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Abstract

Embryonic stem cells (ESC) and induced pluripotent stem (iPS) cells are attractive in vitro
models of vascular development, therapeutic angiogenesis, and tissue engineering. How-
ever, distinct ESC and iPS cell lines respond differentially to the same microenvironmental
factors. Developing improved/optimized differentiation methodologies tailored/applicable in
a number of distinct iPS and ESC lines remains a challenge in the field. Currently published
methods for deriving endothelial cells (EC) robustly generate high numbers of endothlelial
progenitor cells (EPC) within a week, but their maturation to definitive EC is much more diffi-
cult, taking up to 2 months and requiring additional purification. Therefore, we set out to
examine combinations/levels of putative EC induction factors—utilizing our stage-specific
chemically-defined derivation methodology in 4 ESC lines including: kinetics, cell seeding
density, matrix signaling, as well as medium treatment with vascular endothelial growth fac-
tor (VEGF), and basic fibroblast growth factor (0FGF). The results indicate that temporal
development in both early and late stages is the most significant factor generating the
desired cells. The generation of early Flk-1*/KDR* vascular progenitor cells (VPC) from plu-
ripotent ESC is directed predominantly by high cell seeding density and matrix signaling
from fibronectin, while VEGF supplementation was NOT statistically significant in more than
one cell line, especially with fibronectin matrix which sequesters autocrine VEGF production
by the differentiating stem cells. Although some groups have shown that the GSK3-kinase
inhibitor (CHIR) can facilitate EPC fate, it hindered the generation of KDR+ cells in our pre-
optimized medium formulations. The methods summarized here significantly increased the
production of mature vascular endothelial (VE)-cadherin+ EC, with up to 93% and 57%
purity from mouse and human ESC, respectively, before VE-cadherin+ EC purification.
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Introduction

Cell transplantation for therapeutic vasculogenesis is a promising treatment for patients with
peripheral vascular disease and severe ischemic heart disease. In studies related to peripheral
vascular disease, autologous endothelial progenitor cells (EPC) [1] have been shown to con-
tribute to the formation of collateral arterial vessels and promote the regeneration of ischemic
tissues [2-4]. However, it is sometimes difficult to obtain sufficient numbers of proliferating
adult EPC, especially from aged and diseased patients [5]. Human embryonic stem cells (ESC)
and induced pluripotent stem (iPS) cells, with their unlimited capacity for self-renewal, are
considered an excellent potential cell source in a variety of cell-based therapies as well as serve
as excellent in vitro models of vascular development and tissue engineering.

Endothelial cells (EC) were first successfully derived from both mouse [6-8] and human
[9-14] ESC using first three-dimensional (3D) embryoid body (EB) cultures [10, 11, 15] and
then 2D cultures with the aid of OP9 cells [12, 13] or mouse embryonic fibroblasts feeder cells
[14]. Vascular induction by EB yields very low percentages of EC (1-3%) [10, 11], but EB-
monolayer combination inductions [16] and pure monolayer inductions [6, 17-20] lead to
greater efficiencies compared with 3D EB differentiation methods. Recently, chemically-
defined mediums have been used in feeder-free monolayer cultures for the induction of larger
numbers of EC from both mouse [21] and human ESC [9], and allow the development of
improved approaches for directed differentiation including a labor intensive method sprouting
endothelial progenitor cells (EPC) into 3D fibrin scaffolds [22]. Methods for EC and pericyte
co-differentiation have also been developed [23, 24], directing iPS cells in defined medium
supplemented with BMP-4 (or Activin), VEGF, and the GSK3-kinase inhibitor (CHIR) gener-
ating cultures containing 15-25% CD317/CD34" EPC and up to 50% PDGFRJ mesenchymal
cells after 10 days.

The role of small-molecule signaling in vascular differentiation has been getting more atten-
tion in recent years. Specifically, the temporal activation of canonical Wnt signaling using a
Wnt agonist, GSK3p inhibitor (CHIR-99021), has been shown to promote earlier mesoderm
fate [25, 26], while the TGFp receptor type 1 inhibitor (SB431542) can minimize smooth mus-
cle cell proliferation in differentiating EC cultures [27]. Most recently, the incorporation of
seeding density and GSK3-inhibition optimization generated over 50% CD317/CD34" EPC in
one line of iPS cells with multipotent aptitude [25], but still required much longer times to gen-
erate mature VE-cadherin+ EC.

Literature suggests that the most potent EC inducing biomolecules include: VEGF, bone
morphogenic protein-4 (BMP-4), and bFGF. At early stages of commitment, BMP-4 and
VEGF promote ventral mesoderm and hematopoietic development while inhibiting neuronal
development [28-30], whereas, mitogenic VEGF and bFGF are important at later stages. At
low levels, BMP-4 induces mesoderm and subsequent EC differentiation from Flk-1/KDR+
cells [31] through the phosphorylation of the Flk-1 and Tie-2 receptors. The third biochemical,
bFGF, in combination with VEGF, is known to promote angiogenesis [28], and upregulate EC
markers in EPC [32]. Although a wide array of additional EPC and EC promoting factors have
been identified, many of these mimic activation of the same signaling pathways activated by
VEGF, BMP-4, and bFGF. [33, 34].

