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Abstract
Animal and clinical studies have confirmed the therapeutic effect of bone marrow mesenchymal stem cells 
on cerebral ischemia, but their mechanisms of action remain poorly understood. Here, we summarize the 
transplantation approaches, directional migration, differentiation, replacement, neural circuit reconstruction, 
angiogenesis, neurotrophic factor secretion, apoptosis, immunomodulation, multiple mechanisms of action, 
and optimization strategies for bone marrow mesenchymal stem cells in the treatment of ischemic stroke. 
We also explore the safety of bone marrow mesenchymal stem cell transplantation and conclude that bone 
marrow mesenchymal stem cell transplantation is an important direction for future treatment of cerebral 
ischemia. Determining the optimal timing and dose for the transplantation are important directions for 
future research.
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Introduction
Ischemic stroke is currently one of the main causes of death 
in adults worldwide, with an especially high incidence and 
ischemic stroke-related disability rate in the elderly (Donnan 
et al., 2008; Johnston et al., 2009). Because of the short ther-
apeutic time window in ischemic stroke, many patients with 
ischemic stroke may suffer from severe long-term disability, 
even if they receive timely interventional and thrombolytic 
therapies (Pandya et al., 2011). However, nerve regeneration 
appears several days or weeks after ischemic stroke, offering 
potential for a second therapeutic time window (Gopurap-
pilly et al., 2011). New treatment approaches to alleviate 
disability after stroke may be considered during this second 
window, including stem cell transplantation. 

Bone marrow mesenchymal stem cells (BMSCs) have 
self-renewal potential. These cells express markers for mes-
enchymal or endothelial cells (CD105, CD73, and CD90) 
as well as adhesion molecules (CD106, CD166 and CD29) 
(Javazon et al., 2004; Dominici et al., 2006), but do not ex-
press hematopoietic stem cell markers (CD11, CD14, CD34, 
CD45, CD79, CD19 and HLA-DR). BMSCs can differentiate 
not only into mesodermal cells but also into endodermal 
and ectodermal cells (Sanchez-Ramos et al., 2000; Phinney 
and Prockop, 2007; Uccelli et al., 2008). Sufficient evidence 
has shown that BMSCs affect the pathological processes 

underlying ischemic stroke through multiple mechanisms 
of action, including inducing angiogenesis, secreting neu-
rotrophic factor, inhibiting apoptosis, and modulating the 
immune system (Li et al., 2008; Tate et al., 2010; Liu et al., 
2012; Jellema et al., 2013; Zhao et al., 2013; Mitkari et al., 
2014). Thus, BMSCs have great potential in the treatment of 
stroke (Li et al., 2008; Tate et al., 2010; Liu et al., 2012; Jelle-
ma et al., 2013; Zhao et al., 2013; Mitkari et al., 2014). In ad-
dition, BMSCs are generally derived from autologous tissue, 
precluding ethical controversy. BMSCs are easily cultured in 
vitro, have weak immunogenicity and good safety, and have 
been considered ideal seed cells in the treatment of ischemic 
stroke (Guo et al., 2013; Ishizaka et al., 2013; Kawabori et al., 
2013; Hess et al., 2014; Ha et al., 2015).  

Considering the potential multiple mechanisms of action 
of BMSCs following transplantation, we sought to analyze 
the various transplantation approaches, differences in mech-
anisms of action, and effectiveness and safety of BMSCs in 
ischemic stroke therapy. 

BMSC Transplantation Approaches  
BMSC transplantation is conducted mainly using intracrani-
al and intravascular deliveries (Guzman et al., 2008). The in-
tracranial technique refers to stereotactic injection. Follow-
ing direct injection into the corpus striatum, more BMSCs 
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are able to reach the targeted brain damage and the number 
of cells used is small and the onset time is short (Jin et al., 
2005). Another intracranial delivery method is intraventric-
ular injection. Its success depends on the migration of trans-
planted cells and their abilities to adapt to the cerebrospinal 
fluid and survive transiting the blood-brain barrier (Wang 
et al., 2013). Because intracranial transplantation is invasive, 
multiple injections in the infarct zone cause mechanical 
damage of local tissue and cells (Walczak et al., 2008). 

