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ABSTRACT Cardiovascular disease is often related to defects of subcellular components in cardiac myocytes, specifically in
the dyadic cleft, which include changes in cleft geometry and channel placement. Modeling of these pathological changes re-
quires both spatially resolved cleft as well as whole cell level descriptions. We use a multiscale model to create dyadic struc-
ture-function relationships to explore the impact of molecular changes on whole cell electrophysiology and calcium cycling.
This multiscale model incorporates stochastic simulation of individual L-type calcium channels and ryanodine receptor channels,
spatially detailed concentration dynamics in dyadic clefts, rabbit membrane potential dynamics, and a system of partial differ-
ential equations for myoplasmic and lumenal free Ca2þ and Ca2þ-binding molecules in the bulk of the cell. We found action po-
tential duration, systolic, and diastolic [Ca2þ] to respond most sensitively to changes in L-type calcium channel current. The
ryanodine receptor channel cluster structure inside dyadic clefts was found to affect all biomarkers investigated. The shape
of clusters observed in experiments by Jayasinghe et al. and channel density within the cluster (characterized by mean occu-
pancy) showed the strongest correlation to the effects on biomarkers.
SIGNIFICANCE Diseases such as myocardial infarction, aortic stenosis, tachycardia, hypertension, chronic ischemia,
and atrial fibrillation have been related to changes inside the dyadic cleft, which is a subvolume of cardiac myocytes of
�10�17 l (typical cell volume 10�11 l). However, exploration of the relation between subdyadic structures and disease is
difficult because such microscopic structures in cells are in many cases not amenable to experimental manipulation, or
experiments addressing themmight not allow for simultaneous observation of cellular responses. Multiscale mathematical
models can explore the relation between microscopic structures and cellular response. We show by mathematical
modeling that the geometric properties of ryanodine receptor channel clusters within dyadic clefts affect cellular responses.
INTRODUCTION

The functioning of the heart is based on the precisely
controlled contraction of its cardiac myocytes coordinated
across the muscle by waves of membrane potential depolar-
izations (action potentials (APs)) emanating from the sino-
atrial node. On the level of an individual cardiac myocyte,
L-type Ca2þ channels (LCCs) open during an AP and trigger
the release of Ca2þ from the sarcoplasmic reticulum (SR),
which is the main intracellular Ca2þ storage compartment.
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The entailing global Ca2þ increase causes the binding of
molecular motors to actin filaments in the sarcomeres and
initiates contraction.

The SR forms a network of tubes that extend throughout
the interior of the cell and can be divided into two main
components known as junctional SR (jSR) and network
SR (nSR). The cardiac myocyte is penetrated by a network
of transverse tubules, which are plasma membrane invagina-
tions that approach the jSR and thereby form small cellular
subvolumes (see Fig. 1). These subvolumes, which have a
height of 10–15 nm, are called dyadic clefts. Action poten-
tial gated LCC opening leads to calcium-induced calcium
release (CICR) through ryanodine receptor channels
(RyRs) in the jSR membrane. Ca2þ induces its own release
because the opening probability of the RyRs increases with
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FIGURE 1 (A) Sketch of cellular level organization and transverse

tubular structure in the cardiac myocyte. (B) Molecular level arrangement

of LCCs and RyRs in a single dyadic cleft is shown. To see this figure in

color, go online.
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the local Ca2þ concentration at the channel. CICR is facili-
tated by the co-localization of LCCs in the transverse tu-
bules membrane on the one side of a dyadic cleft and
RyRs in the jSR membrane on the other side. The RyRs
together with the LCCs and the associated jSR structure
comprise the calcium release unit (CRU). Release from
CRUs provides the Ca2þ triggering contraction of the sarco-
meres. CRUs are concentrated in the structures connecting
sarcomeres—the z-disks. The CRUs are arranged within
z-disks with distances of less than 1 mm. The z-disks form
a regular stack with a spacing of �2 mm.