Despite our growing understanding of the critical biochemical factors in development, the
precise timing and quantitative levels of EC induction/activation for directing vascular fate
from ESC in vitro remains confounding. For example, the optimal time to induce mESC-D3
mouse ESC into Flk-17 VPC has been reported to occur at day 4 [6, 35, 36] while the optimal
time for the corresponding mESC-R1 induction has been reported at day 2 [17]. VEGF is the
most published growth factor associated with directly influencing EC differentiation, but
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published treatment levels vary between 20ng/ml and 50ng/ml [6, 7, 37]. Matrix signaling is
also an important variable in directing stem cell fate, but studies on this topic have also been
conflicting. First, it was reported (data not shown) that collagen type-IV directed a greater per-
centage of EC [6, 7, 37], however; more recent studies show that fibronectin and collage-type
IV can generate a comparable percentages of EC. Moreover, fibronectin also promotes
increase cell adhesion and/or proliferation of vascular progenitor cells (VPC) [17]. Now, the
cell seeding density has been shown to be another important factor in directing EC fate from
one line of iPS cells [25]. New studies highlight that both ESC and iPS cells require a step-wise
approach to optimizing variables at multiple stages of cardiac commitment for each distinct
cell line [38], but this has not yet been examined in EC fate.

The presented multifactorial studies examined combinations of up to 5 distinct variables in
2 mouse and 2 human ESC lines using our previously published staged and chemically-defined
differentiation methodologies for these studies [17]. We have defined the differentiation of
pluripotent ESC into Flk-1*/KDR" VPC [7] as “Stage 1” and the specification and maturation
of the VPC into vascular endothelial-cadherin positive (VE-cad”) EC as “Stage 2” (Fig 1A).
The variables examined for early stage 1 induction of VPC included: time, cell seeding density,
matrix substrate, and treatment levels of VEGF, while the variables examined for late stage 2
induction included: time, cell seeding density, matrix substrate, and treatment levels of both
VEGF and bFGF. Lastly, we examined the putative role of Wnt agonist to aid VPC fate [39,
40]. The results highlight that some factors driving VPC and EC fate are conserved across both
mouse and human ESC lines, and some factors vary between species and/or ESC lines of the
same species. Most importantly, we show that VEGF treatment is not statistically significant
during induction of most lines of ESC.

Methods

Mouse ESC induction towards Flk-1+ VPC (stage 1)

The mESC (A3 and R1 lines) were harvested using trypsin/EDTA (Mediatech) and plated with
either 50 ng/mL collagen-type IV (BD Biosciences) or 50 ng/mL fibronectin (BD Biosciences)
in basal medium: alpha-minimal essential medium (MEM; Cellgro), 20% KSR (Invitrogen),
1X penicillin-streptomycin (ps, Invitrogen), 1X nonessential amino acids (NEAA; Invitrogen),
2 mM L-glutamine (Invitrogen), 0.05mM 2-mercaptoethanol (Calbiochem), and 5 ng/mL
BMP-4 (R&D Systems), supplemented with either 0 ng/mL, 10 ng/mL, 20 ng/mL, or 30 ng/mL
of VEGF (R&D Systems) and induced for between 1-4 days. Experiments were repeated in
triplicate (N = 3).

Human ESC induction towards KDR+ VPC (stage 1)

Human ESC (H7 and H9 lines) were dissociated with 1x trypsin/EDTA for 3 minutes, plus
pipette physical dissociation into small clumps of 2 to 4 cells. Trypsin was then inhibited
with soybean trypsin inhibitor (Gibco), and plated on dishes coated with 10 ng/mL fibro-
nectin at either: 1,000, 5,000, or 10,000 cells/cm?. The Stage I induction medium included:
alpha-MEM (Cellgro), 20% KSR (Invitrogen), 1X ps, IX NEAA, 2 mM L-glutamine, 0.05
mM 2-mercaptoethanol, and 5ng/mL BMP-4 with either: 0 ng/mL, 15 ng/mL, 30 ng/mL, or
45 ng/mL of VEGF and either 0 or 12uM [39, 40] of the GSK3 inhibitor CHIR-99021
(Selleckchem). Cells were examined for expression KDR+ every other day up to day 14 or
16, with a full media change every 3™ day. Experiments were repeated at least twice

(N =2-4).
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Fig 1. Putative variables directing ESC Differentiation into EC. A) ESC first differentiate into mesodermal
Flk-1/KDR+ VPC (stage 1), and subsequently commit and mature into EC (stage 2). The Flk-1+ and KDR*
markers identify VPC for mouse and human cells, respectively. The subsequent EC are identified by VE-
cadherin® expression. B-G) The mouse and human ESC lines used exhibit markers consistent with
pluripotency. Mouse ESC-A3 exhibited B) colony morphology and stained positive for C) Oct (red) and D)
SSEA-1 (green); counterstained for DAPI (blue);scale = 100pm. Human ESC-H7 exhibited E) colony
morphology and stained positive for F) Oct (red) and G) SSEA-4 (green); scale = 100um. H) Summary of the
ranges of conditions that were analyzed for induction of ESC into Flk-1/KDR+ VPC and VPC into VE-cadherin
+ EC. Stage 1 conditions included matrix signaling, kinetics, cell seeding density, and amounts of VEGF
supplemented in the chemically-defined cell culture medium. Stage 2 additionally examined the bFGF
concentration required in the cell culture medium. Four ESC lines were used in this study: two mouse ESC
lines (A3 and R1) and two human ESC lines (H7 and H9). I) Representative histograms of the Flk-1