Intravascular techniques include intravenous and intra-ar-
terial approaches. Compared with intracranial delivery, in-
travascular injection more widely distributes transplanted 
cells through blood vessels and may be better for large-area 
brain damage (Bliss et al., 2010). A number of inflammatory 
cytokines are released after tissue damage (Tuttolomondo et 
al., 2008; Ahmadian Kia et al., 2011). BMSCs express a variety 
of chemokine receptors (Ponte et al., 2007) and are attracted 
to the area of injury or inflammation. After cerebral ischemia, 
intravenously transplanted BMSCs are targeted to the center 
of the ischemic area and peri-infarct zone. However, because 
of the large volume of BMSCs (Lee et al., 2009), most BMSCs 
may be captured in the pulmonary vascular system after in-
travenous infusion. Detante et al. (2009) verified that infused 
99mTc-HMPAO-labeled BMSCs were transiently trapped in 
the rat lung in the first 2 hours after stroke before reaching 
the ischemic area. Thus, compared with intracranial injection, 
intravenous injection is relatively simple and less invasive (Wu 
et al., 2008), but the number of cells reaching the ischemic 
tissue is low. Intra-arterial transplantation can obtain better 
effects than intravenous transplantation. Intra-arterial trans-
plantation diminishes the number of cells trapped in other 
tissues and delivers cells to the injury site in a short period. 
Injection through the internal carotid artery is a simple and 
effective way to transplant cells, as cells can distribute in the 
brain tissue where blood is supplied by the middle cerebral 
artery (Guo et al., 2013). Jiang et al. (2013) demonstrated that 
BMSCs reach the arterial end close to the injury site following 
intra-arterial transplantation, indicating that intra-arterial 
transplantation is a safe, feasible method for promoting the 
recovery of neurological function in patients with stroke.

Although the intra-arterial and intracranial approaches 
reduce the problems associated with delivery of BMSCs, the 
two methods are invasive. The safety or effectiveness of BMSC 
transplantation in stroke therapy should be determined. The 
optimal time window of transplantation is unclear, and it may 
be that sooner is better. In addition, the optimal injection dose 
will require further study (Keimpema et al., 2009; Komatsu et 
al., 2010; Ishizaka et al., 2013; Kawabori et al., 2013).

Mechanisms of Action for BMSCs 
BMSCs participate in the treatment of cerebral ischemia 
through multiple mechanisms, including cell migration, an-
giogenesis, apoptosis inhibition, neurotrophic factor secre-
tion, neural circuit reconstruction, and immunomodulation 
(Figure 1). 

Directional migration of BMSCs 
In vivo microscopy or autoradiography has revealed that 

transplanted BMSCs mainly gather in the ischemic penum-
bra and the subventricular zone (Yilmaz et al., 2011; Park 
et al., 2014). Microglia and astrocytes in the infarct zone se-
crete stromal cell-derived factor 1 (SDF-1). BMSCs express 
chemokine receptor 4 (CXCR-4), the physiological receptor 
for SDF-1. The interaction of SDF-1 and CXCR-4 may cause 
BMSC migration into the infarct zone (Wang et al., 2008, 
2012; Yu et al., 2012). A lack of CXCR-4 or SDF-1α will sig-
nificantly reduce the targeted migration of BMSCs (Shyu 
et al., 2008; Sun et al., 2009). Wang et al. (2014) determined 
that the synergistic effect of CXCR-4 and CXCR-7 expressed 
in BMSCs promotes BMSC migration, and concluded that 
the effect of CXCR-7 is better than that of CXCR-4. Zhang 
et al. (2015) confirmed that the chemotactic factor CX3CL1/
fractalkine activates the Jak2-Stat5alpha-ERK1/2 signaling 
pathway through CX3CR1, triggers integrin-dependent re-
structuring, and urges BMSC migration toward the ischemic 
tissue. These findings suggest that BMSC migration is the re-
sult of interactions among multiple factors. It remains poorly 
understood how BMSCs traverse the blood-brain barrier. 

BMSC differentiation, replacement, and neural circuit 
reconstruction
In vitro study results have demonstrated that BMSCs can 
differentiate into neurons, glial cells, and endothelial cells 
(Woodbury et al., 2000; Phinney and Prockop, 2007). The 
markers for neurons and glial cells can be identified in the 
central nervous system (CNS) of animal models of ischemic 
stroke following BMSC transplantation (Eglitis et al., 1999; 
Li et al., 2000; Chen et al., 2001; Zhao et al., 2002; Skvortsova 
et al., 2008; Jiang et al., 2014). However, mesenchymal stem 
cells (MSCs) do not express the voltage-gated ion channels 
that are expressed in functional nerve cells (Hofstetter et 
al., 2002). The improvement in the behaviors of animals 
modeling ischemic stroke is likely based on the plasticity of 
nervous system as well as on activation and migration of 
endogenous neural stem cells (Ding et al., 2007; Song et al., 
2013). Therefore, the possibility of MSCs directly differenti-
ating into cells that replace the injured CNS cells after stroke 
is very small, and there is still a lack of definite evidence. 

