 < 2.2 × 10−16

light green 0.408015885 5.90 × 10−5 66 GO:0003735: structural
constituent of ribosome 44 <2.2 × 10−16

salmon 0.36223561 0.000495518 179 GO:0072006: nephron
development 12 9.11 × 10−5

lighty ellow −0.201536545 0.099115723 58 GO:0006355: regulation of
transcription, DNA-templated 29 0.003488448

light cyan −0.323038323 0.002327917 122 GO:0006119: oxidative
phosphorylation 35 <2.2 × 10−16

dark red −0.514005641 1.07 × 10−7 30 GO:0005740: mitochondrial
envelope 11 8.30 × 10−5

turquoise −0.557270749 3.68 × 10−9 1462 GO:0000786: nucleosome 17 0.0025

When comparing BRCA with breast networks, again, we found common and unique modules in
BRCA and the breast (Supplementary Figure S8, Table 3). The common CYT-associated modules in
both breast and BRCA networks were observed (Supplementary Figure S8B, Supplementary Material).
In the breast network, we identified the “breast: red” module which themed “Sin3 complex” was
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negatively correlated with CYT, but its corresponding module in BRCA—“BRCA: yellow” was
positively correlated with CYT. We found the genes from the “breast: red” module co-expressed
with genes from chromosome segregation pathway in BRCA (“BRCA: yellow”). Sin3 complex is a part
of the chromatin-modification machinery that regulates the cell cycle, proliferation, differentiation
and cancer pathogenesis. The role of the Sin3 complex in tumorigenesis is still open for debate [31].
Our observation of opposite correlation suggests a role of the Sin3 complex in breast cancer progression.
In the BRCA network, we found more diverse CYT-associated modules than in the breast network
(Supplementary Material). These CYT-associated modules were preserved in the BRCA and breast
networks, although some modules only had moderate preservation (Supplementary Figure S8A,
2 < Z-summary < 10).

Table 3. Gene ontology analysis of CYT-associated modules in breast invasive carcinoma (BRCA) and
breast networks.

BRCA CYT
Correlation CYT Adjust p Size Representative GO Intersect

Number
Enrichment

Adjust p

turquoise 0.911502399 0 796 GO:0006952: defense response 292 <2.2 × 10−16

salmon 0.420106646 1.23 × 10−46 33 GO:0051607: defense response
to virus 20 <2.2 × 10−16

red 0.325051705 4.20 × 10−27 210 GO:0001944: vasculature
development 36 <2.2 × 10−16

tan 0.316862948 8.28 × 10−26 34 GO:0005811: lipid particle 6 9.47 × 10−5

cyan 0.242642809 2.68 × 10−15 32 GO:0031012: extracellular
matrix 9 0.004274631

magenta 0.119753573 0.000159247 55 GO:0003735: structural
constituent of ribosome 50 <2.2 × 10−16

brown 0.117448707 0.000197181 302 GO:0005615: extracellular
space 92 <2.2 × 10−16

yellow 0.102251834 0.001113399 287 GO:0007059: chromosome
segregation 89 <2.2 × 10−16

blue −0.165492877 1.17 × 10−7 523 GO:0010468: regulation of gene
expression 226 <2.2 × 10−16

Breast CYT
Correlation CYT Adjust p Size Representative GO Intersect

Number
Enrichment

Adjust p

magenta 0.651782549 1.06 × 10−14 78 GO:0006955: immune response 50 <2.2 × 10−16

tan 0.47330672 6.74 × 10−7 28 GO:0001944: vasculature
development 9 0.037762588

green yellow 0.359311022 0.000433761 33 GO:0005615: extracellular
space 18 5.37 × 10−9

red −0.199648593 0.078699329 255 GO:0016580: Sin3 complex 5 0.022387309

turquoise −0.215023696 0.062018398 1820 GO:0005634: nucleus 1104 <2.2 × 10−16

purple −0.249189975 0.027500087 66 GO:0016569: regulation of
transcription, DNA-templated 35 0.0001246457