+ expression of MESC-A3 and KDR+ expression hESC-H9 as they change over time. These mESC-A3 were
induced by seeding cells 10,000 cells/cm? on fibronectin with 20 ng/mL VEGF. The percentage of Flk-1+ from
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mESC-A3 increased from day 1 to a maximum at day 3. The hESC-H9 were induced by seeding cells at
10,000 cells/cm? induced on fibronectin with 15 ng/mL VEGF with the number of KDR+ cells peaking at day
12. J) Representative histograms of the Flk-1+ expression of MESC-A3 and KDR+ expression hESC-H9 at
increasing levels of VEGF treatment. For mESC-AS, cells were induced on fibronectin at 10,000 cells/cm and
data collected on day 3 of differentiation. The hESC-H9 were also induced on fibronectin at 10,000 cells/cm
with the data collected on day 12 of differentiation. K) Representative histograms of the Flk-1+ expression of
mESC-A3 and KDR+ expression human hESC-H9 as a function of cell seeding density. For mMESC-A3, cells
were induced on fibronectin with 20ng/ml VEGF and data collected on day 3 of differentiation. The hESC-H9
were induced on fibronectin with 15 ng/ml VEGF and the data was collected on day 12 of differentiation. Flk-1
percentages increase with higher seeding densities, based on a density of 1,000 cells/cm? to a maximum of
10,000 cells/cm?. Both mESC and hESC generate the greatest percentage of VPC at cell seeding density of
10,000 cells/cm?. L) When mESC cells were induced (stage 1) on larger 100mm? plates, Flk-1 expression
increased by approximately 10% for both mESC-A3 and mESC-R1 cells.

doi:10.1371/journal.pone.0166663.9001

Mouse ESC induction towards VE-cadherin+ EC (stage 2)

Mouse ESC-R1 were first sorted for FIk-1" expression using an Aria III Fluorescence Activated
Cell Sorter (FACS; BD Biosciences). The scaled-up early stage induction of FIk-1" mESC-A3
was found to be consistently above 90% and did not require sorting. The Flk-1* VPC were
plated on 50 ng/ml collagen-type IV (BD Biosciences) or 50ng/ml fibronectin (BD Biosci-
ences) at either: 5,000, 10,000, or 20,000 cells/cm>. The stage 2 medium consisted of: 70%
alpha-MEM (Mediatech) and 30% DMEM (Invitrogen), 2X Nutridoma CS (Roche), 1X ps, 1X
NEAA, 2 mM L-glutamine, and 0.05 mM 2-mercaptoethanol. The supplemental amounts of
bFGF (Sigma) examined included: 0 ng/ml, 10 ng/ml, 25 ng/ml, or 50 ng/ml; while amounts of
VEGF examined were: 0 ng/ml, 10 ng/ml, 50 ng/ml, or 100 ng/ml. Partial media changes
occurred every other day. After 7 days, cells were harvested for analysis.

Human ESC induction towards VE-cadherin® EC (stage 2)

KDR" VPC induced from stage were first labeled with biotinylated anti-VEGF-2/KDR" ((Mil-
tenyi Biotech) followed by Streptavidin MicroBeads (Miltenyi Biotech), and processed through
a MACS magnetic separation column (Miltenyi Biotech) according to the manufacturer rec-
ommendations. The KDR" VPC were plated on dishes coated with either: 10 ng/ml fibronectin
(BD Biosciences), 50ng/ml collagen-type IV (BD Biosciences), or 0.5% gelatin at either: 5,000,
10,000, or 20,000 cells/cm”. The stage 2 medium consisted of: 70% alpha-MEM and 30%
DMEM, 2X Nutridoma CS, 1X ps, IXNEAA, 2 mM L-glutamine, and 0.05 mM 2-mercap-
toethanol. The supplemental amounts of bFGF examined included: 0 ng/ml, 10 ng/ml, 25 ng/
ml, or 50 ng/ml; while amounts of VEGF examined were: 0 ng/ml, 10 ng/ml, 25 ng/ml, or 50
ng/ml. Half media changes were performed every 3 days. The cells were collected 2 weeks fol-
lowing the stage 1 induction, at days 28 and 26 of total differentiation for H7-ESC and
H9-ESC, respectively.

VE-cadherin expression over time

Mouse ESC-derived VPC were derived under optimal stage 1 and 2 conditions and analyzed
on days 5, 7, 10, 12, and 14. Experiments were done in triplicate (N = 3). Human ESC-derived
VPC were derived under optimal stage 1 and 2 conditions and collected every 3 days from day
21 through day 53 (N = 3).

Human iPS cell induction towards KDR* VPC (stage 1)

Human iPS cells were detached by treating 100mm? dishes with 4 mL of TrypLE (Thermo
Fisher) for 5 minutes followed by physical dissociation by triturating with a pipette. An aliquot
of the cells was counted and plated on 10 pg/mL fibronectin-coated dishes at 1,000, 5,000, or
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10,000 cells/cm®. The Stage 1 mesoderm induction media consisted of alpha-MEM, 20% KSR,
1x ps, 1x NEAA, 2 mM L-glutamine, 0.05 mM 2-mercaptoethanol, and 5 ng/mL BMP-4 with
either 15 ng/mL or 30 ng/mL of and either 0 or 12uM [39, 40] of the GSK3p inhibitor CHIR-
99021. Cells were cultured for 10 days before collection, with a full media change every third
day.

Low density lipoprotein uptake of ESC-derived EC

EC were seeded at 40,000 cells/cm? in plates coated with 50 ng/mL (mESC) or 10 ng/mL fibro-
nectin (hESC) for the mESC-A3 and hESC-H?7, respectively. Once confluent (about 3 days)
the cells were incubated with Alexa Fluor 488 acetylated low density lipoprotein (LDL; Invitro-
gen) diluted 1:100 in DMEM with high glucose (Invitrogen) for 5 hours. The wells were then
counterstained with DAPI and fixed with 4% paraformaldehyde.

