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Background: Plasma lipid levels are a major risk factor for cardiovascular diseases. Although
international efforts have identified a group of loci associated with the risk of dyslipidemia, Latin
American populations have been underrepresented in these studies.

Objective: To know the genetic variation occurring in lipid-related loci in the Mexican
population and its association with dyslipidemia.

Methods: We searched for single-nucleotide variants in 177 lipid candidate genes using
previously published exome sequencing data from 2838 Mexican individuals belonging to
three different cohorts. With the extracted variants, we performed a case-control study.
Logistic regression and quantitative trait analyses were implemented in PLINK software. We
used an LD pruning using a 50-kb sliding window size, a 5-kb window step size and a r2

threshold of 0.1.

Results: Among the 34251 biallelic variants identified in our sample population, 33% showed
low frequency. For case-control study, we selected 2521 variants based on a minor allele
frequency ≥1% in all datasets. We found 19 variants in 9 genes significantly associated with at
least one lipid trait, with the most significant associations found in the APOA1/C3/A4/A5-
ZPR1-BUD13 gene cluster on chromosome 11. Notably, all 11 variants associated with
hypertriglyceridemia were within this cluster; whereas variants associated with
hypercholesterolemia were located at chromosome 2 and 19, and for low high density
lipoprotein cholesterol were in chromosomes 9, 11, and 19. No significant associated variants
were found for low density lipoprotein. We found several novel variants associated with
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different lipemic traits: rs3825041 in BUD13 with hypertriglyceridemia, rs7252453 in CILP2
with decreased risk to hypercholesterolemia and rs11076176 in CETP with increased risk to
low high density lipoprotein cholesterol.

Conclusions: We identified novel variants in lipid-regulation candidate genes in the
Mexican population, an underrepresented population in genomic studies,
demonstrating the necessity of more genomic studies on multi-ethnic populations to
gain a deeper understanding of the genetic structure of the lipemic traits.

Keywords: association study, genetic variants, dyslipidemia, exome analysis, mexican population

INTRODUCTION

Currently, metabolic diseases have become one of the most
challenging health concerns worldwide; they account for
nearly 45% of all deaths worldwide (Forouzanfar et al., 2016).
Prevention and management of these diseases are complicated,
due to their long latency periods, numerous risk factors, and the
presence of co-morbidities (Sevick et al., 2007). Among the
known metabolic diseases, dyslipidemias comprise a well-
established risk factor for cardiovascular diseases, which are
the leading cause of death worldwide (Libby, 2002).

Although factors like diet and lifestyle (Wietlisbach et al.,
1997) are recognized as important determinants in the clinical
development of dyslipidemias, these diseases have also a strong
genetic component (Gao et al., 2018). For instance, lipid disorders
are highly prevalent in populations with Amerindian ancestry (up
to 85.9%), compared with the prevalence among individuals from
other ancestries (e.g., Caucasian 31.2% and African 41.1%)
(Aguilar-Salinas et al., 2014; Noubiap et al., 2018). In addition,
a large number of genome-wide association studies (GWAS)
performed in populations of different ancestries have
described more than 175 loci associated with dysregulated
levels of plasma lipids. However, the largest body of
information generated to date has relied mostly on evidence
from Caucasian and Asian cohorts, with very few studies
analyzing Latin American populations (Teslovich et al., 2010;
Asselbergs et al., 2012; Willer et al., 2013; Wu et al., 2013; Surakka
et al., 2015).

Recent findings have demonstrated that genetic factors
associated with metabolic traits, including dyslipidemias,
exhibited significant heterogeneity in allele frequency and in
variant effects across groups with different ancestries (Klarin
et al., 2018; Martagón et al., 2018). A study analyzing populations
from multiple ethnicities has found important differences in the
levels of association, allele frequencies, and haplotype
distributions of several lipid loci (Wu et al., 2013). Several
population-specific signals at these loci have been reported in
non-European populations. For example, the association between
the regulatory variant, rs12740374, in the CELSR2/PSRC1/SORT1
locus, and low-density lipoprotein cholesterol (LDL-C) is higher
in African-American individuals than in individuals of European
descent (Buyske et al., 2012). Furthermore, the R230C variant of
the ABCA1 gene, which is associated with low levels of high-
density lipoprotein cholesterol (HDL-C), is private to individuals
with Amerindian ancestry (Acuña-Alonzo et al., 2010). Thus, the

distribution of variants located in lipid-related genes might vary
between populations of different ethnicities.