In summary, we concluded that although tumor and normal networks have common
CYT-associated gene signatures, tumor networks usually had more diverse CYT positively correlated
modules than normal networks. Modules themed by “chromosome segregation” and “vasculature
development” were correlated with CYT in tumor networks but no significant correlation was detected
in normal networks (LUAD, LUSC vs. lung, BRCA vs. breast). Modules themed by “defense response”,
“extracellular matrix” contain more genes in tumor networks than normal networks. These results
suggested that CYT was a good measure of cytolytic immune activity in both tumor and normal
tissues, since we found highly preserved CYT-correlated modules themed by “defense response” in all
networks. The results also revealed stronger inflammatory respondes in tumors than in normal tissues,
because more diverse co-expressed gene signatures existed in CYT-associated modules of tumors.
During tumorigenesis, inflammation activates tissue repair responses and induces proliferation of
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premalignant cells. Inflammation also stimulates angiogenesis. Angiogenesis promotes the formation
of a hospitable microenvironment in which premalignant cells can survive and expand [32]. Meanwhile,
adaptive immunity relies on the ability of cytotoxic T cells that need the help of the extracellular matrix.
The extracellular matrix can aid recruitment of cellular components of the innate immune system and
modify the activation state of the recruited innate immune cells [33]. Our analysis supported that CYT
were positively correlated with these pathways.

2.3. Some CYT-Associated Modules Are Specific to Tumor Types

Since tumor-specific modules may shed light on specific properties of immunity regulation in each
tumor type, we summarized tumor-type-specific CYT-associated modules. We annotated biological
themes of CYT-associated modules (Figure 3, Supplementary Table S2). Next, we evaluated the
preservation statistics of each module in the contexts of 13 tumor networks other than its own network;
thus, we generated 13 Z-summary values for each module (Figure 4). We identified tumor-type-specific
CYT module if a CYT-associated module had a median of Z-summary statistics < 2, and moderate
conserved CYT module if a CYT-associated module had a median of Z-summary between 2 and
10 (Figure 4). If a module had a median of Z-summary statistics > 10, we defined this module as
a highly conserved module.

Cancers 2018, 10, x FOR PEER REVIEW  9 of 19 

 

2 and 10 (Figure 4). If a module had a median of Z-summary statistics > 10, we defined this module 
as a highly conserved module. 

 
Figure 3. Visualization of gene ontology analysis of CYT-associated modules in 14 types of tumors. 
Each dot represents a CYT-associated module, with color indicating CYT correlation strength. Dot 
size is proportional to module size. The x-axis denotes tumor type, and the y-axis denotes 
representative GO term. 

Figure 3. Visualization of gene ontology analysis of CYT-associated modules in 14 types of tumors.
Each dot represents a CYT-associated module, with color indicating CYT correlation strength. Dot size
is proportional to module size. The x-axis denotes tumor type, and the y-axis denotes representative
GO term.



Cancers 2018, 10, 307 10 of 20

Cancers 2018, 10, x FOR PEER REVIEW  10 of 19 

 

 
Figure 4. Visualization of CYT-associations and preservations of modules across 14 types of tumors. 
In each plot, below the band is the module-CYT correlation, with red indicating positively correlated 
and green for negatively correlated. Upper boxplot is Z-summary statistics of corresponding modules 
in other 13 tumor networks. Red dashed line indicates 2, black dashed line indicates 10. 

We found four tumor type-specific modules and annotated them with GO terms (Table 4). These 
CYT-associated modules can be considered as highly specific in one tumor network since the major 
Z-summary statistics were below the thresholds of any evidence of preservation in other tumor 
networks (median Z-summary < 2). The GO themes of these modules were “lamellar body” (LUSC: 
black) and “oxidoreductase activity” (“LUSC: red”) in LUSC; “extracellular matrix” (“PRAD: 
magenata”) in PRAD; “chemical synaptic transmission” (“GBM: black”) in GBM. We had already 
identified “LUSC: black” and “LUSC: red” as specific modules when compared to the normal lung 
network. Here, we found that these two modules were specific too when compared to all tumor 
networks. We concluded that the modules themed “lamellar body” and “oxidoreductase” were the 
specific CYT-associated modules that only exist in LUSC (Supplementary Figures S9 and S10). 
Intricate roles of the extracellular matrix are important in the transformation from a normal to a 
malignant cell. The hub genes in the “PRAD: magenta” module were identified to be abnormally 
expressed in prostate cancers, such as LAMB3 and ST6GALNAC2 [34]. Our analysis showed that 
PRAD had unique properties of regulation of extracellular matrix and immunity compared to other 

Figure 4. Visualization of CYT-associations and preservations of modules across 14 types of tumors.
In each plot, below the band is the module-CYT correlation, with red indicating positively correlated
and green for negatively correlated. Upper boxplot is Z-summary statistics of corresponding modules
in other 13 tumor networks. Red dashed line indicates 2, black dashed line indicates 10.