Matrigel-based tube formation assay

Matrigel™ (BD Bioscience) was added to several wells—500ul each—and allowed to solidify for
30-60 minutes at room temperature. EC derived from mouse ESC-A3 and human ESC-H7
were added to individual wells at 40,000 cells per well in 500 uL. Cells were imaged after 24
and 48 hours. Transmission images were captured using either a Nikon Eclipse TE2000-U
fluorescence microscope with NIS-Elements AR 3.1 Software or a Fisher Scientific” Micromas-
ter™ Infinity Optics Microscopes with Micron Software.

ESC induction towards Flk-1* VPC using insoluble VEGF

ESC were induced towards Flk-1* VPC under three different conditions. VEGF was provided
as either soluble VEGF supplemented in the chemically defined medium, insoluble VEGF
mixed with fibronectin (FN:VEGF), or both. ESC were seeded at 10,000 cells/cm? and cultured
in induction medium, previously optimized by our laboratory [17], consisting of alpha-MEM,
20% KSR, 1x ps, IXNEAA, 2 mM l-glutamine, 0.05 mM 2-mercaptoethanol, 20 ng/mL of
VEGEF, and 5 ng/mL BMP-4. The expression of VEGR receptors Flk-1 and Flt-1 were exam-
ined at the time in which that ESC line generated greatest numbers of Flk-1* VPC—2 and 3
days for the R1-ESC [17] and A3-ESC [41], respectively.

Flow cytometry analysis

Adherent cells were harvested using Cell Dissociation Buffer (Invitrogen) or TrypLE (iPS

cells) fixed in 4% paraformaldehyde (Tousimis), rinsed 2X with PBS, blocked using 0.5% don-
key serum (Fitzgerald) and 1% bovine-serum albumin (Sigma) for 1 hour at room temperature
(RT), and permeabilized (if needed) with 0.7% Tritron X-100 (MP Biomedicals) in PBS. For
Stage 1, cells were stained with either 1:100 Alexa Fluor 647" -conjugated anti-Flk-1 antibody
(Biolegend) or 1:50 Flk-1 rabbit polyclonal antibody (Santa Cruz Biotechnology) followed by
1:100 secondary donkey anti-rabbit FITC (Biolegend) or 1:75 anti-human CD309/VEGFR2
PE monoclonal (Biolegend) and BD Biosciences 1:1000 human Fc Block (1:1000) followed by
1:75 mouse IgG1, k" PE (Biolegend) was used for the isotype control. For Flt-1 expression on
mouse VPC, cells were stained with goat IgG anti-Flt-1 (Santa Cruz) or goat IgG (Abcam) for
one hour followed by anti-goat FITC (Santa Cruz) at 1:200. Stage 2, cells were stained with
CD144 (VE-cadherin) PerCP-efluor710® at 1:200. All cells were counterstained with 1:1000
eFluor 780 Fixable Viability Dye (eBioscience) and analyzed on an LSR II Flow Cytometer Sys-
tem (BD Biosciences).
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Immunofluorescence

Mouse ESC-R1 (mESC-R1) and hESC-H7 (hESC-H7) derived EC were grown to confluence
and fixed with 4% paraformaldehyde. Cells were permeabilized with 0.7% Triton X-100 and
blocked with 5% donkey serum (Fitzgerald) and 1% Bovine Serum Albumin (Sigma) prior to
staining against goat VE-cadherin (Santa Cruz) and rabbit PECAM-1 (Santa Cruz) followed
by anti-goat TRITC and anti-rabbit FITC (Santa Cruz), Alexa Fluor-488™ anti-Phalloidin
(Invitrogen) or Alexa Fluor-567® anti-Phalloidin (Invitrogen), and DAPIL.

Modeling and statistical analysis

As is standard for many experimental methods in the field, initial studies included three repli-
cations (N = 3) of each combination of conditions. However, it quickly became apparent that
the exorbitant cost of growth factors and serum replacements required to conduct all combina-
tions of conditions in triplicate in all 4 cell lines was going to be unaffordable. Therefore, sub-
sequent studies were conducted at N = 1, with subsequent regression analysis performed over
the continuous range of levels. Unfortunately, N = 1 limited our ability to conduct statistical
analysis of the discrete matrices examined in the study even though the impact of matrix sig-
naling was often robust. To identify the importance of the continuous variables (time (day),
cell seeding density, and growth factor treatments) to the outcomes (Flk-1/KDR+ VPC and
VE-cadherin® EC), we performed multiple regression analyses using both linear and non-lin-
ear models. We used the MATLAB Statistical Toolbox’s fitlm function to estimate the linear
model coefficients that best fit our data. The linear models that we used to fit the data for stage
1 and stage 2 are:

% VPC = axday + b density + ¢+ VEGF + k (1)

% EC = a* bFGF + b density + ¢« VEGF + k (2)

where a, b, and ¢, and k are model parameters and their best fit values (S1A & S1B Fig) were
independently confirmed using LASSO with 10-fold cross-validation (MATLAB Statistical
Toolbox’s lasso function) to fit our data. Coefficients with p-values less than 0.05 were consid-
ered significant.