CRUs behave stochastically because they contain a small
number of ion channels. Because of CICR, they are excit-
able and can form sparks, which are the elementary events
of Ca2þ release. Cooperation of several CRUs via CICR
may generate unwanted Ca2þ waves. These processes occur
on different time and length scales (see Fig. S1). The [Ca2þ]
changes inside the dyadic cleft happen within a few milli-
seconds; SR dynamics, on the other hand, act on a timescale
of up to tens of seconds. We have spatial scales ranging from
tens of nanometers in the dyadic cleft up to 100 mm in cell
size. To account for these temporal and spatial scales, multi-
scale models with spatially distributed Ca2þ release sites
have been developed (1–6). The model used here simulates
the behavior of individual RyR and L-type calcium channels
as well as the concentration gradients inside clefts. On cell
level, we simulate the membrane potential and concentra-
tion dynamics. We do not use the approximation by spatial
compartments for the bulk concentration dynamics but
simulate the corresponding partial differential equations
with the numerically required spatial resolution (1,6).

Common challenges with detailed multiscale modeling
are the parameterization of the model by reproducing the
values of a set of measured biomarkers (biomarkers are
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measurable properties of cells characterizing cell behavior)
and the quantification of unknown values of parameters (7–
10) because of the large number of simulations required for
these purposes. Methods to quantify the relationship of vari-
ability and uncertainty of model inputs (parameter values) to
outputs (simulated biomarker values), which are based on
the construction of a response surface, have been recently
suggested (7,8,11,12) and may spare many simulation
runs. Exploiting the multiscale abilities of the model, we
use biomarkers on different time and length scales for APs
(seven biomarkers) and Ca2þ sparks (four biomarkers) to
adapt our model to rabbit experimental results. Our system-
atic quantification of the relation between parameter and
biomarker values uses an approximation by sums of polyno-
mials (polynomial chaos expansion (12,13,14)). Sensitivity
analysis identifies the parameters dominating the control
of biomarker values—both in the mathematical sense of it
and as the model’s suggestion for most efficient control of
the cell state (e.g., by post-translational modifications).

Diseases such as myocardial infarction, aortic stenosis,
tachycardia, hypertension, and chronic ischemia are
frequently related to changes in the dyadic cleft (15,16),
which motivated several studies in recent years focusing on
the details of the placement of RyR channels inside it. It
turned out not to be on a square lattice as assumed before
but to be less regular with respect to size and geometrical
properties (16–24). The geometrical analysis revealed that
channel positions in a cluster have random components and
that cluster area is elongated in one direction rather than
quadratic or circular (17–20,24,25). Although the cluster
size heterogeneity has been related to spark probability
(23), the functional consequences of the geometrical proper-
ties of RyR clusters are not so obvious yet. Modeling can
investigate them only if intradyadic gradients are taken into
account as our approach does and other studies on the CRU
level did (22,25,26).We address the functional consequences
of channel placement on CRU and cell level and compare
them between the regular arrangement and configurations
with increasing irregularity. To that end, we choose the rules
of channel placement provided by Jayasinghe et al. (17) to
generate cluster geometries and channel locations similar
to experimental observation.We put CRUs with these cluster
geometries into a ventricular cell model to study the relation
between cluster structure and cell function.
MATERIALS AND METHODS

Mathematical model and methods

The mathematical model comprises whole cell dynamics as well as local

molecular events (see Figs. 1 and S1). On the finest level, individual chan-

nels are represented as continuous time Markov chains, coupled by local

gradients inside the dyadic space. Cell wide diffusion of [Ca2þ] and its

buffers is modeled by partial differential equations, which also include

the fluxes generated by SR/endoplasmic reticulum Ca2þ-ATPase (SERCA),
NCX (Naþ/Ca2þ exchanger), and the CRUs. Spatially averaged variables
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comprise membrane potential, [Naþ], and [Kþ] which are generally

assumed to not exhibit strong gradients on the subcellular level. A detailed

description of the model can be found in (1,6) and Supporting Materials and

Methods.

The finite element simulation toolbox DUNE has been used to solve the

model equations (27,28). A complete description of the numerical approach

is given in (1,6) and a short overview in Supplementary Materials and

Methods.
B

C

Channel placement model

Mathematical models describing cellular calcium dynamics in cardiac my-

ocytes generally omit a spatially resolved description of the single CRUs

depicting them as point sources and/or neglect the internal structure of

channel arrays inside dyadic clefts by assuming spatially homogeneous

Ca2þ concentration (4,29–31). However, we take them into account as

required by our investigation on RyR placement (1,6,32,33). To determine

the RyR arrangement in the cleft, we use the placement algorithm suggested

by Jayasinghe et al. (17), which provides channel locations closely resem-

bling their experimental data. This placement algorithm determines channel

locations as the sequence of positions in a two dimensional random walk

with as many steps as channels in the dyad. The first RyR is placed in

the center of the dyadic cleft. The position of the second RyR is

found by a step in a random direction and with random length. The step

length is drawn from a normal distribution (mean mRyR ¼ 40.1 nm, SD

sRyR¼ 7.4 nm from (17)) with a cutoff accounting for the channel molecule

diameter of 30 nm (34). The angle defining the direction is drawn from a

uniform distribution in [0,2p]. Subsequent steps to channel positions

obey the same rules plus the additional requirement to steer clear of existing

channel molecules (excluded volume).