We found four tumor type-specific modules and annotated them with GO terms (Table 4).
These CYT-associated modules can be considered as highly specific in one tumor network since
the major Z-summary statistics were below the thresholds of any evidence of preservation in
other tumor networks (median Z-summary < 2). The GO themes of these modules were “lamellar
body” (LUSC: black) and “oxidoreductase activity” (“LUSC: red”) in LUSC; “extracellular matrix”
(“PRAD: magenata”) in PRAD; “chemical synaptic transmission” (“GBM: black”) in GBM. We had
already identified “LUSC: black” and “LUSC: red” as specific modules when compared to the normal
lung network. Here, we found that these two modules were specific too when compared to all tumor
networks. We concluded that the modules themed “lamellar body” and “oxidoreductase” were
the specific CYT-associated modules that only exist in LUSC (Supplementary Figures S9 and S10).
Intricate roles of the extracellular matrix are important in the transformation from a normal to
a malignant cell. The hub genes in the “PRAD: magenta” module were identified to be abnormally
expressed in prostate cancers, such as LAMB3 and ST6GALNAC2 [34]. Our analysis showed that
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PRAD had unique properties of regulation of extracellular matrix and immunity compared to
other tumors except for SKCM (Z-summary of “PRAD: magenta” in SKCM was 8.1, Figure 4,
Supplementary Figure S11). The GBM network has a unique CYT negatively correlated module
themed by “chemical synaptic transmission” (“GBM: black”) (Supplementary Figure S12). We also
observed “GBM:black” was correlated with survival time (Supplementary Figure S4). Neuro and
immune synapses share a common functional unit—phosphatase micro-exclusion, which allows
integration of neuroimmune synapses. Neuroimmune synapses control the inflammatory reflex which
links vagus nerve activity to inhibition of inflammatory activity [35]. Our analysis also supports
a negative correlation between immune activity and synaptic transmission.

Table 4. Gene ontology analysis of tumor-type-specific CYT-associated modules. Tumor type-specific
is defined as median Z-summary < 2.

Module CYT
Correlation CYT Adjust p Size Representative

GO
Intersect
Number

Enrichment
Adjust p

Median
Z-Summary

LUSC:black 0.189279714 0.0000643 41 GO:0042599:
lamellar body 3 0.01760483 0.212845087

LUSC:red −0.136069487 0.003582747 45
GO:0016491:

oxidoreductase
activity

21 <2.2 × 10−16 1.532464475

Prostate
adenocarcinoma
(PRAD):magenta

0.492176 1.28 × 10−30 427
GO:0005615:
extracellular

space
49 0.000711 1.263953

Glioblastoma
multiforme

(GBM):black
−0.142172924 0.096014779 133

GO:0007268:
chemical
synaptic

transmission

40 <2.2 × 10−16 1.641635813

We also found some moderately preserved modules across tumor types (Supplementary Table S3),
for example, modules themed by “carboxylic acid catabolic process” in KIRC (“KIRC: cyan”) and “lipid
particle” in BRCA (“BRCA: tan”), etc. Other CYT-associated modules can be considered as highly preserved
across different tumors in terms of the properties of network connectivity.

2.4. Different Tumors Have a Common CYT-Associated Sub-Network

We observed that many CYT-associated modules were highly topologically preserved (Figure 4)
and shared similar biological themes (Figure 3). These observations suggested common properties
of CYT-associated co-expression networks. The common representative GO themes across
14 tumors, divided into three groups based on their CYT association directions, included:
(1) positively CYT-associated ones, such as “defense response”, “proteinaceous extracellular
matrix”, “blood vessel development” and “chromosome segregation” (except for “GBM: yellow”);
(2) negatively CYT-associated ones, such as “nucleus” and “regulation of transcription”; and (3) mixed
CYT-associated ones, such as “mitochondrion”, “cilium” and “structural constituent of ribosome”.