To estimate optimum induction conditions that could generate the greatest number of Flk-
1/KDR" VPC and VE-cad™ EC, we utilized a non-linear regression model containing all possi-
ble linear and quadratic terms. For example, for three dependent variables x;, X, X5 (e.g. bFGF,
seeding density and VEGEF respectively for stage 2), the fitting function used was

%EC = b, + by*x, + by*x, + b, *x, + by xx> + by *x,” + b, xx,’
+ bg*x,*X, + bg#x,%x, + byg*x,*x, (3)

Using the MATLAB Statistical Toolbox’s fitnlm function, we estimated the best fit values of
these model parameters. Finally, by maximizing the fitted function within the range of the var-
iables experimentally accessible, we were able to predict optimal conditions.

Results

The quality of undifferentiated mESC and hESC were assessed for expression of pluripotency
markers: Oct and SSEA-1 (mouse) or SSEA-4 (human), and colony morphology (Fig 1B-1G).
Putative signals were examined more rigorously in all combinations for their ability to direct
Flk-1/KDR" VPC and VE-cad+ EC. Early stage (stage 1, Fig 1H) induction factors included:
kinetics of differentiation (i.e. time, Fig 1]), matrix signaling, cell seeding density (Fig 1]), and
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level of VEGF treatment (Fig 1K), and late stage (stage 2) induction factors included: kinetics
of differentiation, matrix signaling, cell seeding density and both bFGF and VEGEF levels of
treatment (stage 2, Fig 1H). Each combination of conditions was examined and compared
against all other combination of conditions. The experiments were then reproduced in two
mouse and two human ESC lines, mESC-A3 and mESC-R1 and hESC-H7 and hESC-H9,
respectively. The large sets of biological data were analyzed for statistical significance using
multiple linear regression models.

Induction towards Flk-1/KDR™* VPC (stage 1)

While fibronectin and collagen-type IV generated approximately equivalent numbers of VPC
from mESC-A3 (Fig 2A & 2B), for mESC-R1 fibronectin matrix generated greater percentages
of VPC compared with collagen-type IV (Fig 2C & 2D). Fibronectin also generated the greatest
number of VPC from both human ESC lines (not shown). For all ESC lines, the induction of
Flk-1/KDR" VPC is temporally regulated, with the greatest levels of VPC expressed within a
short time window, and then subsequently receding (Figs 2 and 3). This temporal regulation is
distinct in mouse and human ESC lines. The percentage of Flk-1/KDR" VPC was the greatest
between days 2-3 in mouse ESC (Fig 2B-2F) and between days 12-14 in human ESC (Fig 3).
Specifically, the Flk-1" cell expression peaked at day 2 in mESC-R1 and day 3 in mESC-A3,
while the KDR™ expression in hESC-H7 and hESC-H9 peaked at days 14 and 12, respectively.
Multiple regression analyses confirmed that time is the most significant factor (p < 0.05) in
the differentiation of Flk-1/KDR™ cells in both mouse and human ESC (Figs 2F and 3C,
respectively).

Optimal cell seeding density was conserved at 10,000 cells/cm® in both mouse and human
ESC (Figs 2B-2F and 3), and a robust factor in directing VPC in the mESC-A3 line (p-
value = 0.001 on collagen and p-value = 0.002 on fibronectin, Fig 3C).

The VEGF treatment level, although considered to be a key signal in directing VPC fate in
many studies [7, 8, 42], was not found to be an important nor a statistically significant factor in
either mouse ESC line (Fig 2F). The KDR" induction from hESC-H9 is the only cell line that
exhibited a statistically significant increase in VPC above 0 ng/ml of VEGF treatment (Fig 3).
Moreover, the optimal level of VEGF treatment for VPC commitment varies from cell line-to-
cell line (Figs 2 and 3), suggesting that the optimal VEGF signaling may be dependent on prop-
erties inherently distinct in each ESC line.

Scaling up

In order to generate enough cells for the late stage experiments, the plate size was increased
from 12-well dishes to 100 mm? plates. In scaling up for late stage differentiation, it was noted
that the larger plate size led to greater percentages of Flk-1" cells, increasing from 65-67% up
to 80-95%, in both the A3 and R1 ESC lines (Fig 1L).

Induction of VPC in to VE-cadherin+ EC (stage 2)

Al ESC lines were first differentiated into VPC (stage 1) using their optimized conditions and
purified, if necessary, based on Flk-1/KDR" expression. For stage 2 induction, the purified
mESC or hESC were examined on fibronectin, collagen, or gelatin over a range of cell seeding
densities, VEGF and bFGF treatments. Data was collected from mESC after an additional
week of culture following optimal stage 1 induction, at day 9 total for mESC-A3 and day 10
total for and mESC-R1. The cells from hESC inductions were collected 2 weeks following the
stage 1 induction, at days 28 and 26 of total differentiation for H7-ESC and H9-ESC,
respectively.
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Fig 2. Results from stage 1 mouse ESC inductions. A) ESC were induced into Flk-1/KDR+ VPC. Bar
graphs show results from differentiation of mMESC-A3 into Flk-1+ VPC on B) fibronectin (N = 3) and C)
collagen IV (N = 3) over time and for a range of cell seeding densities and VEGF treatment levels. Optimal
induction conditions were achieved on day 3 at the greatest cell seeding density. Bar graph shows results of
differentiating mESC-R1 into Flk-1+ VPC on D) fibronectin (N = 1) and E) collagen IV (N = 1). Optimal
induction conditions for this cell line peaked between days 1-2 on fibronectin. F) Based on regression
analyses, P-values are provided for stage 1 mESC induction variables, with statistical significance (p < 0.05,
highlighted in red). Note that VEGF treatment was not found to be statistically significant at any level.