The modern Mexican population is mainly composed of
Mestizo individuals, who are the result of the recent admixture
of original Amerindians, Europeans (mainly Spaniards) and, to a
lesser extent, sub-Saharan Africans (Moreno-Estrada et al., 2014).
The recent and complex admixture in the Mexican Mestizo
population might have produced a high level of genetic
heterogeneity in variants in lipid-related loci. Therefore, this
study aimed to determine the frequency distribution of
variants located at genes related to lipid traits in Mexican
individuals, followed by an association testing and the
identification of potential variants for lipemic traits, using
previously published exome sequencing data (Estrada et al.,
2014; García-Ortíz et al., 2021).

MATERIAL AND METHODS

Study Populations
This study included 2838 Mexican individuals belonging to the
Mestizo cohorts Diabetes in Mexico Study (DMS, n = 968) and
Mexico City Diabetes Study (MCDS, n = 796), published
previously as part of the Slim Initiative in Genomic Medicine
for the Americas (SIGMA) Type 2 Diabetes Consortium (Estrada
et al., 2014), as well as to the indigenous cohort Metabolic
Analysis in an Indigenous Sample (MAIS, n = 1074) (García-
Ortíz et al., 2021). The sample design was previously described in
Estrada et al. and García-Ortiz et al. (Estrada et al., 2014; García-
Ortíz et al., 2021). The MAIS sample belongs to 71 indigenous
communities representing 60 ethnic groups from 10 linguistic
families. All participants were unrelated volunteers and provided
signed informed consent. This investigation was approved by the
local ethics and research committees from the National Institute
of Genomic Medicine and was conducted according to the
principles of the Declaration of Helsinki. The genetic structure
of DMS and MCDS population was previously described, with a
mean (SD) proportion of Amerindian ancestry of 66 ± 17%,
whereas the proportion of Amerindian ancestry in the MAIS
cohort was of 93.2 ± 8.7% (Estrada et al., 2014; García-Ortíz et al.,
2021).

Lipid Measurements in Plasma
Levels of triglycerides (TG), total cholesterol (TC), and HDL-C
were measured from blood samples collected after overnight
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fasting, using a Synchron CX5 Analyzer System (Beckman
Coulter Fullerton, CA, United States). LDL-C values were
calculated with the Friedewald formula, excluding those
samples with TG > 400 mg/dl (Warnick et al., 1990).

Each lipid disorder was diagnosed according to the American
Heart Association and National Heart, Lung, and Blood Institute
guidelines (AHA/NHLBI; http://www.nhlbi.nih.gov). An
individual was diagnosed with a lipid disorder when serum
levels showed any of the following: TG ≥ 150 mg/dl
(hypertriglyceridemia; HTG), TC ≥ 200 mg/dl
(hypercholesterolemia; HTC), LDL-C ≥130 mg/dl (elevated
LDL), or HDL-C ≤50 mg/dl in females or ≤40 mg/dl in males
(low HDL-C). Individuals with desirable lipid values were
assigned as controls. Data on lipid-lowering medications were
available for over 80% of the participants and adjustment was
done for TG and TC binary phenotypes.

Dataset Building and Single-Nucleotide
Variant Annotations
First, we analyzed the Variant Call Format (VCF) files previously
obtained from all participants. Quality controls for whole-exome
sequencing (e.g., read depth, mean coverage, and missing rate)
were described previously (Estrada et al., 2014). From these files,
we extracted all the biallelic variants (mapped in the Genome
Reference Consortium Human genome build 37) of 177
candidate genes for any lipid trait (Supplementary Table S1).
These genes were selected from: 1) the Global Lipid Genetics
Consortium (n = 165) (Willer et al., 2013), 2) meta-analysis
studies (n = 10) (Teslovich et al., 2010; Weissglas-Volkov and
Pajukanta, 2010), and 3) re-sequencing and clinical exome studies
(n = 2) (Estrada et al., 2014; Williams-Amy et al., 2014). We
annotated the variants with the ENSEMBL Variant Effect
Predictor (https://www.ensembl.org/info/docs/tools/vep/index.
html; version 87) (McLaren et al., 2016). Finally, we
constructed PLINK files that comprised clinical-demographic
and genotyping data for the association analyses, which
employed VCF tools (v0.1.12b) (Danecek et al., 2011).