The first LCC channel is positioned at the center of the RyR cluster. In

the following, LCCs are placed on a regular grid as in (1), again with a min-

imal distance of 30 nm from any other channel. Two examples of channel

locations in a dyadic cleft generated this way are shown in Fig. 2 C.
FIGURE 2 (A) L-type Ca2þ channel (LCC) state scheme with the open

state marked in green (36). (B) Ryanodine receptor (RyR) state scheme

with the open state marked in green (26); the open rate kopen depends on

dyadic as well as on jSR [Ca2þ] as described in more detail in Supporting

Materials and Methods. (C) Shown are two examples of placements of

LCCs (blue circles) and RyRs (red diamonds) in single dyadic clefts with

radii r. To see this figure in color, go online.
Sensitivity analysis and construction of a
response surface

We generated a population of models by varying five crucial model param-

eters using Latin hypercube sampling (35). The hypercube was formed by

the axes in the parameter space representing kplus, kclose, gRyR, gLCC, and

VP,max. All five parameters were varied by a factor of 10 (see Table 1).

The choice of the parameter ranges was based on values in the literature

(1,36,37). The literature values may depart slightly from the chosen ranges

because of different pacing cycle lengths. The pacing cycle length used in

our simulations is 350 ms. The model simulations have identical initial con-

ditions except for the stochasticity of the geometric channel arrangement

and selected model parameters. All samples were run for the same simula-

tion time. The resulting set of simulation results was analyzed by Bayesian

linear regression (38) and polynomial chaos expansion (13) to obtain local

and global parameter dependencies.

Bayesian linear regression was used to obtain an estimate of local param-

eter sensitivity coefficients. The model sensitivity sXY from the linear fit was

computed from the following:

sXY ¼ Xref

Yref

SXY ; (1)

where SXY is the slope (along parameter X) from multiple linear regression

in a specified neighborhood of a reference parameter set (marked in Figs. 5

and 7 as a red cross). Here Xref denotes the corresponding parameter value,

and Yref is the corresponding reference value of the biomarker. We can read

off the local strength, direction, and uncertainty of output change with

respect to the variation of a selected parameter from these sensitivity coef-
ficients. Because the mathematical model is stochastic, the output cannot be

predicted with absolute certainty but with some probability only. We there-

fore used Bayesian linear regression to obtain a proper quantification of the

uncertainty in the predictions. The algorithms were implemented using the

Python library Edward (39) and TensorFlow (40) toolboxes. Although these

sensitivities are based on a linear regression, we complemented our inves-

tigations by calculating Sobol coefficients (see Fig. S3), which serve as a

measure of global sensitivities for nonlinear models (41).

To quantify the effect parameters have on the biomarkers, we used an

approximation method known as polynomial chaos expansion. For the poly-

nomial chaos expansion, an orthonormal basis of polynomials was gener-

ated by using a Python-specific library called Chaospy (42). We assumed

uniform distribution of the input parameters and therefore used Legendre

polynomials for the regression fit. Using a polynomial degree p and a num-

ber of parameters d, the number of polynomial coefficients, which have to

be determined, can be calculated from:

n ¼
�
d þ p
d

�
: (2)
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TABLE 1 Parameters, Sampling Ranges, and Suggested Parameter Set for Spark and Action Potential Simulations

Parameter Description Sampling Range Suggested Value Accepted Range

kplus [ms�1 mM�h] RyR opening rate 5.0 � 10�5–5.0 � 10�4 1.5 � 10�4 (1.1–2.3) � 10�4

kclose [ms�1] RyR closing rate 0.1–1.0 0.5 0.28–0.55

gRyR [mm3 s�1] RyR Ca2þ permeability 3.0 � 10�4–3.0 � 10�3 7.5 � 10�4 (5.9–8.4) � 10�4

gLCC [mm3 s�1] LCC Ca2þ permeability 4.5 � 10�4–4.5 � 10�3 3.2 � 10�3 (1.7–3.4) � 10�3

VP,max [mM ms�1] maximal SERCA uptake rate 0.15–1.5 0.55 0.08–0.71

The output stays in the literature range of all biomarker values, if the corresponding parameter is varied within the range given in the fifth column (accepted

range), whereas other parameter values are kept at the value in the fourth column (suggested value).