:

doi:10.1371/journal.pone.0166663.g002
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Fig 3. Results from stage 1 human ESC inductions. Induction of A) hESC-H7 and hESC-H9 were examined for peak expression of
KDR+ VPC over time and a range of cell seeding densities (N = 1). The best differentiation conditions were achieved on days 14 and 12
for hESC-H7 and hESC-H9, respectively. B) The human ESC were then induced for range of VEGF treatments (N = 3). C) Based on
regression analyses, P-values are provided for stage 1 hESC inductions, with statistical significance (p < 0.05, highlighted in red). Here
VEGF was significant in the hESC-H9 line only.

doi:10.1371/journal.pone.0166663.9003

The mESC-A3 VPC generated the greatest percentage of VE-cadherin™ cells (Fig 4B) at a
seeding density of 5,000 cells/cm” (p-value = 0.034) on fibronectin and with medium contain-
ing either low or high levels of biochemical treatment: either 10 ng/mL VEGF and Ong/ml
bFGF, or very high levels: 100 ng/ml VEGF and 50ng/ml bFGF (Fig 4B), with statistically sig-
nificance in bFGF treatment only (p-value = 0.001). Due to poor mESC-A3 adhesion on colla-
gen-type IV following transfer to stage 2, no data was obtained. The mESC-R1 VPC generated
up to 95% VE-cadherin™ cells when plated on fibronectin at a seeding density of 10,000
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Fig 4. Results from stage 2 inductions of mouse ESC. A) VPC were induced into VE-cad+ EC. B) Results of
differentiating mESC-A3 VPC on fibronectin (N = 1). The A3-ESC Flk-1+ VPC failed to adhere to the collagen type-
IV substrate, so no data is available for that condition. Results of differentiating mESC-R1 VPC on C) fibronectin
(N =1), and D) collagen IV (N = 1). E) Based on regression analyses, P-values are provided for stage 2 mESC
inductions, with statistical significance (p < 0.05, highlighted in red). The seeding density and bFGF treatment level
were both found to be statistically significant variables, but not VEGF treatment levels.

doi:10.1371/journal.pone.0166663.9004
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cells/cm? (p-value = 0.0001) and treated with a highest, 50 ng/ml, level of bFGF (Fig 4C, p-
value = 0.0001) compared with only 21% VE-cadherin™ cells when VPC were plated on colla-
gen-type IV (Fig 4D). In the H9-ESC, the greatest numbers of VE-cadherin®™ EC were gener-
ated on gelatin (Fig 5F).

As in early stage inductions, VEGF treatment was not a significant factor in directing any of
the cell lines into VE-cadherin™ EC. Again, the bFGF treatment exhibited varied and significant
signaling in both of the mESC-A3 VPC and mESC-R1 mouse lines (Figs 4E and 5G). Specifi-
cally, the A3-ESC VPC generated the greatest percentage of VE-cadherin® EC on fibronectin at
0-10 ng/mL bFGF, while the mESC-R1 cells required 50 ng/mL of bFGF (Fig 4B & 4C). In
human ESC lines, the biochemical signaling varied significantly depending on substrate. The
VEGEF signaling is, again, not a significant factor in the stage 2 induction, while bFGF treatment
was significant and distinct between the two cell lines and substrates (Figs 4E and 5G).

The cell seeding density for late stage inductions of mouse ESC lines exhibited significance
between 5,000-10,000 cells/cm” (Fig 4E), while the H7-ESC preferred to be seeded at 20,000
cells/cm” (depending on substrate, p-value = 0.000-0.047, Fig 5G). The hESC-H9 seeding on
gelatin indicated that a seeding density of 10,000 cells/cm” might be superior, but was not sta-
tistically significant.

Model-based optima

The conditions generating optimal Flk-1/KDR" VPC and then VE-cadherin® EC were ana-
lyzed using a number of multiple regression models. As described in this section above, we
used linear models (see e.g. Fig 6A) that best fit the data to identify the statistically significant
variables that control desired expression (as reported in Figs 2-5).

To estimate optimum induction conditions that could generate the greatest number of Flk-
1/KDR"* VPC and VE-cad" EC, we utilized a non-linear regression model containing both lin-
ear and quadratic terms to estimate best fit model parameters. We then maximized the fitted
function (e.g. the surface in Fig 6B) within the range of the experimental variables to obtain
predictions for the optimal conditions (e.g. the star in Fig 6B). A comparison between the
model-based predictions for the optimal conditions and the experimentally estimated optima
(Fig 6C and 6D) indicate excellent agreement for both stages. Note that that model can also
predict values between measured data points, and therefore, is not limited to the confines of
the chosen treatment levels.

VE-cadherin expression continues to increase over time

In order to evaluate the long-term cultures, we examined the percentage of VE-cadherin® cells
in these passaged cultures for another few weeks. Representative data from mESC-A3 and
hESC-H?7 cell lines and are shown (Fig 7A & 7B). For the mESC-A3 cell line, the averaged
maximum VE-cadherin purity doubled after 14 days of total differentiation. For the less effi-
ciently induced hESC-H?7 cell line, the VE-cadherin almost tripled after 48 total days of differ-
entiation, up to 57%. However, without further purification the human ESC-derived EC the
cultures were not able to maintain a high level of purity over longer periods. This is consistent
with previous work by our lab and others showing that contaminating fibroblasts and smooth
muscle cells can grow and eventually take over EC cultures [43], and may even mitigate EC
proliferation [6]. EC selection is required for continued expansion of purified EC.