Based on the observation of common CYT-associated modules across different tumor types,
we hypothesized that tumors had a common CYT-associated co-expression sub-network. For this
purpose, we constructed a consensus co-expression network based on 25% percentile of TOMs
(topology overlay matrix) of 14 tumor networks. We identified modules in this consensus network
and correlated these consensus modules with CYT scores in different tumor types (Figure 5).
To identify biology themes of these consensus modules, we conducted gene ontology analysis
(Table 5). We observed that consensus module “blue” themed “defense response” was highly
positively correlated with CYT scores in all tumor types. Consensus modules “green”, “greenyellow”,
“tan” and “salmon” were positively correlated with CYT scores in most tumor types, and were
themed with “chromosome segregation”, “cell periphery”, “circulatory system development” and
“proteinaceous extracellular matrix” respectively. In the GBM network, consensus module “green”
(“chromosome segregation”) was negatively correlated with CYT, which was consistent with the
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result of individual GBM network (“GBM: yellow”, Supplementary Figure S12). Consensus modules
“turquoise”, “red”, “black” and “magenta” themed with “regulation of transcription”, “regulation of
gene expression”, “RNA splicing” and “nuclear lumen”, respectively, were negatively correlated
with CYT scores in most tumor types. Module “yellow” and “pink” themed with “mitochondrial
respiratory chain complex assembly” (KIRC, COAD, GBM) and “structural constituent of ribosome”
(KIRP, BRCA, COAD) had mixed signs of correlation with CYT scores. These results were consistent
with the analysis of CYT-associated modules in individual tumor networks (Figure 3).
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Table 5. Gene ontology analysis of consensus modules across 14 tumors.

Module Size Representative
GO ID Representative GO Intersect

Number
Enrichment

Adjust p

turquoise 745 GO:0006355 regulation of transcription,
DNA-templated 276 <2.2 × 10−16

blue 523 GO:0006952 defense response 212 <2.2 × 10−16

yellow 113 GO:0033108 mitochondrial respiratory chain
complex assembly 19 <2.2 × 10−16

green 112 GO:0007059 chromosome segregation 49 <2.2 × 10−16

red 89 GO:0010468 regulation of gene expression 48 4.33 × 10−10

black 72 GO:0008380 RNA splicing 14 1.79 × 10−6

pink 70 GO:0003735 structural constituent of ribosome 62 <2.2 × 10−16

magenta 68 GO:0031981 nuclear lumen 49 5.51 × 10−12

green yellow 60 GO:0071944 cell periphery 39 1.92 × 10−6

tan 58 GO:0072359 circulatory system development 21 1.95 × 10−7

salmon 50 GO:0005578 proteinaceous extracellular matrix 26 <2.2 × 10−16

cyan 33 GO:0006119 oxidative phosphorylation 8 3.35 × 10−6

In summary, we concluded that there was a common CYT-associated co-expression sub-network
across different tumor types, and these consensus modules can be divided into three groups: positively,
negatively, and mixedly correlated with CYT scores. Specifically, CYT positively correlated modules
were enriched with genes in categories of “defense response”, “proteinaceous extracellular matrix”,
“blood vessel development” and “chromosome segregation”. The pathway “defense response”
appears reasonable since CYT score is a measure of local cytolytic immune activity. The enriched
themes were well-known regulation processes of immunity, which supports our analysis results
well. CYT negatively correlated modules were enriched with genes in categories of “regulation of
transcription”, “regulation of gene expression”, “RNA splicing” and “nucleus”. Of note is “regulation
of transcription”. High CYT means a high local cytolytic immune activity that may suppress the
transcription activity in tumor tissues.

Common modules themed by “structural constituent of ribosome” and “mitochondrial” had
mixed CYT correlations. Many studies have proved important roles of ribosome and mitochondria
in immune signaling and tumorigenesis [36–38]. We found that CYT-associated modules themed
commonly by “cilium” in KIRC, KIRP, and GBM were not presented in the consensus network.
Cytotoxic T lymphocytes (CTLs) kill tumor cells by forming a cytolytic synapse with their target cell.
Marked reorganization of both the actin and the microtubule cytoskeletons brings the centrosome
up to the plasma membrane to the point of T cell receptor signaling. Such centrosomal docking also
occurs during ciliogenesis. Actually, the formation of the CTL synapse and ciliogenesis shares common
molecular machinery such as the hedgehog pathway [39]. So, a correlation between modules themed
by the “cilium” pathway and cytolytic immune activity is expected. However, we observed a negative
correlation between cilium module and CYT in KIRP, which needs further study. This analysis
depicted a common cytolytic immunity-associated co-expression network across different tumor types,
and revealed unique CYT properties in some tumors.