Statistical Analysis
A case-control study was conducted in each cohort to identify
low-frequency SNVs [minor allele frequency (MAF) =
0.01–0.05] and common SNVs (MAF >0.05) associated with
lipid traits. To analyze associations between lipid components
and alleles we estimated the odds ratio (OR) using logistic
regression. We performed quantitative trait analyses with
linear regression (Beta value). Both methods were
performed using an additive model, adjusting by age, sex
and the first 10 eigenvectors from the principal component
analysis as covariates. All analyses were performed using
PLINK v.1.9 software (Purcell et al., 2007).

Next, we performed a fixed effects model meta-analysis for
each trait using a weighted inverse variance model in the software
package METAL (Willer et al., 2010). Also, genomic control was
applied to each study within METAL by adjusting for the
genomic inflation factor prior to meta-analysis, to correct for
possible residual population stratification.

Significant threshold was determined following the approach
by Kanai et al. (Kanai et al., 2016). According to this approach an
LD pruning was done with PLINK v.1.9 using a 50-kb sliding
window size, a 5-kb window step size and a r2 threshold of 0.1.
According with this, a total of 780 independent SNVs were
identified giving a significant threshold of 6.4 × 10–5.

Significant threshold was determined following the approach
by Kanai et al. (Kanai et al., 2016). According to this approach,
high LD SNVs in 177 candidate lipids genes were filtered based on
LD pruning performed in PLINK v.1.9 using a 50-kb sliding
window size, a 5-kb window step size and a r2 threshold of 0.1.
According with this, a total of 780 independent SNVs were
identified that were used to establishing the genome-wide
significant threshold via a straight-forward Bonferroni
correction p < (6.4 × 10–5).

RESULTS

Study Participants
Our study population comprised 2838 individuals belonging to
three different cohorts, the Diabetes in Mexico Study (DMS), the
Mexico City Diabetes Study (MCDS) and the indigenous cohort
Metabolic Analysis in an Indigenous Sample (MAIS) (Table 1).
The DMS sample was composed of 968 individuals: 681 females
(70.3%) and 287 males (29.7%). The mean age of the participants
was 54.1 ± 9.8 years and the mean body mass index BMI was
28.4 ± 4.9 kg/m2. According to the AHA/NHLBI cutoff points,
the lipid trait with the highest prevalence in this sample was low
HDL-C (70.8%), followed by HTC (65.1%), HTG (54.9%), and
high LDL-C (37%). The MCDS sample consisted of 796
individuals: 482 females (60.6%) and 314 males (39.4%) with a
mean age of 62.9 ± 7.6 years and a mean BMI of 29.5 ± 4.9 kg/m2.
The most frequent lipid alteration in this population was low
HDL-C (82.8%), followed by HTG (58.8%), HTC (44.1%), and
high LDL-C (40.0%). The MAIS sample was composed of 1074
individuals: 679 females (63.2%) and 395 males (36.8%) with a
mean age of 58.6 ± 12.1 years and a mean BMI of 27.5 ± 5.0 kg/
m2. Similar to the two previous cohorts, low HDL-C (75.2%) was
the most common lipid trait, followed by HTG (66.8%), HTC
(29.7%) and high LDL-C (14.9%) (Table 1).

