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Fibroblast-derived LPP as a biomarker
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Association of tumor microenvironment and immune check-
point (e.g., PD-L1) is important for immune escape, impacting
chemotherapy and immunotherapy efficacy. We aimed to
investigate biomarkers and therapeutic targets against treat-
ment resistance in gastric cancer. Abundances of tumor-infil-
trating immune cells were estimated inmultiple datasets. Three
patient subgroups (A, B, and C) were identified based on
seven types of PD-L1- and IFN-g-associated immune cells.
Patients yielded increased prognosis from subgroup A to C
(p = 0.027). Subgroup A was characterized by high activated
CD4+ memory T cell infiltration, while more resting CD4+

memory T cells were in subgroup C. Further, a risk score was
developed for prognostication. Lipoma preferred partner
(LPP), as the hub gene in subgroup-related regulatory network,
was upregulated (p < 0.01) and was associated with high risk
score (p < 0.001) and poor survival (p < 0.05). Bioinformatics
analyses and experiments found that LPP expressed restric-
tively in fibroblasts and associated with activated CD4+ mem-
ory T cell infiltration and tumor growth. High-LPP patients
yielded fewer benefits from chemotherapy or immunotherapy,
compared with the low-LPP group. We finally identified 28
compounds as sensitive drugs for high-LPP patients. Our find-
ings suggested LPP might be a biomarker for treatment
response and therapeutic target in gastric cancer.

INTRODUCTION
Recently, tumor immune microenvironment has been validated to
play increasingly critical roles in the pathogenesis of multiple malig-
nances, making remarkable influences on patient managements and
therapy strategies in the clinical setting.1–3 Application of chemo-
therapy, with combining immune checkpoint blockade such as
anti-programmed cell death protein 1 (PD-1) and anti-programmed
cell death ligand 1 (PD-L1), has been demonstrated with ground-
breaking efficacies in multiple tumor entities,4,5 including gastric
cancer (GC).6,7 However, the response rates and the benefits vary
among GC patients receiving adjuvant chemotherapy and immuno-
This is an open access article under the CC BY-NC-
therapy. Thus, it is urgently needed to investigate the principle
of resistance to adjuvant treatment and to find effective therapeutic
targets to improve the benefits from chemotherapy and
immunotherapy.

Several studies have reported that the heterogeneity of the immune
microenvironment within and among individual tumors is greatly
responsible for such variations of treatment responses and patient
outcomes.7,8 For example, the tumor environment context observed
at initially diagnosis could reflect the immune responses and chemo-
therapy benefits during subsequent clinical managements, and
changes in the abundances of tumor-infiltrating immune cells, such
as CD4+ T cells, CD8+ T cells, and macrophages, were significantly
associated with clinical outcomes in various tumor types, including
GC.1,9 These evidences imply that characterizing the tumor immune
microenvironment and unraveling the intrinsic heterogeneity for
abundances of tumor-infiltrating immune cells could make an impor-
tant opportunity to advance understanding the underlying link be-
tween the efficacy of adjuvant treatment and the principle of immune
surveillance and escape.
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Figure 1. PD-L1 and IFN-g associated patient

subgroups in GC

(A) Dot plot showing Spearman’s correlation between PD-

L1 expression with abundances of 22 types of tumor-infil-

trating immune cells in five independent GCcohorts. (B) Dot

plot showing Spearman’s correlation between PD-L1

expression with abundances of 22 types of tumor-infil-

trating immune cells. (C) Unsupervised hierarchical clus-

tering analysis revealing three clusters based on seven

types of LASSO-selected, PD-L1- and IFN-g-associated

tumor-infiltrating immune cells in TCGA-STAD cohort. (D

and E) Box plots showing distinct PD-L1 and IFN-g tran-

script levels across subgroups A, B, and C in TCGA-STAD

cohort. The boxes represent the median ± 1 quartile, with

whiskers extending to the most extreme point within 1.5

interquartile range from the box boundaries. **p <0.01;

****p <0.0001. (F) Kaplan-Meier plot showing distinct overall

survival outcomes for GC patients in three subgroups.
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The major objective in this study was to identify prognostic bio-
markers in GC for predicting response to chemotherapy and
immunotherapy through uncovering the association between the het-
erogeneity of tumor immune microenvironment and the complexity
of genomic alterations, as well as their impacts on the regulatory
network underlying the pathology of GC. We assumed that inte-
grating multi-omics profiles with tumor microenvironment charac-
teristics could not only help to highlight the molecular principles
regarding tumor cells escape immune surveillance in the presence
of multiple types of tumor-infiltrating immune cells, but also identify
the underlying relevant biomarker for treatment response. Our main
deliverable of the biomarker lipoma preferred partner (LPP) might
serve as a prognostic predictor for individual selection for chemo-
therapy and immunotherapy and could provide an underlying thera-
peutic target regarding adjuvant treatment resistance in GC.
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RESULTS
PD-L1- and IFN-g-associated subgroups in

GC

Abundances of 22 tumor-infiltrating immune cell
types were estimated for each tumor sample from
a total of 892GCpatients infive cohorts, including
TCGA-STAD (n = 350), GSE26899 (n = 93),
GSE26901 (n = 109), GSE66229 (n = 300), and
GSE28541 (n = 40). We found that seven types
of immune cells (i.e., CD8+ T cells, activated
CD4+ memory T cells, follicular T helper cells,
gamma delta T cells, activated NK cells, M1 mac-
rophages, andneutrophils) had a significantly pos-
itive correlation, and four types of immune cells
(i.e., plasma cells, resting CD4+ memory T cells,
regulatory T cells, and M2 macrophages) were
negative correlated with PD-L1 expression level,
in all of five cohorts (Figure 1A). Similar analyses
were also performed for IFN-g, a well-known
inducer of PD-L1 transcription that is secreted
by activated T and NK cells, and the results also revealed consistent cor-
relationpatternswith that of PD-L1 in the above five cohorts (Figure 1B).