Characterization of ESC-derived EC

Final assessment of endothelial of ESC-derived EC was examined using endothelial markers
VE-cadherin, PECAM-1, ability to take up low density lipoprotein (LDL) and form vascular-
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Fig 5. Results from stage 2 induction of human ESC. Bar graphs show results from inductions of hESC-H7 VPC
into VE-cadherin+ EC on A) fibronectin, (N = 1), B) collagen IV (N = 1), and C) gelatin (N = 1); and inductions of
hESC-H7 VPC into VE-cadherin+ EC on D) fibronectin, (N = 1), E) collagen IV (N = 1), and F) gelatin (N = 1). G)

Based on regression analyses, P-values are provided for stage 2 hESC inductions, with statistical significance

(p < 0.05, highlighted in red). The seeding density was significant using the hESC-H7 line, but not in the hESC-H9.
The bFGF treatment level was sometimes found to be statistically significant, depending on conditions. The VEGF
treatment levels were not significant for any of the stage 2 hESC inductions.

doi:10.1371/journal.pone.0166663.g005
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Fig 6. Regression analysis and optimal conditions. Multiple regression analyses using both linear and non-linear models
was performed. MATLAB Statistical Toolbox’s fitlm function was then used to estimate the linear model coefficients that best fit
our data. A) A representative 3D graph depicts the best fit linear regression model (surface) and the experimental data (black
circles) for hESC-H9 on fibronectin at fixed VEGF but varying time and cell seeding densities. B) Representative graph with the
same data, but fitted with a non-linear model to identify optimal values (yellow star) of significant variables that maximize KDR
+ expression. Experimental optima are presented along with model predictions for C) stage 1 inductions of ESC into VPC and
D) stage 2 inductions of VPC into EC.

doi:10.1371/journal.pone.0166663.g006
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Fig 7. EC Maturation Over Time. After stage 2 induction of Flk-1/KDR+ VPC into VE-cad+ EC, the cells were cultured for longer periods
in order to examine further maturation and/or self-purification. Averaged percentages of VE-cadherin+ for both mouse A) and human cells
B) are given. A) The mESC-A3 were expanded on fibronectin at 10,000 cells/cm? with 10 ng/mL VEGF and 10 ng/mL bFGF. The
mESC-A3 grew to a purity of 93% VE-cadherin by day 14. B) The hESC-H7 were cultured on fibronectin, seeded at a density of 10,000
cells/cm? with 25 ng/mL VEGF and 50 ng/mL bFGF. The hESC-H?7 also increased in expression of VE-cadherin+ cells, peaking at a 57%
by day 48 of total induction (14 days in stage 1 followed by 34 days in stage 2). C, G, E, I) Unpurified mESC-R1 derived EC D, F, H, J)
hESC-H7 derived EC express markers and morphology consistent with EC phenotype: C-D) VE-cadherin (red) counterstained with
phalloidin (green) and E-F) PECAM-1 (green) counterstained with phalloidin (red) Nuclei stained with DAPI (blue). Large mesenchymal-
like cells are seen surrounding the murine cells in C). The mESC-A3 and hESC-H7 also (G-H) took up acetylated LDL and (I-J) formed
vascular-like structures in Matrigel™ within 24 hours.

doi:10.1371/journal.pone.0166663.9007

like networks on Matrigel™ The stained mESC-R1 and hESC-H7 EC both express VE-cad-
herin (Fig 7C & 7D) and PECAM-1 (Fig 7E & 7F) diffusely across the cell membrane as well as
colocalized at the cell-cell junctions (Fig 7C-7F). The mESC-R1 [44], mESC-A3, and
hESC-H7 EC were also able to take up LDL (Fig 7G & 7H), as well as, generate vascular forma-
tions on Matrigel™ (Fig 71 & 7]). As previously shown by our laboratory and others, the vascu-
lar-like networks on Matrigel™ would be expected begin to regress after 48 hours [21, 45], but
remain viable longer in animal models [46] and 3D in fibrin or collagen gels [47].
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Modulation of Wnt signaling in EC fate

During the course of these studies, the use of iPS cells became more common and the temporal
modulation of canonical Wnt signaling, specifically providing early GSK3 inhibition, was
shown to increase the generation of CD347/CD31" endothelial progenitor cells from 1% up to
20% [25]. Therefore, we set out to examine the whether the activation of canonical Wnt signal-
ing is beneficial in our optimized hESC cultures. First, we pre-optimized the cell seeding den-
sity, VEGF treatment, and induction time for the greatest generation of KDR" VPC from iPS
cells (S2A Fig). The iPS cells were then induced with and without the GSK3 inhibitor (CHIR-
99021). Using our preoptimized chemically-defined medium, the Wnt agonist did not enhance
the generation of KDR" VPC at any time point during the stage 1 induction of either iPS cells
or H9-ESC (S2B and S2C Fig, respectively).