BMSCs enhance axonal plasticity and reconstruct neural 
circuits, which may be the basis for the recovery of neuro-
logical function after ischemic stroke (van Velthoven et al., 
2012). After intravenous infusion of BMSCs, the numbers of 
axons and myelin sheaths increase in the rat corpus striatum, 
hippocampus, and corpus callosum. Axons in the ischemic 
zone grow along the extending direction of reactive astrocytes 
(Li et al., 2006; Shen et al., 2006; Liu et al., 2010; van Veltho-
ven et al., 2012). BMSCs restore the connections of different 
brain regions through axonal sprouting, noticeably enhanc-
ing the survival of the motor cortex in the peri-infarct zone 
and contributing to functional recovery after stroke (Liu et 
al., 2010; van Velthoven et al., 2012; Song et al., 2013). BMSC 
transplantation repairs the neural network and reconstructs 
neural connections, and the recovery of the neural circuit may 
contribute to enhanced sensorimotor functions (Song et al., 
2013). Nevertheless, the molecular mechanism of BMSC-in-
duced synaptic plasticity remains unclear. 
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BMSCs enhance angiogenesis 
Angiogenesis in the infarct and peri-infarct zones plays an 
important role in mediating neuronal survival and regener-
ation. BMSC transplantation enhances angiogenesis in the 
ischemic zone, increasing the number of new microvessels 
(Chen et al., 2003b) and ameliorating neurovascular injuries. 
BMSCs can also secrete vascular endothelial growth factor, 
basic fibroblast growth factor and placental growth factor 
(Wakabayashi et al., 2010; Vogelgesang and Dressel, 2011; 
Chuang et al., 2012). Liu et al. (2014) considered that mito-
chondrial transport through tunneling nanotubes may be 
the key mechanism used by BMSCs to protect mitochondrial 
function and promote angiogenesis. In addition to secreting 
bioactive molecules and promoting angiogenesis, BMSCs 
support the crosslinking of peripheral cells, astrocytes, and 
endothelial cells, maintain the integrity of the blood-brain 
barrier (Fisher, 2009), form a  microenvironment supporting 
neurogenesis, and promote the recovery of neurological func-
tion (Honmou et al., 2012). Mitkari et al. (2014) verified that 
intra-arterial infusion of human BMSCs (hBMSCs) enhances 
microvascular regeneration in the infarct zone, but does not 
improve the behavioral ability of rats. BMSC transplantation 
can promote angiogenesis in the infarct area, thereby provid-
ing favorable conditions for nerve regeneration. 

BMSCs facilitate neurotrophic factor secretion from 
neurons 
In vitro test results show that BMSCs secrete 11 kinds of neu-
rotrophic factors after coculture with cortical neurons under 
hypoxic conditions (Tate et al., 2010). To determine the effects 
of BMSC secretion on neurotrophic factors, rat BMSCs were 
cultured with complete medium in animal models of stroke; 
the complete medium enhanced connections between nerve 
cells and promoted functional recovery after stroke (Tsai et al., 
2014). BMSCs play an active nutritional support role in the 
early stage of transplantation in rats with cerebral ischemia 
(Loseva et al., 2011). BMSCs also induce parenchymal cells 
in the CNS to secrete nerve growth factor, brain-derived neu-
rotrophic factor (BDNF), glial cell line-derived neurotrophic 
factor (GDNF), epidermal growth factor, basic fibroblast 
growth factor, insulin-like growth factor 1, hepatocyte growth 
factor, and stem cell factor (Wakabayashi et al., 2010; Lin et 
al., 2011; Zhang et al., 2011; Ishizaka et al., 2013; Kaengkan 
et al., 2013; Song et al., 2013). These bioactive factors syner-
gistically promote functional recovery after stroke. BMSCs 
positively regulate bone morphogenetic protein 2/4, and pro-
mote synaptic vesicle protein expression (Zhang et al., 2006). 
These factors accelerate the differentiation of astrocytes in the 
ischemic zone, elevate connexin 43 expression, promote small 
molecule exchange in the brain, and enhance synaptic efficacy 
(Xin et al., 2006). Bioactive molecules directly or indirectly 
produced by BMSCs accelerate neurogenesis, elevate white 
matter integrity, and induce synaptogenesis. 