Analysis of the Variation in Candidate
Dyslipidemia-Related Genes
After analyzing the exome data from the three analyzed cohorts, we
found a total of 34251 biallelic variants with aMAF above 1%within
the 177 genes previously related to dyslipidemia. Among these
variants, 33% were detected at low frequency (MAF = 0.01–0.05),
and 67% were common (MAF >0.05) (Figure 1A). According to
their position in the gene, 53% of the variants were in coding regions,
and the remaining 47% were found in non-coding regions
(Figure 1B). According to the predicted annotation obtained
with the Variant Effect Predictor web tool (https://grch37.
ensembl.org/Tools/VEP) 61% of the variants found in the coding
regions were synonymous, 37.2% were non-synonymous, 0.2% were
stop-gain and 1.6% were unknown (Figure 1C).
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Low-Frequency and Common Variant
Association Study
For the case-control study we used a meta-analysis approach to
evaluate low-frequency and common variants pruned for LD
(MAF >0.01; n = 780). We explored associations between
individual variants and each different lipid phenotype with

binary logistic regression. Quantile-quantile (QQ) plots for
each analyzed phenotype showed a genomic inflation factor
for HTG, HTC, low HDL-C and high LDL-C of λ = 1.0, 1.02,
1.03, and 0.91 respectively (Supplementary Figure S1). A total of
19 variants in 9 genes achieved a p < 6.4 × 10–5 or higher
significant association with at least one of the analyzed lipid
components (Figure 2). Remarkably, the 11 variants that were
associated with HTG were found on chromosome 11, located in
BUD13, APOA5, APOC3, APOA1, and APOA4 genes
(Supplementary Table S2). In the case of HTC, associated
variants were found on chromosome 2 and 19, in APOB and
CILP2 genes; whereas in the case of low HDL-C, two of the
associated variants were found on chromosome 11, in BUD13
gene, four on chromosome 16 in CETP and one on chromosome
9 in ABCA1 (Supplementary Table S2). We did not find any
variant associated with high LDL-C.

The 11 variants associated with HTG were all located in the
APOA1/C3/A4/A5-ZPR1-BUD13 gene cluster (Figure 2;
Supplementary Table S2). The strongest signal for the
variants associated with increased risk to HTG was detected
for rs3825041 in BUD13 (OR = 1.53, p = 7.55 × 10−9; β =
22.24 mg/dl) (Figure 3; Supplementary Table S2), followed by
rs651821 (OR = 1.48, p = 5.70 × 10−8; β = 21.40 mg/dl) and
rs2072560 in APOA5 (OR = 1.48, p = 6.18 × 10−8; β = 21.65 mg/
dl), rs2070665 in APOA1 (OR = 1.41, p = 3.79 × 10−7; β =
17.71 mg/dl), rs5128 in APOC3 (OR = 1.40, p = 4.22 × 10−7; β =
18.31 mg/dl), rs5104 (OR = 1.34, p = 6.1 × 10−6; β = 19.61 mg/dl)
and rs5092 in APOA4 (OR = 1.33, p = 8.07 × 10−6; β = 18.97 mg/
dl) and rs11820589 in BUD13 (OR = 1.35, p = 5.71 × 10−5; β =
21.92 mg/dl). In contrast, the variants rs4520 in APOC3 (OR =
0.74, p = 2.96 × 10−7; β = −19.03 mg/dl) rs5070 in APOA1 (OR =
0.78, p = 4.27 × 10−5; β = −15.75 mg/dl) and rs10488698 in
BUD13 (OR = 0.73, p = 5.80 × 10−5; β = −20.98 mg/dl) were
associated with protection against HTG. All 11 variants were also
significantly associated with TG levels in the quantitative trait
analysis (Supplementary Figure S2; Supplementary Table S2).

Moreover, the variant rs1367117 in APOB (OR = 1.36, p = 1.88
× 10−6; β = 4.89) was significantly associated with HTC and with a

TABLE 1 | Clinical and demographic characteristics of the studied cohort.