Cosi et al.
The required number of data points usually exceeds the number of coef-

ficients by at least a factor of 2–3 to prevent overfitting (43). To obtain an

optimal regression and polynomial degree, we quantified the commonly

used least-squares fit error and the cross-validation error as explained in

Supporting Materials and Methods.
RESULTS

The simulated time course of the Ca2þ concentration inside
a dyadic cleft during an AP is illustrated in Fig. 3 and Video
S1. Gradients comprise three orders of magnitude (0.1–
150 mM) upon the opening of the first channel. The concen-
tration outside the cleft space changes quickly, such that we
observe gradients from �150 mM at the boundary of the
cleft to �300 mM at open channels later during the event.
Hence, the opening rate of RyRs close to open channels is
FIGURE 3 Multiscale simulation. Shown is a snapshot of the concentration p

A snapshot of isoconcentration surfaces (0.6 mM, 2.6 mM) of the cytosolic co

320 dyadic clefts and the time course of the membrane potential, average [Ca

line indicates the time point at which the snapshots were captured. A correspond

go online.
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initially six orders of magnitude and, later into the spark,
is �4 times faster than the rate of channels further away
(see Eq. S11; Table S2). The simulations illustrate the strong
impact of gradients on the transition from one open LCC (or
RyR, quark) to a spark and the quantitative effect on the cal-
cium transient. This applies throughout an AP, as Video S1
shows.

The jSR concentration decreases rapidly upon the onset
of release (Fig. 3). In case of sparks, this helps terminating
release due to decreasing release current and consequently
less coupling of RyRs by CICR. This mechanism is in
agreement with earlier studies (25,26,44). In case of AP
simulations, the jSR concentration continues to decrease
on average till about the end of the membrane potential
plateau (Fig. 3).
rofile in a dyadic cleft and the jSR concentration time course of this CRU.

ncentration [Ca2þ]i of the whole z-disk (15 mm � 15 mm � 2 mm) with
2þ]i, and average nSR [Ca2þ] are shown on the right-hand side. The red

ing simulation for one AP is shown in Video S1. To see this figure in color,



TABLE 3 Biomarker Ranges for Ca2D Sparks

Biomarker Range Description

FDHM 8.0–17.5 ms FDHM

Spark rate 1–5 mm�1s�1 number of sparks per mm cell

and second

Quark to spark

ratio

0.2–1.1 number of quarks/number of sparks

Peak [Ca2þ] 10.0–22.0 mM average maximal [Ca2þ]
Peak ½Ca2þ�expi 0.6–1.2 mM during a spark

Table S1 also lists references.

Multiscale Modeling of Cardiac Myocytes
Fig. 3 also shows the cytosolic concentration [Ca2þ]i
caused by the release from all CRUs in the z-disk (15 mm
� 15 mm � 2 mm) and the membrane potential, average
[Ca2þ]i, and average nSR concentration. The variable size
of the volumes enclosed by the 2.6 mM isoconcentration sur-
face illustrates the randomness and heterogeneity of release
events. Refined numerical grids around CRUs guarantee the
faithful simulation of Ca2þ and buffer diffusion between
them (6). In that way, we can simulate the concentration dy-
namics from subdyadic to cellular length and timescales.

To facilitate the comparison of experimentally measured
and simulated [Ca2þ], we simulated a fluorescent buffer (see
Fig. S4). This allowed us to emulate the approximation of
[Ca2þ]i as it would be measured by a single wavelength
Fluo-4 experimental recording using an in vitro calibration
approach as described in (45):

�
Ca2þ

�exp
i

¼ Kd

F� Fmin

Fmax � F
; (3)

where Kd is the dissociation constant of Fluo-4, F is the
experimentally measured fluorescence intensity (the spatial
average of bf), Fmax is the measured fluorescence intensity in
Ca2þ-saturated dye (here, this is set as btotf ), and Fmin is the
measured fluorescence intensity in the absence of Ca2þ