BMSCs suppress apoptosis 
BMSC transplantation effectively inhibits apoptosis in the 
ischemic penumbra. Chen et al. (2003a) found that apopto-

sis is reduced and basic fibroblast growth factor expression 
is increased in rat models of stroke following BrdU-BMSC 
transplantation. The apoptotic response in astrocytes is re-
duced after BMSC transplantation (Leu et al., 2010; Darsalia 
et al., 2012; Jiang et al., 2014). A few apoptotic cells and many 
regulatory T lymphocytes are detected during intravenous in-
fusion of hBMSCs (Li et al., 2002). MSCs diminish caspase-3 
activity, reduce the Bax/Bcl-2 ratio (Leu et al., 2010; Li et al., 
2012), decrease interleukin (IL)-1β, IL-6, and tumor necrosis 
factor-α levels (Zhu et al., 2014), suppress apoptosis, and ac-
celerate the proliferation of endogenous neural stem cells and 
glial cells (Mora-Lee et al., 2012) by activating an Akt-depen-
dent anti-apoptotic cascade (Scheibe et al., 2012). 

Immunomodulatory effects of BMSCs 
BMSCs produce immunomodulatory effects, simultaneously 
weakening the innate and adaptive immune responses and 
mitigating the injury to the CNS. Ischemic stroke leads to a 
strong inflammatory response, resulting in leukocyte recruit-
ment to the infarct zone (Iadecola and Anrather, 2011). In vitro 
test results have demonstrated that leukocyte proliferation is 
reduced and differentiation becomes abnormal after coculture 
with BMSCs (Bartholomew et al., 2002; Sato et al., 2007). The 
transforming growth factor beta secreted by MSCs diminishes 
monocyte chemoattractant protein-1 levels in the ischemic 
zone, reduces the number of circulating CD68+ immune cells 
in the infarct zone by traversing the damaged blood-brain bar-
rier, and suppresses immune responses in the ischemic zone 
(Yoo et al., 2013). In addition, MSCs diminish IL-23/IL-17 
expression (Ma et al., 2013), decrease IL-1β, IL-6, and tumor 
necrosis factor-α levels (Zhu et al., 2014), and suppress the im-
mune response by reducing STAT3 expression and phosphor-
ylation in microglia (McGuckin et al., 2013). Liu et al. (2009) 
have confirmed that BMSCs increase IL-10 levels and decrease 
tumor necrosis factor-α expression to inhibit ischemic injury. 
Transplanted BMSCs inhibit T-cell proliferation, promote Treg 
cell expression, and nonspecifically suppress the production 
of CD4+ and CD8+ T cells (Di Nicola et al., 2002; Meisel et al., 
2004; Aggarwal and Pittenger, 2005; Nasef et al., 2007). More-
over, MSCs can suppress the inflammatory reaction by down-
regulating macrophages, B cells, natural killer cells, and anti-
gen-presenting cells (Beyth et al., 2005; Corcione et al., 2006; 
Krampera et al., 2006; Maggini et al., 2010; Marigo and Dazzi, 
2011; Ribeiro et al., 2011). Although intravenously infused 
MSCs are captured in the lung, and intra-arterially infused 
MSCs gather in the spleen, MSCs still have immunomodulato-
ry effects on the brain (Li and Chopp, 2009; Ankrum and Karp, 
2010; Oh et al., 2010). These results indicate that transplanted 
MSCs have a long-term effect on immune function, but the 
immunomodulatory mechanisms remain poorly understood. 

Modification of BMSCs 
Genetic modification uses a variety of biotechnology and 
bioengineering tools and techniques to modify the genetic 
makeup of organisms. BMSCs may be used as genetic carri-
ers, combining cell therapy and gene therapy by introducing 
target genes. Genetic modification has a unique advantage in 
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the transfection of an exogenous gene and can directionally 
increase the expression of beneficial biological factors. After 
transfection, BMSCs still retain their original therapeutic 
effects, including promoting migration and survival, increas-
ing neurotrophic factor expression, accelerating angiogenesis 
in the ischemic zone, and resisting inflammation and apop-
tosis. Thus, BMSCs transfected with an exogenous gene offer 
a broad prospect in the treatment of cerebral infarction. 
In the clinic, fine manipulation for gene transfection and 
screening is necessary, which may delay the treatment pro-
cess. By contrast, combining BMSCs and drug treatment is a 
simple, highly efficient, and feasible treatment method. Such 

combinations generate not only the cumulative effect of dual 
therapy but also synergistic effects, and effectively promote 
the recovery of neurological function. However, this meth-
od needs suitable drug collocation, and the time window 
for administration warrants further investigation. Inducing 
BMSCs to differentiate into neural cells or dedifferentiate 
into primitive stem cells exerts the efficiency of BMSCs in 
the treatment of stroke. Preconditioning, such as hypoxia, 
enhances the ability of BMSCs to survive. In addition, pre-
conditioning allows for a greater therapeutic effect by in-
creasing cell number and the expression of some biological 
factors. Thus, preconditioning increases therapeutic efficacy 