We then performed least absolute shrinkage and selection operator
(LASSO) regressions to prioritize the relevant tumor-infiltrating im-
mune cell typeswith PD-L1 and IFN-g expression level in these cohorts.
And seven types of the most relevant immune cells, including resting
CD4+ memory T cells, activated CD4+ memory T cells, gamma delta
T cells, monocytes, M1 macrophages, resting mast cells, and neutro-
phils, were identified. The tumor-infiltrating abundances of seven im-
mune cell typeswere used for unsupervised hierarchical clustering anal-
ysis. The results showed that patients were clustered into three distinct
subgroups, defined as subgroup A, B, and C respectively (Figure 1C). In
particular, samples in subgroup A yielded a higher proportion of acti-
vated CD4+ memory T cells, while more resting CD4+ memory



Figure 2. Mutation landscape among subgroups

A, B, and C

(A) Box plot showing distinct levels of tumor mutational

burden across subgroups A, B, and C. The boxes

represent the median ± 1 quartile, with whiskers extend-

ing to the most extreme point within 1.5 interquartile range

from the box boundaries. *p <0.05; **p <0.01. (B) Venn

diagram showing the distribution of top 10 genes with

highest mutation frequency in each subgroup. (C–E) On-

coplot displaying mutation profile of a union set of the top

10 genes with highest mutation frequency in subgroups A,

B, and C, respectively. (F–H) Graphs showing mutually

exclusive and co-occurrence of mutational events in

subgroups A, B, and C, respectively.
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T cells were found in subgroup C. Interestingly, both levels of PD-L1
and IFN-g expression were significantly distinct among three sub-
groups, gradually decreasing from subgroup A to C (Figures 1D and
1E). Survival comparison analysis showed patients in subgroup A
yielded the worst prognosis, whereas those in subgroup C yielded the
best survival outcomes (Figure 1F).

Genomic characteristics of PD-L1- and IFN-g-associated

subgroups in GC

Landscapes of mutation and copy number variation, and expression
profiles were analyzed across three subgroups using the TCGA-
STAD cohort. The level of tumor mutational burden was significantly
different among distinct subgroups, with a relatively high and low level
in subgroup A and C, respectively (Figure 2A). We further examined
Molecula
ten genes with highest mutation frequency in
each subgroup (Figure 2B). Five genes (TTN,
TP53, MUC16, CSMD3, and LRP1B) simulta-
neously shared high mutation frequency in three
subgroups. The oncoplots display mutational
profiles for those genes with frequent mutation
in each subgroup (Figures 2C–2E). In all three
subgroups, TTN and TP53 were commonly
observed with frequent missense mutation. In
specific, subgroup A had more ARID1A frame
shift mutation and PIK3CA missense mutation
than the other two subgroups. Unlike subgroup
A, MUC16 missense mutation tended to be
more widespread in subgroups B and C. Interest-
ingly, we found more mutational co-occurrence
in subgroup A, such as PIK3CA and ARID1A
mutations (Figure 2F), whereas more mutually
exclusive mutation events were observed in sub-
group B (e.g., ARID1A and TP53) (Figure 2G);
and in subgroup C,most of themutational events
were relatively independent without interactions
(Figure 2H).

Copy number variation and expression profiles
were compared between subgroup A and C, in
which PD-L1 and IFN-g expression levels, tumor mutational bur-
dens, and survival outcomes were extremely distinct (Figure S1A
and Table S1). Significant amplification for genomic region
17q21.31 (BRCA1) and 4p16.1 (WDR1) and deletion of region
3p14.2 (FHIT) were found in subgroup A. In subgroup C, amplifica-
tion of region 1p31.1 (NEGR1) and 3q29 (ATP13A4) and deletion of
region 17p11.2 (FAM106A, USP32P2, and CCDC144B) were
observed. After comparison of expression profile between the two
subgroups, a total of 339 and 375 genes were detected with significant
upregulation in subgroup A and C, respectively (Figure S1B and Table
S2). Functional enrichment analyses showed genes upregulated in
subgroup A were enriched in pathways related to immunological ac-
tivities such as antigen processing and presentation, and immune cell
differentiation, while genes upregulated in subgroup C were enriched
r Therapy: Oncolytics Vol. 24 March 2022 549
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Figure 3. Risk score for prognosis stratification in

GC

(A) Graph presenting hazard ratios and corresponding

coefficients for 14 LASSO-selected signature genes using

TCGA-STAD cohort. (B) Graph displaying the distribution

of risk score and survival status (top) and expression

profile of signature genes (bottom) for GC patients in

TCGA-STAD cohort. (C) Kaplan-Meier plot showing

distinct overall survival outcomes between the high- and

low-risk groups in TCGA-STAD cohort. (D) Graph showing

the distribution for risk score and survival status (top) and

expression profile of signature genes (bottom) for GC

patients in validation cohort GSE26899. (E) Kaplan-Meier

plot showing distinct overall survival outcomes between

the high- and low-risk groups in GSE26899 cohort.
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in pathways associated with digestive metabolisms including mineral
absorption and gastric acid secretion (Figure S1C and Table S3).