3. Discussion

In this study, we built gene co-expression networks of the tumor and normal tissues and
identified common and specific properties of these networks. This WGCNA approach reduces
various confounding factors in data analysis which affects other types of biological networks such
as batch effects, and does not rely on the bias of prior knowledge. We summarized CYT-associated
co-expression modules and compared properties of these modules in different tissues. Specifically,
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we came to three major conclusions. First, tumor and normal networks have different CYT-associated
gene signatures. Second, some tumor networks have specific CYT-associated modules in terms of
connectivity patterns, and pathway analysis reveals the biological functions of these specific modules.
Third, different tumor networks have a common CYT-associated sub-network. To our best knowledge,
this is the first systematic survey of gene signatures of cytolytic immune activity across various tumors
of data from clinical patients. These findings give us hints to understand regulations of immune
activity in different tumors and why tumors have varied responses to immune therapy.

It is not surprising that tumor and normal tissues have different gene signatures associated with
the cytolytic immune activity. We found that in tumor networks more genes of immunity pathway
(larger co-expression modules themed by “defense response”) were correlated with CYT scores than in
normal networks, which is plausible since tumorigenesis can arouse inflammation and activate more
immune response genes [32]. Notably, compared to normal tissues, we identified tumor networks
have common CYT positively correlated modules which were themed by “chromosome segregation”
and “vasculature development”, but these modules were not always correlated with CYT in normal
networks. This observation is consistent with the known role of immunity in tumorigenesis [32].
We did not rely on any prior knowledge to identify these modules, which proved that our system
approach could reveal established mechanisms of immune regulation in tumorigenesis. We also found
that these two kinds of modules (“chromosome segregation” and “vasculature development”) were
positively correlated with CYT scores across five and nine tumors respectively, which represents
a universal common regulation of immunity in different tumor tissues.

It is noted that the normal samples from TCGA were collected from the same cancer patients.
They are the so-called matched controls in clinical studies. Using matched controls will help to reduce
confounding impacts brought by individual variances, but it is worth noting that these samples are
known to exhibit cancerous signatures sometimes. Alternatively, we may consider using normal
tissues from healthy individuals (un-matched controls), e.g., data from the genotype-tissue expression
project (GTEx) study, for comparison. However, integrative analysis of genomic data across different
studies poses great challenges and appropriate methods correcting for study-specific biases are under
development [40]. We leave the comparison with un-matched controls to our future research.

Across different tumor co-expression networks, we identified specific and common
CYT-associated modules based on connectivity properties. Common modules suggested a conserved
regulation network of cytolytic immune activity in different tumor tissues. These common modules
were supported by our current knowledge of the role of immune system in tumorigenesis [32,33,41,42].
Specific modules revealed specific regulation of cytolytic immune activity in one tissue and these
unique properties can be further studied. The unique gene signatures of local cytolytic immune
activity revealed the diversity of immunity regulation in different tumor tissues and may be the key
to understanding the difference of immune response in various tumor tissues. This study provided
a full picture of cytolytic immune activity regulation networks in different tumor tissues by showing
common and specific co-expression modules linking to immune activity.

In summary, our study provides a system-level insight into the gene signatures of local cytolytic
immune activity, which provides evidence of specific and common regulation networks of immunity
in different tumor and normal tissues, and gives us hints in understanding mixed immunotherapy
responses in different tumors. We identified CYT-associated modules in various tissues. Furthermore,
hub genes of each module could serve as candidate biomarkers. Further efforts are required to validate
and extend our findings. First, our findings are based on TCGA data, but a lack of normal tissue data in
TCGA limited us to do more tumor/normal network comparisons. So, a more comprehensive dataset
containing large sample sizes of the tumor and normal tissues is needed, which could help us to find
more properties of immunity regulation in tumorigenesis. GTEx [43] is a good source of transcriptome
data of normal tissues, but study-specific bias-corrected data which is comparable to TCGA is lacking.
The second effort is to identify regulatory networks in various tissues. Gene regulatory networks
are directional networks which are based on the Bayesian inference. By incorporating other types of
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genetic data such as eQTL (expression quantitative trait loci) data, Bayesian networks can infer the
direction of gene regulation [44]. Finally, future efforts should be made to confirm this system-level
analysis by experimental practice.