Figure 1 Mechanisms for the therapeutic effects of BMSC transplantation in cerebral ischemia. 
Mechanisms of action are as follows: (1) BMSCs migrate to and survive in the ischemic hemisphere, creating a microenvironment conducive to 
cell survival and regeneration for the repair of injured nerve tissue. (2) BMSC transplantation lessens the apoptosis of neurons and glial cells in the 
infarct zone by immunomodulation. (3) BMSC transplantation contributes to the release of cytokines and neurotrophic factors, and provides nu-
tritional support for neurons. (4) BMSC transplantation induces angiogenesis, improves cerebral blood circulation, and promotes nerve tissue re-
pair. (5) BMSC transplantation likely stimulates axonal sprouting and myelin remodeling and promotes endogenous neurogenesis. SDF-1: stromal 
cell-derived factor 1; CXCR-4,7,1: chemokine receptor 4,7,1; CX-43: connexin 43; VEGF: vascular endothelial growth factor; bFGF: basic fibroblast 
growth factor; PGF: placental growth factor; NGF: nerve growth factor; BDNF: brain-derived neurotrophic factor; GDNF: glial cell line-derived 
neurotrophic factor; EGF: epidermal growth factor; IGF-1: insulin-like growth factor 1; HGF: hepatocyte growth factor; SCF: stem cell factor; 
BMP-2/4: bone morphogenetic protein 2/4; IL-1β, 6, 10: interleukin-1β, 6, 10; TNF-α: tumor necrosis factor-α. 

Figure 2 Modification of BMSCs. 
BMSCs used as genetic carriers to introduce target genes have many advantages in promoting migration and survival, enhancing neurotrophic fac-
tor expression, accelerating angiogenesis in the ischemic zone, and resisting inflammation and apoptosis. The combination of BMSC transplanta-
tion and drug therapy is a simple, highly efficient, and feasible treatment option. The clear mechanism of action for the drug and the various mech-
anisms of action of BMSCs allow for synergistic therapeutic effects through changing the microenvironment of the ischemic zone and provide 
other beneficial modifications. Inducing BMSCs to differentiate into neural cells or dedifferentiate into primitive stem cells improves the efficiency 
of BMSCs in the treatment of stroke. Preconditioning, such as through hypoxia, enhances the survival of BMSCs. SVV: Survivin; hTERT: human 
telomerase reverse transcriptase; FN: fibronectin; Ang: angiogenin; VEGF: vascular endothelial growth factor; PIGF: placental growth factor; EPO: 
erythropoietin; Ngn1: neurogenin-1; AM: adrenomedullin; hN-MSC: neuronal cells differentiated from BMSCs; NS-MSC: neurosphere-like cell 
aggregates differentiated from BMSCs. 
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by changing the physical environment (Figure 2). 
Genetic modification 
Gene transfection-induced MSC differentiation into neural 
cells or gene transfection-induced endogenous neural stem 
cell proliferation and differentiation to reconstruct neural 
pathways increase the therapeutic value of BMSCs. In vitro 
and in vivo test results demonstrate that more survivin-mod-
ified BMSCs survive, infarct size becomes small after BMSC 
transplantation, and neurological function after stroke is 
noticeably restored (Liu et al., 2011a). After transplantation 
with human telomerase reverse transcriptase-MSCs, cell 
survival increases, infarct size is reduced, and behavioral 
function recovers (Honma et al., 2006). Fibronectin-modi-
fied MSCs increase therapeutic value by increasing stem cell 
survival and paracrine secretion of pro-survival or anti-in-
flammatory molecules (Garbayo et al., 2011). 

BDNF preconditioning mitigates brain injury after focal 
cerebral ischemia. High BDNF expression in the ischemic zone 
may be able to achieve a better therapeutic effect. After BD-
NF-BMSC transplantation, more neuron-like cells are detected, 
fewer terminal deoxynucleotidyl transferase (TdT) dUTP nick-
end labeling (TUNEL)-positive cells are evident in the peri-in-
farct zone, BDNF expression increases in the infarct zone, 
infarct size reduces, and neurological function is noticeably re-
stored (Kurozumi et al., 2004; Hamada et al., 2005; Nomura et 
al., 2005; Huang et al., 2008). Three hours after middle cerebral 
artery occlusion (MCAO), rats were infused with GDNF-trans-
fected hBMSCs. Their MRI and behavioral score results re-
vealed a strong therapeutic effect of GDNF-hBMSCs (Horita et 
al., 2006). After intravenous infusion of BDNF-BMSCs and gli-
al cell derived neurotrophic factor (GDNF)-BMSCs, ischemic 
injury was lessened and neurological function was significantly 
recovered in rats previously subjected to MCAO; however, the 
infusion of ciliary neurotrophic factor-overexpressing BMSCs 
or neurotrophin-3-BMSCs did not provide these positive ef-
fects (Kurozumi et al., 2005). 