Insoluble VEGF bound in FN

The extracellular matrix (ECM) protein, fibronectin (FN), has been shown to contain two
novel VEGF binding domains using direct physical association between the VEGF receptor-2
(FlIk-1) and the FN integrin, alpha5betal [48] to activate cell signaling cascades FN, thus direct-
ing EC fate by sequestering VEGF in an insoluble form [49, 50]. When mixed directly with the
FN and incubated overnight, VEGF can also be visualized from day 0-3 (not shown) and an
ELISA assay found no detectable VEGF released into the aspirate during the course of the
3-day period (not shown). The effect of providing VEGF as insoluble form, soluble form, or
both to mouse R1 and A3 ESC lines was investigated. After 2 or 3 days for the R1-ESC [17]
and A3-ESC [41], respectively, the cellular expression of FIk-1 and Flt-1 was quantified for the
4 experimental conditions (Fig 8). The data (N = 3) show that the number of Flk-1" and Flt-1"
cells was not significantly altered across all VEGF presentation conditions of soluble and insol-
uble VEGF supplementation (Fig 8). Although not statistically significant, the expression of
decoy VEGF receptor, Flt-1, is mitigated without the additional VEGF supplementation (Fig
8C), especially in the R1-ESC line.

Discussion

The optimized induction conditions reproducibly generate Flk-1/KDR" VPC (Fig 6C) fol-
lowed by VE-cadherin™ EC (Fig 6D) for the mouse and ESC lines examined with up to 93%
efficiency. The inherent kinetics of differentiation was the most important variable in generat-
ing high numbers of VPC for both mouse and human ESC. Moreover, the time for mouse ESC
differentiation into VPC and EC required much shorter periods compared with human ESC.
Specifically, the induction of mouse ESC into VPC required 2-4 days compared to 12-14 days
in human ESC. The subsequent VE-cadherin+ EC required 14 total days in mouse compared
with 47 total days in human. These independently optimized cell fate kinetics closely mimic
the vascular development in the developing embryo: normally occurring between days 10.5-
11.5 in the mouse aorta-gonad-mesonephros (AGM) embryonic regions and days 27-40 in
the human AGM [51]-with slightly earlier and later time points in the yolk sac and the fetal
liver, respectively. The differentiation of EC from ESC is clearly distinct within species and
maintained in the artificial microenvironment of the cell culture dish.

A high cell seeding density was also found to be an important variable in the mouse ESC in
generating high numbers of Flk-1" VPC. Moreover, some cell lines seeded at higher densities
did not require VEGF supplementation (Figs 2B, 2C and 5F). Because hypoxic conditions are
also known to drive mesoderm commitment [52] [53] and endothelial fate [54] from ESC, the
molar fraction of oxygen at the cell surface was calculated. Using experimental cell prolifera-
tion rates, estimated oxygen solubility in saline solution, and oxygen consumption rates
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binding domains on FN promote integration of signals generated by Flk-1 and as3; (adapted from [48]).

doi:10.1371/journal.pone.0166663.g008
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reported for both ESC = 27.5x107*® [55] and EC = 50x107"® mol/cell/s [56], it was determined
that, although oxygen would be reduced at higher cell seeding densities, none of the conditions
would generate a hypoxic environment defined as 1-3% oxygen. However, it was confirmed
that the greater number of FIk-1+ cells in the larger 100-mm dishes (Fig 1L) were receiving
almost 2x less media per cell compared to the 12-well plates. Either the nutrient limited envi-
ronment and/or increased cell-to-cell communication is playing a profound role in EC fate.

Perhaps one of the most important results from this study is that the VEGF treatment was
not generally a statistically significant variable in directing EC fate—at either stage of differen-
tiation (Figs 2, 3, 4, 5 and 8), specifically when cells were culture on fibronectin matrix. Note
that the presumptive requirement of VEGF treatment in chemically-defined mediums for EC
fate has been most rigorously examined using single cells cultured in collagen-type IV coated
96-well plates [7, 8, 57]. This result was initially confusing given the large body of data impli-
cating VEGF signaling in mesoderm and EC fate [7, 8, 37, 58, 59], however, the results pro-
vided in this manuscript examining 4 ESC lines indicate that BMP-4 signaling on fibronectin
are adequate signals for population-based EPC and EC inductions. We expect that the two dis-
tinct VEGF binding domains within FN matrix [48] is sequestering the autocrine VEGF pro-
duced by the cells (Fig 8D) and may even be protecting the VEGF from degradation [49, 50].
Our results advocate that the utilization of FN matrix is superior to collagen IV and usually
mitigates the need for VEGF supplementation in both VPC and EC induction cultures. More-
over because the BMP in early inductions can also activate the VEGF/VEGEFR signaling [34],
and bFGF in late induction mediums can activate the same downstream signals as VEGF [60]
including the Src family tyrosine kinases, phosphoinositide 3-kinase (PI3K), and p38 MAPK
[61] (reviewed in [62]), VEGF treatment is in these medium formulations is excessive and
probably an unwarranted expense.

Conclusions

The combinatorial variables explored and summarized in this manuscript provide information
on general and cell line-specific signals that lead to significantly increased the transduction
efficiencies of not just EPC, but definitive VE-cadherin+ EC. Optimized protocols generate up
to 93% EC from mouse ESC and 57% EC from human ESC before further purification. As
reported for cardiac differentiation [38], we show that individual mouse and human pluripo-
tent stem cell lines require some cell-line specific optimization for efficient differentiation.
Moreover, a staged approach enables one to tailor the microenvironment signals at early and
late phases, corresponding to mesoderm and EC commitment, respectively. The results con-
firm that the in vitro differentiation kinetics mimic the temporal development in the embryo,
and that this is conserved across species. In addition to time, the generation of Flk-1"/KDR"
VPC from pluripotent ESC is directed predominantly by high cell seeding density and fibro-
nectin matrix signaling, with minimal dependence on VEGF treatment, especially at higher
cell seeding densities. The bFGF treatments were found to be the most variable between cell
lines.
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