4. Materials and Methods

4.1. Data Processing

We obtained TCGA gene expression data by TCGA-assembler [45]. We downloaded data of the
assay Platform “gene.normalized_RNAseq”, which is normalized gene expression quantification
(normalized reads per kilobase of transcript per million mapped reads, RPKM data). Based on
the TCGA barcodes, we selected primary solid tumor and solid normal tissues only. As a result,
we obtained 6416 samples of 17 different tumor and normal tissue types. To reduce background noise,
we applied two criteria to filter out low expressed genes across all these samples: the first one selects
any gene whose 50th-percentile RPKM value is greater than 1, and the second one selects any gene
whose 90th-percentile RPKM value is greater than 10. Next, we cleaned outlier samples in each tissue
type based on the expression levels of these highly expressed genes. We followed the methods of outlier
labeling based on mean IAC (inter-array correlation) [46]. We first calculated the Pearson correlation
coefficient based the expression levels for any paired samples in each tissue set (IACs), then the mean
IACs of one sample is defined as the mean of IACs of all pairs that contain this sample. We excluded
samples with low mean IACs. Low mean IAC is defined as samples with mean IACs that are lower
than mean of mean IACs minus 2 times of standard deviation of mean IACs. After outlier cleaning,
we applied another filter of genes which is that the median absolute deviations (MAD) of each gene in
each tissue set should be greater than 0. This was required by calculating biweight mid-correlation
(bicor) [19]. As a result, we obtained a same set of 15,677 genes (excluding GZMA and PRF1) in
each tissue set (sample sizes and clinical information are summarized in Supplementary Table S1.
Since normal tissues are also from the same cancer patients, so we also summarize clinical information
of the patients who have normal tissue.). To build the co-expression networks and calculate CYT scores,
we transferred RPKM values into transcripts per million (TPM) values by using the formula

TPMi =

(
RPKMi

sum(RPKMj)

)
× 106 for gene i. TPM values were log2 transformed (log2(TPMi+1)).

Expression levels of GZMA and PRF1 were highly correlated across all samples
(Supplementary Figure S1), and CYT scores were defined as log-average of GZMA and PRF1
expression in TPMs.

4.2. Co-Expression Network Construction

The gene-CYT correlation was calculated by Pearson correlation. The sign of Pearson correlation
defined the sign of gene-CYT correlation. Co-expression networks were constructed by following
the procedure of WGCNA [17], in which signed networks and biweight mid-correlation are used.
Argument maxPOutlier = 0.1 was set for bicor. Biweight mid-correlation combines advantages of the
Pearson correlation (relatively high power) and the Spearman correlation (relatively high robustness).
The key parameter, β, was optimized for each individual network so that a good scale-free topology
fitting can be achieved (fitting index above 0.8). Genes were grouped by applying complete linkage
hierarchical clustering on the topology overlay matrix (TOM). We identified modules by the dynamic
hybrid tree cut technique [47], with parameter settings: height cutoff = 0.95, deepSplit = 4 and minimum
cluster size = 20, on the resulting dendrogram (we used these settings for filtering out genes that
were not so closely correlated and dividing genes into more subtle co-expression modules). The key
parameters we used for WGCNA were summarized in Supplementary Table S4. WGCNA may report
many false discovered correlations, but the majority of the discovered correlations should be correct.
It is noted that the systems biology approaches we used focused on a set of findings and were robust
against those potential individual errors. Therefore, we were not concerned about the false discovered
correlations, even though there are many but not a majority. Modules eigengenes can be seen as the
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first principal component of a module. Similar modules with small dissimilarity (1—correlation),
which was defined as a maximum cutoff of 0.15, of eigengenes were merged. To identify CYT-associated
modules, we correlated module eigengenes with CYT scores. We discarded large modules which
had more than 3000 genes, since a large cluster of genes may be artificial (which meant the data did
not have enough resolution to differentiate these genes) and vague to identify representative biology
themes. Correlation p-values were adjusted for multiple comparisons with the Benjamini and Hochberg
correction (FDR) [48]. CYT-associated modules were defined as absolute correlation coefficients not
less than 0.1 and FDR not greater than 0.1.

4.3. Analysis of Somatic Mutation and Clinical Information

Mutation burdens of genes in the CYT-associated modules were summarized. The somatic
mutation information was downloaded and processed by TCGA-assembler. For each gene,
we summarized the proportion of patients who have somatic mutations. One-sided t-test was applied
to compare if the mutation proportions were higher in genes from the CYT-associated modules than in
non-CYT genes.