PD-L1- and IFN-g-associated risk score for prognostication in

GC

Among the aforementioned differentially expressed genes between
subgroups A and C, 45 genes were identified as prognostic genes by
using Cox regression analyses, including 14 favorable genes and 31
risk genes (Table S4). Then, among them, nine favorable and five
risk genes were selected as optimal signature genes by using
LASSO-Cox algorithm (Figure 3A). The final risk score was devel-
oped based on the expression level of signature genes and correspond-
550 Molecular Therapy: Oncolytics Vol. 24 March 2022
ing coefficients (see materials and methods for
details). The optimal cutoff for risk score was
identified as cutoffrisk-score = 0.5358 for patient
stratification, whereby patients were classified
into low- and high-risk groups with distinct sur-
vival outcomes (Figures 3B and 3C). Survival
comparison showed the low-risk group yielded
significantly better survival outcomes than the
high-risk group (log rank p < 0.0001). Stratifica-
tion efficacy of the risk score was also validated
by using another independent dataset
GSE26899, and similar results were found (Fig-
ures 3D and 3E).

LPP as a hub node in PD-L1- and IFN-g-

associated lncRNA-miRNA-gene regulatory

network

We further constructed a PD-L1- and IFN-g-
associated lncRNA-miRNA-gene regulatory
network to identify the critical component
from the complex mechanism network that es-
tablished the underlying foundation for the
distinct genetic characteristics and outcomes
among the subgroups (see materials and
methods for details). A total of 59 miRNAs
and 19 lncRNAs were found with dysregulation
between subgroups A and C (Figure 4A). Figure 4B displays the pre-
dicted regulatory pairs between dysregulated miRNAs and genes
(miRNA-gene) from three databases (i.e., miRTarBase, miRDB, and
TargetScan). After merging the lncRNA-miRNA interactions from
the StarBase database, the final lncRNA-miRNA-gene regulatory
network was constructed (Figure 4C). Based on the network topology,
we identified the gene LPP as the hub node in this network. The LPP-
cored subnetwork is illustrated in Figure 4D. Interestingly, we found
the LPP expression gradually decreased from subgroup A to subgroup
C (Figure 4E), which was similar with PD-L1 and IFN-g expression.
Notably, patients in the high-risk group harbored higher LPP expres-
sion than those in the low-risk group (Figure 4F). These findings



Figure 4. LPP as a hub node in lncRNA-miRNA-gene regulatory network

(A) Volcano plot displaying miRNAs and lnRNAs dysregulated in subgroups A and C. (B) Venn diagram summarizing the prediction pairs from miRTarBase, miRDB, and

TargetScan for upregulated miRNAs in subgroup A and C. (C) Visualization of the whole lncRNA-miRNA-gene regulatory network by using the Cytoscape software. Nodes in

yellow, blue, and red indicate lncRNAs, miRNAs, and genes, respectively. Edges between the nodes indicate significant regulatory interactions for related molecules.

(D) Graph displaying the LPP-cored subnetwork derived from the whole regulatory network based on the hub node identification. (E) Box plot showing distinct LPP levels

among subgroups A, B, and C in TCGA-STAD cohort. (F) Box plot showing distinct LPP expression between high- and low-risk groups in TCGA-STAD cohort. The boxes

represent the median ± 1 quartile, with whiskers extending to the most extreme point within 1.5 interquartile range from the box boundaries. **p <0.01; ****p <0.0001.
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indicated that LPP might play crucial roles in the oncogenesis and
development of GC.

High expression of LPP is an independent risk factor for poor

prognosis in GC

Transcript level of LPP was compared between tumorous and normal
tissues in 31 cancer types from the TCGA project (Figure 5A). The re-
sults showed LPP was significantly upregulated in four cancer types
and downregulated in nine malignances. In particular, LPP was
observed with significant overexpression in GC. Consistent results
were also found in GC patients from independent datasets GSE66229
and GSE29272 (Figures 5B and 5C). By employing a previously devel-
oped method, maximally selected rank statistics,10 which allowed to
optimally classify patients with the most distinct prognoses, we divided
patients into two groups according to their LPP expression levels (Fig-
ure 5D). Survival comparison found the high-LPP group yielded worse
survival than the low-LPP group (log rank p = 0.026) (Figure 5E).
Similar results were also found in another two datasets GSE62254
and GSE84437 (Figures 5F–5G). Multivariate Cox regression analyses
showed high expression of LPP was an independent risk factor for poor
prognosis of GC patients in the above three datasets (Figure S2).

Fibroblast-derived LPP associates with tumor progression and

resistance to chemotherapy and immunotherapy in GC

We used the immunohistochemistry from The Human Protein
Atlas portal to observe the protein expression of LPP in GC
Molecular Therapy: Oncolytics Vol. 24 March 2022 551
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Figure 5. Overexpression of LPP is associated with

poor prognosis in GC

(A) Graph presenting LPP expression differences between

cancerous and normal tissues for 31 TCGA cancer types.