(here, set to zero).
Quantification of parameter values based on
biomarkers

A population of simulated cells was generated as described
in Materials and Methods. We identified valid parameter
sets by filtering all simulation results for those providing
biomarker values in the ranges stated in literature (see
Tables 2 and 3). The biomarker resting membrane potential,
maximum membrane potential, dome membrane potential,
and [Naþ]i (see Table 2) are mainly determined and met
by the Mahajan electrophysiology model we use and have
essentially not been affected by the parameter variations
considered here (36). Results of AP simulations were
filtered by taking the biomarkers APD90, peak systolic
[Ca2þ], and mean diastolic [Ca2þ] into account. The spark
biomarkers used in the filtering of the spark simulations
are the spark rate (i.e., events with at least two simulta-
TABLE 2 Biomarkers Ranges for Action Potentials

Biomarker Range Description

Max Vm 46 5 4.5 mV maximal value of AP peaks

Resting Vm �77.4 5 3.9 mV resting value of the AP

Dome Vm 15.2 5 10.1 mV peak in the plateau phase

APD90 150–200 ms APD at 90%

Systolic [Ca2þ] 0.6–1.2 mM peak systolic calcium

Diastolic [Ca2þ] 0.1–0.25 mM diastolic calcium

[Naþ]i 10.5–11.5 mM intracellular sodium

Table S1 also lists references.
neously open RyRs in the same cleft), the average FDHM,
the mean of the Ca2þ peak value of sparks, and the ratio be-
tween quarks and sparks. Quarks are events in which exactly
one RyR opens in a given cleft. The overlap of both filtering
results led to the suggested parameter value set in Table 1.
We performed 281 simulations for APs. Of those, 23 param-
eter sets passed the biomarker ranges stated above. Out of
the 297 Ca2þ spark simulations, 20 simulations passed the
ranges for the Ca2þ sparks. The suggested value (Table 1,
fourth column) fulfills the requirement for all seven
biomarkers.
Sensitivity analysis and response surfaces of AP
biomarkers

Sensitivity analysis provides information on how changes of
input parameters affect a particular biomarker value. We
have chosen to vary the five parameters kplus, kclose, gRyR,
gLCC, and VP,max in this analysis. All of them are related
to Ca2þ as the focus of this study. The parameters setting
the RyR open probability (kplus, kclose) and SERCA uptake
(VP,max) were chosen because they are targets of drugs or
post-translational modifications. We vary the RyR conduc-
tivity gRyR because the in vivo single channel current is
not well known. The LCC conductivity gLCC turned out to
be an important parameter in preliminary simulations.

We have chosen the suggested values of the parameters
in Table 1 as reference for all sensitivities in this study.
Fig. 4 shows the sensitivities for the AP biomarkers
(APD90, peak systolic [Ca2þ], and mean diastolic
[Ca2þ]) versus the varied parameters. The LCC perme-
ability gLCC has the strongest positive impact on all three
biomarkers (Fig. 4). The positive correlation of APD90
with gLCC we observe is in line with results by Britton
et al. (46). AP durations (APDs) are positively influenced
by the RyR opening rate kplus and negatively by their clos-
ing rate kclose, whereas for the systolic [Ca2þ]i peak and
diastolic [Ca2þ]i, the opposite is true. The influence of
the opening and closing rates of the RyRs on the APD me-
diates the effect these two parameters have on the [Ca2þ]i
values. An increase of kplus decreases [Ca2þ]i because it
prolongs the AP. This entails longer Ca2þ release, which,
in the end, reduces SR [Ca2þ] and the release and leak cur-
rents. We see the opposite effect when increasing kclose. It
Biophysical Journal 117, 2409–2419, December 17, 2019 2413
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FIGURE 4 Sensitivity values for APD90, systolic ½Ca2þ�expi , and diastolic

½Ca2þ�expi . Black bars represent the SD for the sensitivity coefficients ob-

tained from Bayesian inference and indicate the uncertainty in the esti-

mates. To see this figure in color, go online.
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FIGURE 5 (A–C) Contour plots for the mean values of APD90, peak sys-

tolic ½Ca2þ�expi , and mean diastolic ½Ca2þ�expi in dependence on LCC perme-

ability gLCC and maximal SERCA uptake VP,max with the values for kplus,

kclose, and gRyR fixed to the values in Table 1 (fourth column). The iso lines

for the upper and lower parameter values of the literature ranges are color

coded in green and orange, respectively. (D) Shown are the contours

limiting the literature value ranges for all three biomarkers in a single

plot. The white area outlines the parameter region for gLCC and VP,max

within which all three AP biomarkers are within the literature ranges.