In rats undergoing permanent MCAO, intravenous admin-
istration of angiopoietin-1 gene-modified hMSCs improved 
angiogenesis at the lesion border and regional cerebral blood 
flow, reduced lesion volume, and improved functional recov-
ery (Onda et al., 2008). Rats receiving angiopoietin-1-vascu-
lar endothelial growth factor-hMSCs presented the excellent 
structural-functional recovery (Toyama et al., 2009). Pla-
cental growth factor-hMSCs reduce lesion volume, induce 
angiogenesis, and elicit functional improvement (Liu et al., 
2006). Transduction of the erythropoietin gene into MSCs 
induces secretion of various trophic factors, decreases infarct 
volume, and improves the recovery of neurological function 
(Cho et al., 2010). 

Neurogenin-1-expressing MSCs express neuron-specif-
ic proteins, including NeuroD and voltage-gated Ca2+ and 
Na+ channels, neurofilament 200, microtubule-associated 
protein, and vesicular glutamate transporter 2. Moreover, 
neurogenin-1-MSCs functionally connect to host neurons 
and markedly ameliorate motor dysfunctions (Kim et al., 
2008). A large fraction of the transplanted fibronectin-MSCs 
express βIII-tubulin and promote neuronal differentiation 
(Garbayo et al., 2011). Flk-1+ hBMSCs enhance the prolif-

eration of neural stem cells or neural progenitor cells in the 
subventricular zone and hippocampus; many neural stem/
progenitor cells migrated into the ischemic zone and differ-
entiated into neural and glial cells, promoting the recovery 
of neurological function (Bao et al., 2011). BDNF-BMSCs 
induce cell proliferation in the regional ischemic zone, re-
duce infarct size, and markedly improve motor function. 
Epidermal growth factor-like domain 7-modified BMSCs 
improve motor function, but do not affect infarct size. Poly-
saccharopeptide-modified MSCs do not show therapeutic 
outcomes. Sonic hedgehog-modified BMSCs have a negative 
effect on functional recovery (van Velthoven et al., 2014). 
Taken together, these findings suggest that not all bioactive 
factor gene transfections achieve the desired results. 

Drug combination 
BMSC therapy combined with drug treatment for ischemic 
stroke is potentially a feasible and efficient therapeutic ap-
proach. Drugs and BMSCs exert synergistic effects through 
different paths, including accelerating stem cell migration 
and survival, resisting apoptosis, and promoting endogenous 
stem cell proliferation, neurotrophic factor secretion, and 
angiogenesis. Thus, their combination effectively contributes 
to the recovery of neurological function. 

Sodium ferulate combined with BMSCs accelerates 
BMSC migration toward the ischemic zone in a rat model 
of MCAO by upregulating SDF-1α and CXCR-4, promotes 
glucose metabolism by increasing glucose transporter 1 ex-
pression in the peri-infarct zone and BMSCs, and markedly 
reduces infarct size (Zhao et al., 2013). Valproate- or lithi-
um-pretreated BMSCs enhance cell migration and targeting 
ability, and promote functional recovery; the mechanism is 
likely associated with valproate-induced CXCR-4 overex-
pression and lithium-induced matrix metalloproteinase-9 
upregulation (Tsai et al., 2011). Adrenomedullin plus MSCs 
inhibits MSC apoptosis, induces angiogenesis, and improves 
neurological function (Hanabusa et al., 2005).  

Cellular proliferation and neurogenesis were increased 
along the lateral ventricle wall, and neurological function 
was recovered after the combined administration of eryth-
ropoietin and MSCs, indicating that erythropoietin acts syn-
ergistically with MSCs to potentiate neurogenesis (Esneault 
et al., 2008). Chinese medicine administered with MSCs 
induces stem cells to differentiate into neuron-like cells, pro-
motes angiogenesis, and accelerates the expression of neu-
ron-specific enolase, neurofilament, and GFAP (Yao et al., 
2005; Guan and Zhao, 2011). Treatment with minocycline 
combined with BMSCs increased the number of GFAP- and 
NeuN-positive cells (Bilen et al., 2013) and improved neu-
rogenesis and functional recovery by accelerating the activa-
tion and proliferation of endogenous neural stem cells. 