Colors of the abbreviation of TCGA cancer type on the top

indicate LPP dysregulation in tumors (red, upregulated;

green, downregulated). Expression comparison in GC is

marked by a blue box. (B and C) Box plot for comparison

of LPP expression in normal and tumor tissues using

datasets GSE66229 and GSE29272. The boxes repre-

sent the median ± 1 quartile, with whiskers extending to

the most extreme point within 1.5 interquartile range from

the box boundaries. (D) dot plot showing standardized log

rank statistics for all candidate cutoffs of LPP expression

in TCGA-STAD dataset. Dots in dark and red indicate

patients classified in low- and high-LPP groups respec-

tively, under the classification by the optimal cutoff. (E)

Kaplan-Meier plot showing overall survival differences

between low- and high-LPP groups in TCGA-STAD

cohort. (F and G) Kaplan-Meier plot showing distinct

overall survival outcomes between low- and high-LPP

groups in GSE62254 and GSE84437 cohorts.
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(Figure S3A). The staining showed the LPP protein was strongly
and restrictively expressed in stromal fibroblasts in tumor entity,
while it was nearly not detected in normal stomach tissue. We
also found high LPP expression was associated with increased fibro-
blast infiltration in the tumor entity (Figure S3B). Consistently, LPP
expression was positively correlated with six well-known markers of
fibroblasts that are widely used for fibroblast identification and
quantification with sequencing data (Figure S3C).11 As mentioned
earlier, LPP expression increased in subgroup A, which was charac-
terized by poor prognosis with high infiltration of activated CD4+

memory T cells, and decreased in subgroup C, in which a better
prognosis with high infiltration of resting CD4+ memory T cells
was found. Herein, we consistently found that high expression of
LPP was associated with more infiltration of activated CD4+ mem-
ory T cells and less infiltration of resting CD4+ memory T cells (Fig-
ures S3D and S3E).

To further validate the expression of fibroblast-derived LPP and its
roles in the pathology of GC, we collected 15 GC samples coupled
with corresponding normal tissues and used immunohistochemistry
staining to analyze the protein expression of LPP. We observed
similar results that the LPP protein was highly expressed in tumor tis-
sues and was restrictively enriched in stromal fibroblasts (Figures 6A
and 6B). The fibroblast-derived LPP was also confirmed by using a
single-cell RNA-seq dataset of 26 primary GC samples containing
119,862 single cells (see materials and methods for details). The find-
ings also revealed that LPPwas predominantly enriched in fibroblasts,
although low expression was observed in stem cells and endothelial
cells (Figures 6C and 6D). Staining on serial tissue slides showed
LPP protein expressed restrictively in fibroblasts, and it showed
distinctly different distribution against those markers of endothelial
cells, such as CD34 (Figure 6E). To further evaluate the role of fibro-
blast-derived LPP in GC development, the stable LPP knockdown
fibroblast cell line was established for in vivo tumor growth experi-
ments (Figure 6F). The results showed that the mice injected with
GC cells mixed with LPP knockdown fibroblasts harbored smaller
tumor volume than those injected with cancer cells mixed with the
control (Figures 6G and 6H). These findings indicated fibroblast-
derived LPP was associated with the tumor growth of GC.

To investigate the effect of fibroblast-derived LPP expression on
chemotherapy response, we evaluated the half-maximal inhibitory
concentration (IC50) value of four clinic-used chemotherapy com-
pounds (i.e., cisplatin, docetaxel, gemcitabine, and paclitaxel) in the
GDSC database using the TCGA-STAD dataset. The results showed
patients with high LPP expression had higher IC50 values of four
compounds than those with low LPP expression, suggesting lower
sensitivity for these compounds based on chemotherapy in patients
with high LPP expression (Figures 7A–7D). By using another dataset,
GSE62254, we validated that patients with high LPP expression
yielded fewer benefits than those with low LPP expression, whether
under the condition of chemotherapy or not (Figures 7E–7H). Over-
all, these results suggested that GC patients with high LPP expression
responded less to current chemotherapy regimens.
We then examined the association of LPP expression with immuno-
therapy response, by using a dataset containing 45 GC patients
receiving anti-PD1 therapy (see materials and methods for details).
The results showed LPP expression was lower in responsive patients
than in those non-responders (Figures 8A and 8B). And patients with
high LPP expression yielded a lower response rate than those with low
LPP expression (Figure 8C). We also performed similar analyses us-
ing another cohort containing 26 melanoma patients receiving anti-
PD1 therapy, and similar results were also obtained, although the
statistical significance was not reached due to the relatively small sam-
ple size (Figures 8D–8F). Further, we calculated the tumor immune
dysfunction and exclusion (TIDE) score to predict response to im-
mune checkpoint blockade for GC patients in TCGA-STAD cohort
(see materials and methods for details). The results showed that pa-
tients with high LPP expression yielded higher TIDE scores than
those with low LPP expression (Figure 8G). According to their
TIDE scores, patients were then divided into two groups, i.e.,
responder and non-responder (Figure 8H). We found that response
rate in the high-LPP group was lower than that in the low-LPP group
(Figure 8I). These findings indicated high expression of LPP could in-
crease the potential of tumor immune escape and resistance to immu-
notherapy for GC patients.

Underlying chemical compounds sensitive to GC patients with

high LPP expression

We further explored the underlying chemical compounds sensitive to
GC patients with high LPP expression, by using the GDSC database.
Based on the IC50 value of 138 compounds in each TCGA-STAD
sample, a total of 28 compounds were identified as sensitive drugs
for GC patients with high LPP expression (Figure S4). These com-
pounds targeted canonical pathways involved in oncogenesis, such
as IGF1R, JNK and p38, PI3K/MTOR, cell cycle, and apoptosis regu-
lation signaling pathway. Our findings could help to explore effective
drugs and to establish targeted treatment strategy regarding combina-
tion with chemotherapy and immunotherapy against drug resistance.