The red mark indicates the parameter set listed in Table 1 (fourth column),

meeting also the spark biomarker requirements. To see this figure in color,

go online.
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shortens the AP and increases SR [Ca2þ] and hence also
the release and leak current.

Extraction of more detailed information is based on the
response surfaces. They provide an approximation for the
dependency of each biomarker on the varied parameters.
We use them to draw contour plots for biomarker values
in dependency on parameter values (Fig. 5). The values of
the parameters not varied in these plots are listed in Table
1 (fourth column) and Tables S2–S9.

The strong influence of gLCC on the AP biomarkers mo-
tivates the focus mainly on this parameter and how its
change might be compensated for by a change of another
parameter. Fig. 5 depicts biomarker values computed in
the gLCC-VP,max plane. The iso lines for the upper and
lower parameter values of the literature ranges are color
coded in green and orange, respectively. From Fig. 5,
we can read off how coordinated parameter changes can
maintain important biomarkers as, for instance, APD90.
Interestingly, the contours of iso-APD90 and isosystolic
[Ca2þ] are similar, and a coordinated change of SERCA
uptake and LCC current along them could maintain
approximately both but would affect mean diastolic
[Ca2þ].
Sensitivity analysis and response surfaces of
spark biomarkers

Fig. 6 shows the sensitivities of the spark biomarkers with
respect to the varied parameters. The spark rate is mainly
influenced by the opening probability of the RyR kplus and
the RyR permeability gRyR. Surprisingly, the full duration
at half maximum (FDHM) is only weakly affected by all
five parameters. Peak calcium strongly responds to changes
of the RyR permeability. The quark to spark ratio is strongly
2414 Biophysical Journal 117, 2409–2419, December 17, 2019
negatively affected by changes in kplus and gRyR and posi-
tively by kclose.

The response surfaces of FDHM, spark rate, and ½Ca2þ�expi

are depicted in Fig. 7. ½Ca2þ�expi was calculated from Ca2þ-
bound dye buffer, as in experimental analyses, by using
Eq. 3. Although this inferred [Ca2þ] has a reasonable accu-
racy for the mean [Ca2þ] during APs (see Fig. 3), our sim-
ulations suggest that it fails for the quantification of spark
peak [Ca2þ]i (compare Figs. S4 and S7). Whereas the true
peak [Ca2þ]i reaches values of more than 20 mM for single
sparks, the inferred experimental concentration ½Ca2þ�expi

only reaches values slightly above 1 mM. A similar discrep-
ancy occurs for the spark FDHM. Although the true under-
lying spark events appear to be short release events with a
duration of 5–15 ms, the FDHM for the inferred ½Ca2þ�expi

is by factor of �2 longer.
Functional consequences of geometrical
properties of RyR clusters

We start with comparing two different models for RyR
placement in clusters. The first model assumes a regular
arrangement with equidistant spacing (40 nm) of RyRs on
a regular grid, whereas the second one assumes irregular
clustering properties on the basis of the measurements of



kplus kclose gRyR gLCC VP,max

se
ns

iti
vi

ty
 c

oe
ffi

cie
nt

3.0

2.0

1.0

0

1.0

2.0

FIGURE 6 Sensitivity values for spark rate, mean peak [Ca2þ], spark
FDHM, and quark to spark ratio. Black bars represent the SD for the sensi-

tivity coefficients obtained from Bayesian inference and indicate the uncer-

tainty in the estimates. To see this figure in color, go online.

Multiscale Modeling of Cardiac Myocytes
Jayasinghe et al. (17) as described before. We use the sug-
gested values of the parameter set in Table 1 and performed
10 simulations for each placement model. Channel numbers
for the individual CRUs are drawn from the same distribu-
tion (Eq. S12) for both groups. Differences between the in-
A
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B

FIGURE 7 (A–C) Contour plots for the mean values of FDHM, spark

rate, and peak ½Ca2þ�expi inferred from Fluo-4 bound Ca2þ (Eq. 3) in depen-

dence on the RyR permeability gRyR and opening rate kplus with the values

for gLCC, kclose, and VP,max fixed to Table 1 (fourth column). The iso lines for

the upper and lower parameter values of the literature ranges are color

coded in green and orange, respectively. (D) Shown are the contours

limiting the literature value ranges for all three biomarkers in a single

plot. The white area outlines the parameter region for gRyR and kplus within

which all three spark biomarkers are within the literature ranges. The red

mark indicates the parameter set listed in Table 1 (fourth column), meeting

also the AP biomarker requirements. To see this figure in color, go online.
dividual simulations even within one placement model
group arise from the randomness of channel numbers in
CRUs and their placement. We find clear differences of
biomarker values between the two placement models
(Figs. 8 and 9). Hence, the dyadic substructure clearly af-
fects cellular responses.