BMSCs and edaravone administration improved cerebral 
ischemia by reducing matrix metalloproteinase activation in 
a rat model of transient MCAO induced by tissue-type plas-
minogen activator (Tian et al., 2013). Their combination may 
indeed provide improved neurological function, but these 
results need further investigation. The combined adminis-
tration of ziprasidone and neural progenitor cells reduces 
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the number of TUNEL-positive cells in the ischemic zone so 
as to enhance the anti-apoptotic effect. Their combination 
diminishes microglial aggregation in the ischemic zone, 
increases the number of neural progenitor cells, induces 
the expression of endogenous neurotrophic factor, such as 
BDNF, nerve growth factor and GDNF, and promotes the 
recovery of neurological function (Kaengkan et al., 2013). 
Thus, the combination of ziprasidone and BMSCs will likely 
resist apoptosis as well as contribute to stem cell survival and 
endogenous neurotrophic factor secretion. 

Induction and differentiation  
MSC differentiation into nerve cells or dedifferentiation into 
primitive stem cells may generate a better therapeutic effect 
than undifferentiated MSCs on ischemic stroke by improving 
cell survival, neurotrophic factor secretion, and neurogenesis. 
In vitro and in vivo test results demonstrate that dedifferen-
tiated BMSCs have a high survival rate and great potential to 
differentiate into nerve cells (Liu et al., 2011b). Their increase 
in bcl-2 protein and microRNA-34a expression indicates good 
potential therapeutic effects on cerebral ischemia (Liu et al., 
2011b). Human trabecular bone-derived MSCs were transfect-
ed with the notch intracellular domain to induce their differ-
entiation into neuronal cells, which were then stereotaxically 
transplanted into the local ischemic hemisphere of gerbils (Xu 
et al., 2010). The transplanted cells were distributed around 
the peri-infarct region 28 days later. The cell survival rate was 
high, with many cells positive for microtubule-associated 
protein 2, and the recovery of neurological function was good 
(Xu et al., 2010). MSCs coated with highly hydrophobic di-
phenylamino-s-triazine-bridged p-phenylene were efficiently 
converted into neurosphere-like cellular aggregates (Heo et al., 
2013). The spherical cells were subsequently induced to differ-
entiate into neural cells expressing neuroectodermal markers 
(Heo et al., 2013). These cells were intra-cerebrally admin-
istered to rats 48 hours after permanent MCAO (Heo et al., 
2013). The results showed a marked attenuation of ischemic 
damage with significant functional recovery, and the effects 
were better than those of BMSCs alone (Heo et al., 2013). 

Preconditioning 
Hypoxia preconditioning improves BMSC survival, migra-
tion, and targeted migration. After intranasal delivery of 
BMSCs treated with hypoxia preconditioning in a mouse 
focal cerebral ischemia model, the expression of CXCR4, 
matrix metalloproteinase 2, and matrix metalloprotein-
ase 9 increases, cell death decreases, infarct volume in the 
peri-infarct region is reduced, and neurological function 
is recovered (Wei et al., 2013). After preconditioned and 
non-preconditioned MSCs are exposed to 6 hours of lethal 
anoxia, the number of preconditioned cells is greater than 
that of non-preconditioned cells (Kim et al., 2012). Ischemia 
preconditioning induces activation of Akt/hypoxia-induc-
ible factor-1α (Kim et al., 2012). Both miR-107 and miR-
210 participate independently via their respective putative 
target genes Pdcd10 and Casp8ap2 (Kim et al., 2012). Lin et 
al. (2013) determined that hypoxia preconditioning upreg-
ulates hypoxia-inducible factor-1α-activated Epac1 expres-

sion through Epac1-to-matrix metalloprotease signaling. 
Cell transplantation improves cerebral blood flow into the 
ischemic brain via induction of angiogenesis, which leads to 
recovery from stroke (Lin et al., 2013). 

A significant reduction in T cells and MSCs and a signif-
icant increase in CD34+ and natural killer cells have been 
identified in poststroke Bone marrow-derived mononuclear 
cells (MNCs) compared with prestroke MNCs (Yang et al., 
2012). Moreover, the concentrations of IL-10, IL-6, mono-
cyte chemoattractant protein-1, vascular endothelial growth 
factor, and tumor necrosis factor-α are significantly in-
creased in poststroke compared with prestroke MNCs (Yang 
et al., 2012). Poststroke MNCs in comparison with prestroke 
MNCs lead to greater recovery of neurological function and 
reduced lesion size (Yang et al., 2012). Therefore, the ther-
apeutic effect of BMSCs from ischemic rats is likely higher 
than that of normal rats. Further comparative tests should 
be conducted to confirm this assertion, which is consistent 
with clinical study of autologous transplantation. 