DISCUSSION
A better understanding of immunemicroenvironment in tumor and a
well-designed tool to evaluate the comprehensive signature of im-
mune microenvironment are of critical importance and urgent need
for prognostication of GC patients and for guiding more effective
therapy strategies in the clinical setting. In this study, through inves-
tigating the association of PD-L1 and IFN-g expression with tumor
microenvironment, we finally identified the fibroblast-derived LPP
as an effective predictor for response to chemotherapy and immuno-
therapy. Our data demonstrated that the LPP expression was an inde-
pendent risk factor for poor prognosis, and patients with high LPP
expression yielded fewer benefits from current chemotherapy and
immunotherapy in GC. Finally, we identified 28 compounds as un-
derlying sensitive drugs for those GC patients with high LPP
expression.

Although the importance of molecules involving cytoimmunity
pathways and bioprocesses such as PD-L1 and IFN-g has been
Molecular Therapy: Oncolytics Vol. 24 March 2022 553
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Figure 6. Fibroblast-derived LPP involves in GC pathology

(A) H&E staining and immunohistochemistry for analyzing LPP expression in GC versus stomach tissue. (B) Box plot showing distinct levels of LPP protein expression in GC

and normal tissues. The boxes represent the median ± 1 quartile, with whiskers extending to the most extreme point within 1.5 interquartile range from the box boundaries.

(C) Graph showing cell clusters identified by using single-cell RNA-seq dataset GSE183904. (D) Violin plot presenting LPP expression level in each type of cell clusters. (E)

H&E staining and immunohistochemistry of serial tissue slides for comparing the expression of LPP protein and the endothelial cell marker CD34. (F) Western blot for

confirming the efficacy of LPP knockdown in BJ fibroblast cell line. (G) Subcutaneous GC tumor in mouse from the LPP knockdown group and the control group. For tumor

observation, the GC cells were stably transfected with the vector of green fluorescent protein before injection. (H) Bar plot comparing tumor volume in the LPP knockdown

group and the control group. Error bar indicates mean + standard deviation.
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Figure 7. High LPP expression associates with fewer

benefits from chemotherapy for GC patient

(A–D) Box plot comparing the IC50 value of chemotherapy

drugs cisplatin, docetaxel, gemcitabine, and paclitaxel, be-

tween the high- and low-LPP patient groups. The boxes

represent the median ± 1 quartile, with whiskers extending to

the most extreme point within 1.5 interquartile range from the

box boundaries. (E and F) Kaplan-Meier plot showing distinct

overall survival outcomes between high- and low-LPP patient

groups, under condition of receiving chemotherapy or not, by

using GSE62254 dataset. (G and H) Kaplan-Meier plot

showing distinct disease-free survival outcomes between

high- and low-LPP patient groups, under condition of

receiving chemotherapy or not, by using GSE62254 dataset.
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well-established in predicting immune status and response, the un-
derlying principles for immune escape and its link with tumor-infil-
trating immune cells and treatment outcomes remain elusive. Several
studies have reported that the impact of tumor-infiltrating immune
cells abundances on immunotherapy and chemotherapy responses
Molecu
for patients cannot be underestimated in various
malignances.1,7,9 For example, it was found that
high proportion of CD8+ T cells in tumor tissues
could predict a better therapy response and sur-
vival outcome for GC patients.1 In our analyses,
we found that GC patients with poor prognosis
were characterized by strong expression of PD-
L1 and IFN-g, as well as high infiltrating propor-
tion of activated CD4+ memory T cells in tumor
microenvironment, while weak expression of PD-
L1/IFN-g and more resting CD4+ memory
T cells were found in those with better prognosis.
What is more, patients with high LPP expression
whose tumor had more activated CD4+ memory
T cell infiltration yielded fewer benefits from
chemotherapy and immunotherapy than those
with low LPP expression and more resting CD4+

memory T cell infiltration. These findings suggest
that chemotherapy and immunotherapy resistance
had a closed relation with PD-L1/IFN-g expres-
sion and infiltration by CD4+ memory T cells in
tumor microenvironment. The immune escape
mediated by immune checkpoint might be
partially responsible for this issue. And depicting
the principles underlying the complex relationship
among the expression of PD-L1/IFN-g, infiltration
and activation of CD4+ memory T cells, as well
as immune response might provide a new insight
into targeting against therapy resistance and se-
lecting sensitive patients for chemotherapy and
immunotherapy.