Geometric effects within the placement model by Jaya-
singhe et al. are shown in Fig. 10. A variety of channel
configurations has been generated by sampling from the
placement model distributions and additionally varying
the distribution parameters. Although channel configura-
tions have been characterized successfully by the adja-
cency matrix (22,26), we are looking here for a simpler
approach. We characterized channel configurations by a
variety of measures (average nearest- and four nearest-
neighbor distance, area per channel determined by
convex hull, and mean occupancy (see Fig. S5)) and
found mean occupancy to show the strongest correlation
with biomarker values. Mean occupancy is 1 if all RyRs
are far apart and 0 if all RyRs are in the same spot
(Fig. S5).

APD90, peak systolic ½Ca2þ�expi , and diastolic ½Ca2þ�expi

decrease with increasing mean occupancy (Fig. 10). This
concerted decrease reflects the correlation between these
values found in the contour plots in Fig. 5, too. All three
trends are in line with the general picture of decreased
Ca2þ release due to increased mean occupancy. Hence, we
find effects of dyadic substructure also within one placement
concept.
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The regular placement exhibits smaller APD90, larger
peak systolic ½Ca2þ�expi , and shorter time to peak (Fig. 10).
We assume that this is caused by the relation between
LCC placement and the overall cluster shape. LCC locations
were chosen according to the same rules described above for
both placement methods. The Jayasinghe placement pro-
duces elongated clusters, and the regular placement pro-
duces quadratic clusters. Hence, the average RyR distance
to the closest LCC is smaller with the regular placement
than with the Jayasinghe placement, which entails stronger
LCC-RyR coupling. This stronger and earlier Ca2þ release
causes faster Ca2þ-dependent inhibition of LCCs and thus
shorter APD.

The strength of the coupling of RyRs byCa2þ diffusion de-
creases with increasing mean occupancy. The averages of
spark biomarker values depend in the expectedmanner on oc-
cupancy as the slopes of the linear regressions show (Fig. 11).
FDHM increases with increasingmean occupancy, reflecting
the known phenomenon of slower termination of sparks with
weaker spatial coupling of RyRs. Correspondingly, peak sys-
tolic ½Ca2þ�expi and spark rate decreases with increasing mean
occupancy. Large quark to spark ratios were found with
weaker RyR coupling at large mean occupancy only. The
spark biomarker values exhibit much stronger fluctuations
than the AP simulations. The results with regular placement
fit into the relation on mean occupancy.

Only the specific realizations of channel numbers in the
individual CRUs vary between the individual simulations
with the regular placement. Simulations with the Jayasinghe
2416 Biophysical Journal 117, 2409–2419, December 17, 2019
placement are distinguished by both channel number reali-
zations and specific placement. Hence, comparing the scat-
ter of the biomarker value results with regular placement
(red circles) with the Jayasinghe placement (black dots) in
Figs. 10 and 11 provides an idea of how much of the vari-
ability is due to the randomness of channel numbers per
CRU. The variability due to channel number randomness
is comparable to the total variability for the spark bio-
markers FDHM and rate (Fig. 11). Jayasinghe placement in-
creases the quark to spark ratio variability with increasing
mean occupancy because coupling between channels be-
comes weaker. Surprisingly, the regular placement has a
larger variability of the peak ½Ca2þ�expi than the Jayasinghe
placement because it exhibits also very large values. The
same comparison for the AP simulations suggests variability
of peak systolic ½Ca2þ�expi to result mainly from channel
number variability. Variability of APD90, diastolic
½Ca2þ�expi , and time to peak increase substantially because
of the Jayasinghe placement.
DISCUSSION

Parameterization of detailed multiscale models faces the
problem of large computational costs required for
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simulations, which often prevents systematic parameter
searches. These models require large efforts to reduce
compute time and methods concluding parameter depen-
dencies from a minimum of simulations. We reported our ef-
forts to speed up simulations in previous studies (1,6). Here,
we present a parameterization of the model to experimental
data. To that end, we identified ranges of altogether 11
biomarker values from literature, four of them were fulfilled
by model output, mainly based on previous work by Maha-
jan et al. (36), and seven of them were affected by our
spatially detailed approach and had to be met by our param-
eterization procedure. The multiscale set up of our model al-
lowed for detailed channel placement inside dyadic clefts,
according to measurements in Jayasinghe et al. (17).
Accordingly, we focused here on parameters that are crucial
for the Ca2þ handling in the microscopic domain of the
dyadic cleft: the opening and closing rates of RyRs kplus
and kclose, the RyR permeability gRyR, the LCC permeability
gLCC, and the strength of SERCA uptake VP,max.