Hyperbaric oxygen promotes the proliferation and activa-
tion of BMSCs (Thom et al., 2006). Mobilization of BMSCs 
to an ischemic area is improved in long-term hyperbaric 
oxygen treatments, suggesting that the duration of therapy 
is crucial for promoting the homing of BMSCs to the isch-
emic brain by hyperbaric oxygen therapies (Lee et al., 2013).  
Hyperbaric oxygen also stimulates trophic factor expression 
and improves gliosis and neurogenesis (Lee et al., 2013). 

In conclusion, hypoxia preconditioning of BMSCs, trans-
plantation of BMSCs from ischemic rats, or hyperbaric ox-
ygen preconditioning after transplantation enhances BMSC 
migration and survival, promotes angiogenesis, and effec-
tively improves neurological function. 

Effectiveness and safety of clinical trials 
In a study of BMSC transplantation for ischemic stroke (Bang 
et al., 2005), ischemic stroke patients were randomly divid-
ed into experimental (BMSC transplantation) and control 
groups (no treatment). The study found that BMSCs mark-
edly increased the modified Rankin score and Barthel index 
(Bang et al., 2005). No adverse effects, such as venous throm-
boembolism, abnormal cell proliferation, systemic cancer, 
systemic infection, or neurological decline, were identified 
after MSC transplantation (Bernardo et al., 2007; Bhasin et 
al., 2011; Hess et al., 2014). These findings provide support 
for the safety and poststroke function improvement of BMSC 
transplantation in ischemic stroke. Other studies have also 
been conducted, including clinical trials examining the safety 
and effectiveness of autologous and allogeneic BMSC trans-
plantation, a method to shorten the cycle of BMSCs cultured 
in vitro, the optimum time after stroke for infusing BMSCs, 
the therapeutic effects of various doses, and protocols aimed 
at additional improvements (Keimpema et al., 2009; Komat-
su et al., 2010; Ishizaka et al., 2013; Kawabori et al., 2013). 

Summary 
BMSCs migrate and survive in the ischemic hemisphere, 
creating a microenvironment conducive to survival and 
regeneration for the repair of injured nerve tissue. The 
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BMSC-induced anti-inflammatory response mitigates nerve 
edema. Immune modulation also relieves the apoptosis of 
nerve cells and glial cells in the infarct zone. BMSCs pro-
mote the release of cytokines and neurotrophic factors and 
provide nutritional support for the injured neurons in the 
ischemic penumbra. BMSCs induce angiogenesis, improve 
blood circulation in the brain, and contribute to nerve tissue 
repair. BMSCs may also stimulate axonal sprouting and my-
elin remodeling and promote endogenous neurogenesis. Al-
though many achievements have been made in determining 
the therapeutic mechanisms of BMSCs, these mechanisms 
have not been fully clarified. In particular, additional re-
search will be required to determine the molecular biological 
mechanisms of neural plasticity and angiogenesis. 

BMSCs have been used as genetic carriers to combine 
cell therapy and gene therapy. The combination of BMSCs 
and drug treatment is a simple, highly efficient, and fea-
sible treatment option that provides cumulative as well as 
synergistic effects. Inducing BMSCs to differentiate into 
neural cells or to dedifferentiate into primitive stem cells 
elicits the efficiency of BMSCs in the treatment of stroke. 
Preconditioning BMSCs, such as under hypoxic conditions, 
enhances the ability of BMSCs to survive. Preconditioning 
offers great therapeutic effects by increasing cell number and 
the expression of some biological factors. The evidence for 
the application of various optimized methods includes the 
cognition of the mechansim following cerebral ischemia/
reperfusion injury and stem cell therapy in cerebral isch-
emia. Different optimizations amplify the role of BMSCs in 
various biological pathways and promote the therapeutic 
efficacy of BMSCs in stroke. Thus, the therapeutic advan-
tages of transplanted BMSCs become more prominent. 
Future investigations should focus on genetic modifications 
and drug combinations as well as on optimal timing and 
doses for BMSC transplantation. Additionally, clinical trials 
are needed to determine the effectiveness and safety of ge-
netically modified BMSCs. Overall, BMSC transplantation 
is an important direction for future treatment of ischemic 
stroke.
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