Clinical information was downloaded using TCGA-assembler. We used module eigenes to analyze
the correlation between modules and clinical information. For cancer stage information, to rule out the
unreliability of small sample size, we discarded the stages that have less than 3 patients. We applied
the Kruskal–Wallis rank sum to test if there are significant differences of eigene values of each module
across stages. For module survival analysis, we first divided patients into two groups: low and
high, which was defined by the median of module eigene values. We applied Kaplan–Meier survival
analysis [49] to test if there is significant difference of the survival rates between low and high groups.
The significance threshold is set as p-value < 0.05.

4.4. Module Preservation Statistics

The WGCNA package provides a statistical test for module preservation analysis [20].
We calculated 200 permutations of these preservation statistics to generated Z-summary and
medianRank statistics. The Z-summary indicates the preservation of network topology of
modules, with the thresholds of strong preservation (Z-summary > 10), moderate preservation
(2 < Z-summary < 10) and not preserved (Z-summary < 2). Z-summary is a composite statistic of
density and connectivity measures but is sensitive to module size. So, we also calculated medianRank.
The medianRank statistics are based on observed preservation statistics but is less dependent on
module size. We used medianRank as a measure of relative preservation of modules with different
sizes, lower ranks indicating more preservation.

4.5. Consensus Network Construction

A consensus network is a common network that exists in all tumor types. We constructed
a consensus network following the procedure provided by WGCNA [50]. Since topological overlap
matrices of different tumor types may have different statistical properties (constructed by different βs);
we first scaled the TOMs of other tumor types such that the 95th percentile equals the 95th percentile
of the TOM of LUAD (LUAD was selected by artificial, we made all TOMs comparable to LUAD’s
TOM). After scaling, we calculated the consensus topological overlap by taking the tissue-wise 25%
percentile of the TOMs of individual sets. Thus, for input networks A(1), A(2), . . . , A(k) and quantile q
(we used 25% here), we defined the consensus TOM as:

Consensusq

(
A(1), A(2), . . . , A(k)

)
= Quantileq

(
sTOM(1), sTOM(2), . . . , sTOM(k)

)
where sTOM is the scaled topological overlap measure. We applied the dynamic hybrid tree cut
algorithm to detect modules in the consensus network, with the parameters: height cutoff = 0.99,
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deepSplit = 4, and minimum cluster size = 20. We merged similar modules (dissimilarity cutoff 0.15)
after the module detection procedure.

4.6. Gene Ontology Enrichment Analysis

GO enrichment analysis was conducted by the R package GOFunction [51] with default
parameters. Basically, GOFunction compares the proportion of genes from the GO terms in the module
and the proportion in the background genes (all expressed genes except module genes), and the
terms with proportions significantly higher in the module are considered as enriched. GOFunction
first selected terms by the significant level of FDR 0.05 (FDR was adjusted by the Benjamini and
Yekutieli FDR procedure [52]). For these terms, GOFunction removed local redundancy by comparing
between ancestor and offspring with overlapping genes, and global redundancy by comparing between
non-ancestor–offspring terms with overlapping genes. Significance levels of all comparisons were
set to FDR 0.05 by default. We selected GO terms labeled “Final” as the representative functions of
a module, which were significantly enriched terms that remained after removing local and global
redundancy. We applied enrichment analysis for either the ontology of “BP” (Biological Process),
“CC” (Cellular Component) or “MF” (Molecular Function), and obtained enriched lists of GO terms by
combining all three ontologies. The lists were sorted by enrichment p-values.

For each module, we chose a fair GO term from the list of terms selected by GOFunction as the
representative GO term. Given the redundancy of GO terms, two functional similar modules may be
assigned by different GO terms. To reduce this problem, we calculated semantic distances between
these GO terms and clustered them. We further chose a GO term as representative GO theme from
closely clustered GO terms. This procedure of clustering and selecting representative terms was done
by REVIGO (Reduce Visualize Gene Ontology) [53].

5. Conclusions

Our study provides a system-level insight into the gene signatures of local cytolytic immune
activity. It presents evidence of specific and common regulation networks of immunity in different
tumor and normal tissues, and gives hints of understanding of mixed immunotherapy responses in
different tumors.
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