In the case of AP simulations, LCC permeability gLCC
variation has the strongest impact on cell behavior, as illus-
trated by the sensitivities in Fig. 4. The response surfaces in
Fig. 5 illustrate the strong correlation between APD and the
systolic [Ca2þ]i values. As an example of a control strategy
suggested by response surfaces, we note that a coordinated
change of gLCC and VP,max can approximately maintain APD
and systolic [Ca2þ]i while lowering diastolic [Ca2þ]i, if the
initial APD is in the lower range of the literature values.
That would be a strategy to decrease the propensity for dia-
stolic triggered events while maintaining contraction.

The spark simulations show that kplus, kclose, and gRyR
affect the spark rate in the way we expected: kplus and
gRyR positively, kclose negatively. Their effect on the quark
to spark ratio can be comprehended by considering the prob-
ability that the first open RyR does open another one, thus
turning a quark into a spark. That probability increases
with kplus and gRyR and therefore reduces the quark to spark
ratio and vice versa with kclose. The weak effect of all five
parameters on the FDHM is surprising at a first glance; how-
ever, it agrees with the results by Cannell et al. (25) for the
latency of induction decay.

The Jayasinghe placement affects the mean and SD of the
AP biomarker values and mean and/or the SD of the spark
biomarker values we have investigated. Hence, subdyadic
structure matters. Figs. 8, 9, 10, and 11 report the effect of
the Jayasinghe placement compared to the regular place-
ment. These effects are due to cluster shape and channel
density. The elongated shape of the clusters generated by
the Jayasinghe placement weakens LCC-RyR coupling
(compared to the regular placement), which increases time
to peak and APD90 and affects indirectly diastolic and
peak systolic ½Ca2þ�expi . Mean occupancy is related to den-
sity and mean channel distance. In principle, the SD of
channel distances could also have an effect on CRU dy-
namics by generating highly coupled subclusters at large
SD. However, that is not supported by our simulations.

We found the effects of channel placement, which might
be affected by specifics of our cleft model. We assume a
fraction of 50% of total Ca2þ to be buffered by mobile
buffers based on estimates from (26). This estimate assumes
ATP (KD z 200 mM (26)) to be the dominating mobile
buffer at Ca2þ concentrations occurring in the dyadic space.
ATP levels may change to a degree affecting dyadic buff-
ering in pathological states; however, this was not in the
scope of this study (47,48). We use an effective diffusion co-
efficient of 100 mm2 s�1 inside the cleft as well as a quasi-
static approximation for the concentration profiles (see
Supporting Materials and Methods; (1,6,32,33)). Coupling
of RyRs upon the opening of a channel with dynamic con-
centration profiles is initially weaker than with quasistatic
profiles. Geometric effects are more important with weak
spatial coupling. Hence, we assume that dynamic profiles
would slightly amplify them. The timescales of the cytosolic
concentration around the cleft space dominate the dynamics
upon closing. They are captured by our model. The diffusion
coefficient in the dyadic space has not been measured, and
we informed our model on the basis of other modeling
studies (25,26,49). Because we are using an effective value,
it is rather at the upper end of the currently accepted range.
Biophysical Journal 117, 2409–2419, December 17, 2019 2417
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In summary, we may rather underestimate than overestimate
the geometrical effects.

In this study, we used multiscale modeling in two ways
complementary to experimental studies. We observed local
dynamics and cellular behavior simultaneously, and we
modified subdyadic structures, which cannot be modified
by experimental means. That provided insight into struc-
ture-function relations across multiple scales. Our results
suggest that both the mean occupancy and the overall cluster
shape affect APs and cytosolic Ca2þ transients.
SUPPORTING MATERIAL

Supporting Material can be found online at https://doi.org/10.1016/j.bpj.

2019.09.023.
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