Characteristic DMS MCDS MAIS

n = 968 n = 796 n = 1074

Women/Men (%) 70.3/29.7 60.6/39.4 63.2/36.8
Age (Years) 54.1 ± 9.8 62.9 ± 7.6 58.6 ± 12.1
BMI (kg/m2) 28.4 ± 4.9 29.5 ± 4.9 27.5 ± 5.0
FG (mg/dl) 125.2 ± 61.4 114.3 ± 54.2 114.2 ± 63.9
HTG (%) 54.9 58.8 66.8
Mean TG (mg/dl) 203.7 ± 129.3 176.3 ± 96.3 207.5 ± 119.5
HTC (%) 65.1 44.1 29.7
Mean TC (mg/dl) 201.1 ± 43.8 195.9 ± 36.5 182.8 ± 38.3
Low HDL-C (%) 70.8 82.8 75.2
Mean HDL-C (mg/dl) Women 39.7 ± 12.1 31.5 ± 8.5 40.6 ± 12.6

Men 37.4 ± 13.0 28.6 ± 13.4 38.7 ± 12.6
High LDL-C (%) 37 40.0 14.9
Mean 1LDL-C (mg/dl) 120.7 ± 35.3 131.5 ± 33.6 103.7 ± 29.5

Data are presented as the mean ± SD, or the percentage, as indicated. BMI, body mass index; FG, fasting glucose; HTG, hypertriglyceridemia; TG, triglycerides; HTC,
hypercholesterolemia; TC, total cholesterol; HDL-C, high density lipoprotein; LDL-C, Low density lipoprotein. 1LDL-C values were calculated with the Friedewald equation.

FIGURE 1 | Features of the analyzed gene variant set. (A) Cumulative
variant distribution according to the minor allele frequency (MAF). Rare
variants include Singletons, Doubletons, and variants with MAFs <0.01. Low
Frequency variants include variants with MAFs = 0.01–0.05. Common
variants are those with MAFs >0.05. (B)Distribution of coding and non-coding
annotations, according to the Variant Effect Predictor tool (VEP) in the entire
set of variants.
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significant increase in serum TC levels in the quantitative trait
analysis (Figure 3; Supplementary Table S2). On the other hand,
the variant rs7252453 in CILP2 (OR = 0.73, p = 4.40 × 10−5; β =

−5.17) was significantly associated with protection against HTC
(Supplementary Figure S3; Supplementary Table S2).
Regarding low HDL-C, the variants rs17519093 and

FIGURE 2 |Manhattan plots from a meta-analysis based on the genome-wide association analysis. Panels show the −log p value for SNVs for each lipemic traits.
Top hits for each trait are indicated in the figure. Red line indicates the significant threshold line: p = 6.4 × 10−5.
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rs10488698 in BUD13 (OR = 0.56, p = 9.58 × 10−10, β = 3.29; OR =
0.58, p = 7.34 × 10−9; β = 3.12, respectively) and rs1532625 in
CETP (OR = 0.72, p = 6.56 × 10−6; β = 2.21) were significantly
associated with decreased risk in both the binary and the

quantitative trait analysis (Figure 3; Supplementary Figure
S4; Supplementary Table S2). Finally, the variants rs708272,
rs11076176, and rs289714 in CETP (OR = 1.32, p = 1.75 × 10−5, β
= −2.12; OR = 1.32, p = 3.64 × 10−5, β = −1.83; OR = 1.32, p = 4.03

FIGURE 3 | Forest and regional plots showing the top hits associated with lipemic traits. Forest plot showing odds ratio estimates and 95% confidence intervals
(squared boxes) from the 3 cohorts DMS, MCDS, and MAIS, included in the study in HTG (A), HTC (C), and low HDL-C (E). Odds ratios for the meta-analyses are
represented with a diamond. Regional plot of associated SNVs in HTG (B), HTC (D), and low HDL-C (F).
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× 10−5, β = −1.75, respectively) as well as rs9282541 in ABCA1
(OR = 1.67, p = 3.34 × 10−5; β = −2.50) showed a significant
association with increased risk to low HDL-C in both the binary
and the quantitative trait analysis (Supplementary Figure S4;
Supplementary Table S2).

DISCUSSION

The contribution of genetic variation to human diseases is widely
recognized (Xue et al., 2012). In particular, loss-of-function or
modifier variants are usually related to changes in the biological
activity of the corresponding gene. Several genomic regions are
currently recognized as drivers of dyslipidemias in populations
from several ethnicities, although in some populations, such as
those of Amerindian or African origin, genomic studies have been
scarce. Furthermore, many of these loci have displayed highly
different associations with these entities across different
ancestries (Lek et al., 2016; Martin et al., 2017). Therefore,
lipid-associated genes should be analyzed in all populations.