Due to the complex heterogeneity within and
among individual patients, the challenges still
remain in aspects of personalized prognostication and management,
and follow-up scheduling for GC patients. Attempts have been made
to link the molecular characteristics and genetic profiles to specific
molecular subtypes of GC, although the elusive heterogeneity has
rendered the ensuring data largely inclusive.12,13 In the present study,
lar Therapy: Oncolytics Vol. 24 March 2022 555
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Figure 8. High LPP expression is associated with resistance to immunotherapy

(A) Box plot showing distinct LPP expression between responder and non-responder after anti-PD1 therapy in 45 GC patients from Kim et al. study. (B) Graph showing

distribution of LPP expression for responsive and non-responsive patients from Kim et al. study. (C) Bar plot showing distinct response rates between the high- and low-LPP

groups in GC patients from Kim et al. study. (D) Box plot showing distinct LPP expression between responder and non-responder after anti-PD1 therapy in 26 melanoma

patients from Hugo et al. study. (E) Graph showing distribution of LPP expression for responsive and non-responsive patients from Hugo et al. study. (F) Bar plot showing

differences in response rate between the high- and low-LPP groups using dataset from Hugo et al. study. (G) Box plot showing distinct levels of TIDE score between the low-

and high-LPP groups in GC patients from TCGA-STAD cohort. (H) Graph showing distribution of TIDE score for the responder and non-responder groups in TCGA-STAD

cohort. (I) Bar plot showing distinct response rates between the high- and low-LPP groups in GC patients from TCGA-STAD cohort. The boxes represent the median ± 1

quartile, with whiskers extending to the most extreme point within 1.5 interquartile range from the box boundaries.
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we tried to investigate distinct subtypes of GC from a new insight into
tumor-infiltrating immune cells abundances, differing from most
previous works based on genetic characteristics for specific molecule
type, such as genes, miRNAs, and lncRNAs.14–16 By integrating seven
types of PD-L1- and IFN-g-associated immune cells, we identified
three distinct GC subgroups, which had distinct PD-L1 and IFN-g
expression and survival outcomes. In subsequent analyses, significant
differences in genomic characteristics were found across the three
subgroups, including expression profile, mutational and epigenetic
landscape, tumor mutational burden, as well as interactions of co-
occurrence and exclusive mutation events. These findings support
previous attempts about integrating the expression of immune check-
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point molecules with those important genetic characteristics for prog-
nostication in multiple malignances. For example, non-small-cell
lung carcinoma patients with tumors simultaneously harboring
high level of both PD-L1 expression and tumor mutational burden
yielded better clinical outcomes than those whose tumor had only
one of these features,17 although there were also inconsistent conclu-
sions from other reports.18,19 Through integrating associations be-
tween PD-L1/IFN-g and tumor immune microenvironment, we
identified a promising biomarker LPP for patient prognostication
and response prediction for chemotherapy and immunotherapy in
GC. We found high LPP expression was associated with resistance
to chemotherapy and immunotherapy, as well as unfavorable survival
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outcomes for GC patients. These interesting findings imply that LPP
might provide additional information for current clinical decision-
making and might be an underlying therapeutic target against resis-
tance to chemotherapy and immunotherapy.

Uncovering the complex crosstalk among various biomolecules un-
derlying tumorigenesis pathology remains an unsettled challenge
for researchers. Many systematically and comprehensively computa-
tional strategies have been developed to investigate such complex bio-
logical interactions. Regulatory network, as one of the effective tools
for unraveling regulatory mechanisms underlying the biological pro-
cess of oncogenesis and cancer progression, has been validated and
applied in various malignance entities,20 including GC.21 One of
the major deliverables from the regulatory network was the hub mo-
lecular, defined as the node served as a central role in the network.22

Hub node identification has been demonstrated as an effective strat-
egy to explore potential candidates for extracting critical components
and underlying therapeutic targets from complex regulatory mecha-
nisms.23 In the present study, by systematically inferring interactions
among three types of biomolecules (i.e., lncRNA, miRNA, and gene)
whose expressions were significantly dysregulated among the tumor
infiltration- and prognosis-distinctive patient subgroups, we con-
structed an lncRNA-miRNA-gene regulatory network in GC. Based
on the network, we finally identified the hub molecular of LPP. LPP
has been known as a member of the zyxin family of proteins that reg-
ulates cytoskeletal organization and cell adhesion and motility.24

Several studies have demonstrated that LPP served as a proto-onco-
gene and its overexpression could promote cell invasion and metas-
tasis in multiple malignances.24,25 These previous results were consis-
tent with our findings that LPP was overexpressed in tumor, and high
LPP expression was associated with poor prognosis in GC patients.
However, to date, the roles of LPP, especially regarding principles
of immune response and immune escape in GC, are still unclear.
Cecilia et al. found LPP as an endothelial adhesion protein in endo-
thelial cells, which can be regulated by cancer-associated fibroblasts
and promote chemoresistance in ovarian cancer.26 However, these re-
sults in ovarian cancer are quite different from our current findings in
GC. Our immunohistochemistry data and single-cell RNA-seq anal-
ysis consistently revealed that LPP was overexpressed in tumor and
was restrictively enriched in the stromal fibroblasts of GC. Further
in vivo experiments validated that such fibroblast-derived LPP could
promote the growth of subcutaneous tumor in mice. Notably, our
subsequent findings suggested that high LPP expression was associ-
ated with increased resistance to chemotherapy and immunotherapy
for GC patients. How does such fibroblast-derived LPP regulate the
drug sensitivity? Our further analyses showed tumors with high
LPP expression tended to be infiltrated with more activated and
less resting CD4+ memory T cells in the tumor microenvironment.
As mentioned earlier, patients with strong PD-L1 and IFN-g expres-
sion had more activated CD4+ memory T cells in the tumor microen-
vironment and yielded unfavorable prognoses. Collectively, these
consistent results demonstrated an underlyingmechanism hypothesis
that fibroblast-derived LPP associates with the infiltration of activated
CD4+ memory T cells in the tumor microenvironment for patients
with high PD-L1/IFN-g expression, which might be contributed by
complex intercellular crosstalk, such as chemokines secretion, result-
ing in immunosuppression. Further efforts are awaited to validate this
interesting mechanism, and more evidence is needed to elucidate the
complete role of LPP in regulating immune response to chemo-
therapy and immunotherapy in GC.