Here, by analyzing SNVs within 177 candidate genes, we
found several associations with different types of dyslipidemias
in Mexican Mestizos, an admixed population with strong
Amerindian (51%) and European (46%) components (Norris
et al., 2018).

In our population we were able to replicate several associations
with different lipemic traits previously reported in other
ethnicities. For example, variants in the gene cluster APOA1/
C3/A4/A5-ZPR1-BUD13, such as the regulatory SNVs rs5128 in
APOC3, and rs651821 in APOA5, as well as the missense SNV
rs2072560 also withinAPOA5, and the intronic variant rs2070665
in APOA1, were all associated with HTG in our population, as
they are in European, Asian, and African populations (Feng et al.,
2016; Fu et al., 2015; Jasim et al., 2018; Ken-Dror et al., 2010; Song
et al., 2015; Zhou et al., 2013). Likewise, the association of the
missense SNV rs1367117 in APOB with HTC has also been
reported in populations of European ancestry (Lu et al., 2010),
whereas the association of the missense SNVs rs10488698 in
BUD13 and rs9282541 in ABCA1 with low HDL-C has also been
observed in Asian and Latino American populations, respectively
(Zhang et al., 2017; Acuña-Alonso et al., 2010). We also observed
novel lipemic trait–associated variants in BUD13, such as
rs3825041 and rs17519093, both localized within introns,
associated with HTG and high levels of HDL-C, respectively.
Using public data contained in the Common Metabolic Diseases
Knowledge Portal (https://t2d.hugeamp.org/), we were able to
confirm the associations of rs3825041 and rs17519093 with
different lipemic traits. Thus, one of the genomic regions most
consistently associated with lipid traits in human populations of
diverse ethnic origins is the cluster APOA1/C3/A4/A5-ZPR1-
BUD13 (Teslovich et al., 2010; Willer et al., 2013; Parra et al.,
2017; Bai et al., 2019). Importantly, all 11 variants associated with
HTG in our study, were in this cluster. Among them, the novel
variant rs3825041 in BUD13 showed the strongest association.
Notably, this variant showed high LD with rs651821 (r2 = 0.84)
and rs2072560 (r2 = 0.89) within APOA5, which have both been
previously reported as associated with HTG in several

populations of different ancestries, including in Mexicans
(Ken-Dror et al., 2010; Kim et al., 2019). Taken together, these
data provide more insights about the variants at the APOA1/C3/
A4/A5-ZPR1-BUD13 gene cluster as a relevant risk factor for
dyslipidemias such as HTG and low HDL-C, and highlight the
notion that these could be biomarkers for susceptibility to these
traits.

Others novel association signals were observed with the
synonymous SNV rs7252453 in CILP2 and decreased risk to
HTC and the intronic SNV rs11076176 in CETP and increased
risk to low HDL-C serum levels. On CETP we also observed an
association of the intronic variants rs708272 and rs289714
with high risk to low HDL-C, as well as the association of the
intronic variant rs1532625 with protection to this
dyslipidemia. These findings are in line with those reported
previously in Mexican individuals (Vargas-Alarcon et al.,
2018), in a meta-analysis involving six independent
Hispanic cohorts (Gao et al., 2018) and in Chinese
population (Guo et al., 2015).

In summary, despite our selecting candidate genes were
previously associated with dyslipidemia in other populations,
we were able to find additional variants showing the strongest
associations with lipid traits in Mexican individuals. These
differences support the notion that high allelic heterogeneity
exists in lipid loci across populations. Remarkably, the new
associations of variants in genes previously related to
dyslipidemia, points out the importance of studying
different ethnicities, since different associated variants
within the same genes could be particular to one or another
population ancestry. It is also worth to note that several of the
risk variants previously associated with lipemic traits in
different ethnic groups, including European, Asian and
African populations were replicated in our study. Taken
together, our results suggest that genetic architecture of
dyslipidemias is partially share among different ethnic groups.
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