There also exist several limitations in this study. First, similar to other
analyses applying in silico approaches to infer tumor-infiltrating com-
ponents, although 22 types of immune cells with their activation
states were analyzed in this study, our analyses failed to interpret
those immune cell types that were not assessed by the applied algo-
rithm but modulated the immune microenvironment properties of
GC. Second, since the immune infiltration and its impact on tumor
microenvironment are different in distinct regions of the tumor en-
tity, such as the core of tumor and the invasive margin, it is appro-
priate to evaluate the variation from different tumor regions
accordingly. However, data used for our immune infiltration analysis
were derived from bulk tumor tissues, making it impossible to take
the location information into account.

MATERIALS AND METHODS
Samples and datasets

Analyzed samples were retrieved from The Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov/) portal and Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.gov/geo/) database. We gath-
ered a total of 350 GC samples with coupled transcript expression, so-
matic mutation, copy number variation, and survival information
from the TCGA-STAD project. Four GC patient cohorts were
collected from the GEO database, including GSE26899 (n = 93),
GSE26901 (n = 109), GSE66229 (n = 300), and GSE28541 (n = 40).
A dataset of cancerous and normal samples for TCGA pan-cancer
types was collected from the TCGA and Genotype-Tissue Expression
Project (GTEx, available at: https://gtexportal.org/). Three additional
GEO datasets including GSE29272 (n = 268), GSE62254 (n = 300),
and GSE84437 (n = 433) were used for validation analyses. To
examine the association of LPP expression with immunotherapy
response, cohorts of GC patients (n = 45) and melanoma patients
(n = 26), who were receiving anti-PD1 therapy, were collected from
Kim et al.27 and Hugo et al.,28 respectively. Immunohistochemistry
results from The Human Protein Atlas database were available at
https://www.proteinatlas.org/. The robust multi-array average algo-
rithm was employed to process and normalize the raw data of micro-
array datasets from Affymetrix platform by using the Affy software
package.29 And those datasets from Illumina were processed using
the lumi package.30 This study was approved by the Ethics Committee
of Nanfang Hospital of Southern Medical University.

Estimating abundance of tumor-infiltrating cells

To infer the infiltrating abundance of immune cells in GC samples,
the CIBERSORT algorithm was employed based on transcriptomic
profiles, running the algorithm using the LM22 signature with
1,000 permutations.31 LM22 is a gene signature consisting of 547
genes that accurately distinguish 22 mature human hematopoietic
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populations and activation states, including seven T cell types, naïve
and memory B cells, plasma cells, NK cells, and myeloid subsets.
Abundances of fibroblasts were estimated by using theMicroenviron-
ment Cell Populations-counter.32

Identifying PD-L1- and IFN-g-associated patient subgroups

Spearman correlation was employed to evaluate associations between
either PD-L1 (CD274) or IFN-g (IFNG) expression level and abun-
dances of tumor-infiltrating immune cells. The LASSO, implemented
in R package “glmnet,” was applied to prioritize the most relevant
immune cell types with PD-L1 or IFN-g expression level.33 Then,
the abundances of selected relevant immune cells were ln(x+1)-trans-
formed, followed by unsupervised hierarchical clustering analyses.
The results were visualized by using R package “pheatmap.”

Somatic mutation analysis

Mutation events analyzed included missense mutations, nonsense
mutations, splice-site mutations, frameshift insertions/deletions,
and in-frame insertions/deletions. Tumor mutational burden was
calculated as the total number of somatic gene coding errors, base
substitutions, gene insertion or deletion errors detected per million
bases in the whole genome, by using R package “maftools.”34 The on-
coplot was used to visualize the mutation profile by using R package
“ComplexHeatmap.” Paired Fisher’s exact test was used to identify
mutually exclusive and co-occurrence of mutational events among
clusters, and a p value of <0.05 was considered significant.

Copy number variation analysis

We employed the GISTIC algorithm to detect the genomic region
with significant amplification or deletion for GC samples from
distinct patient subgroups.35 Parameter thresholds for the GISTIC al-
gorithm were set as follows: the amplification or deletion length
greater than 98% length of the chromosome arm, with q < 0.05,
and other parameters were set as default.

Differential expression analyses of gene, lncRNA, and miRNA

Expression differences of gene, lncRNA, and miRNA were analyzed by
using R package “limma.”36 The statistical threshold was set as the ab-
solute value of log-transformed fold change (|log2FC|) >log21.5, with a
false discovery rate (FDR) adjusted p value < 0.05. KEGG pathway
enrichment analyses were performed by using R package “Clusterpro-
filer,” and an adjusted p < 0.05 was considered significant.37

Construction of lncRNA-miRNA-gene regulatory network

StarBase database (http://starbase.sysu.edu.cn/) was used to retrieve
lncRNA-miRNA interactions. For miRNA-gene interaction, we
initially searched all miRNA-gene pairs from three databases,
including miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/php/
index.php), TargetScan (http://www.targetscan.org/vert_72/), and
miRDB (http://mirdb.org/), and then we obtained those conserved
in humans at least in two of these three sources. Then, based on these
two interaction types (i.e., lncRNA-miRNA andmiRNA-gene), three-
node regulatory paths of lncRNA-miRNA-gene were constructed.
Finally, we constructed the final lncRNA-miRNA-gene regulatory
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network through extracting those differentially expressed lncRNAs,
miRNAs, and genes among distinct subgroups, as well as their inter-
actions. The network topology was explored and the hub gene was
identified as the node with the largest value of degree in the network,
as proposed by Yu et al.22
Risk score generation for prognostication

Univariate Cox regression analysis was employed to select prognostic
genes from those with differential expression among distinct sub-
groups. Those genes yielding a hazard ratio (HR) > 1.2 or < 0.8,
with p value < 0.05, were identified as risk or favorable genes, respec-
tively. Then we employed the LASSO-Cox regression algorithm to
prioritize the most optimally prognostic candidate genes to establish
risk score, by using R package “glmnet.” The final risk score was
generated as the sum of the products of the signature gene expression
and corresponding LASSO coefficient. The “survminer” package was
utilized to determine the optimal cutoff of risk score to stratify
patients into low- and high-risk groups.
Single-cell analysis

The used single-cell RNA-seq dataset was available at GSE183904,
and 26 primary GC samples containing 119,862 single cells were
included. The analysis was performed using R package Seurat 4.0.4.
Genes expressed in at least three cells and cells that contained 500
to 6,000 features with less than 20% mitochondria genes were eligible
for further analysis. Principal component analysis was performed,
and JackStraw package was applied to determine the statistically sig-
nificant principal component. Cell clusters were identified by a shared
nearest neighbor modularity optimization-based clustering algo-
rithm, FindClusters, by setting the resolution to 0.5. Clusters were
visualized by Uniform Manifold Approximation and Projection and
were annotated by SingleR following manual curation.
Treatment response prediction

Based on the publically available pharmacogenomics database, Geno-
mics of Cancer Drug Sensitivity (GDSC, https://www.cancerrxgene.
org/), we used the TCGA-STAD transcriptomic profile to estimate
therapeutic response of chemical compounds for each GC patient.
The procedure was performed by using the R package “pRRophetic,”
in which the IC50 value of the compound was estimated using ridge
regression. A lower IC50 value indicated a higher efficacy for the com-
pound to inhibit or kill cancer cells. The thresholds used to identify
compounds sensitive to GC patients with high LPP expression were
as follows: IC50high–LPP – IC50low–LPP < –1.2, with an FDR-adjusted
p < 0.05.

TIDE was a newly developed computational framework to evaluate
the potential of tumor immune escape by using transcriptomic pro-
files.38,39 The TIDE score computed for each tumor sample can serve
as a surrogate biomarker to predict tumor response to immune check-
point blockade. We calculated the TIDE score for GC patients, in
which high TIDE score indicated increased potential for tumor im-
mune escape and resistance to immunotherapy. An average score
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was used as cutoff to identify the response to immunotherapy for a
GC patient.

Hematoxylin-eosin staining and immunohistochemistry

Hematoxylin-eosin staining and immunohistochemistry were per-
formed as previously described.40,41 In brief, for incubation with pri-
mary antibodies, tissue slides were incubated at 4�C overnight with
anti-rabbit antibody (LPP, 1:250, Abcam, ab126608; CD34, 1:250,
Abcam, ab81289). Negative controls were treated identically, but
without the primary antibody. Both goat anti-rabbit IgG fluorescent
secondary antibody (Aliexa Flour488, 1:400, GB25303) and anti-rab-
bit horseradish peroxidase secondary antibody (HRP, 1:200,
GB23303) were used in our experiments. Percentage positivity
(continuous scale) in tissue area was scored in ten random fields,
and the mean percentage positivity was used to access the expression
level.

In vivo tumor growth assay

Human GC cell line AGS and human BJ fibroblast cell line were pur-
chased from the Cell Resource Center, Shanghai Institute of Biochem-
istry and Cell Biology at the Chinese Academy of Sciences. The
shRNA plasmid of LPP was purchased from the GeneCopoeia
(Shanghai, China). AGS cell line with stably expressed green fluores-
cent protein (AGS-GFP) and BJ fibroblast cell line with stable LPP
knockdown as well as its control (LPP-shRNA and Vector) were es-
tablished. Five-week-old male athymic BALB/c nu/nu mice were pur-
chased from the Central Laboratory of Animal Science at Southern
Medical University (Guangzhou, China). The mice were maintained
at the Laboratory Animal Centre of Nanfang hospital in a specific
pathogen-free environment. For in vivo tumor growth assays, AGS-
GFP cells and BJ fibroblasts (LPP-shRNA and Vector) were mixed
and subcutaneously injected into the right flank of mice (n = 3 per
group). Tumors were measured with calipers every 3 days after injec-
tion, and the tumor volumes were calculated as previously reported,41

V = 0.5 � length �width2. After 30 days observing, the mice were
sacrificed to harvest the tumor for further analysis.

Statistical analysis

All statistical analyses were conducted with R version 3.6.1. Networks
were visualized by Cytoscape version 2.8.42 Kaplan-Meier estimator
and log rank test were used for survival comparison. Continuous vari-
ables were compared by using Wilcox test, and categorical variables
were compared by c2 (or Fisher’s exact test, if appropriate) test. Uni-
variate and multivariate survival analyses were performed by using
Cox proportional hazard regression with R package “survival.”
A two-tailed p of <0.05 was considered statistically significant.
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