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Abstract
Background:   Pneumocystis carinii causes pneumonia in immunocompromised patients with a high
morbidity and mortality rate, but the interaction between this organism and the host cell is not well
understood. The purpose of this research was to study the response of host cells to P. carinii
infection on a molecular level.

Results:  The technique of mRNA differential display was used to detect genes whose expression
may be affected by P. carinii infection. The nucleotide sequence of one differentially displayed DNA
fragment was found to be identical to that of the rat mitochondrial ATPase 6 gene, which is a
subunit of the F0F1-ATP synthase complex. A four-fold increase in expression of this gene was
verified by Northern blot analysis of total RNA extracted from P. carinii-infected rat lung versus that
from mock-infected rat lung. Localization of the cells containing ATPase 6 mRNA was accomplished
by in situ hybridization. In sections of non-infected rat lung, these cells were found lining the distal
parts of the respiratory tree and in apical areas of the alveoli. Histological location of these cells
suggested that they were Clara cells and type II pneumocytes. This hypothesis was confirmed by
co-localizing the mRNAs for ATPase 6 and surfactant protein B (SP-B) to the same cells by two-
color fluorescent in situ hybridization.

Conclusions:  The ATPase 6 gene is over expressed during P. carinii infection, and type II
pneumocytes and Clara cells are the cell types responsible for this over-expression.

Background
Pneumocystis carinii causes pneumonia in immuno-

compromised patients with a high morbidity and mortal-

ity rate. However, the interaction between this organism

and the host cell is not well understood. The target cell
for P. carinii is believed to be the type I pneumocyte. Af-

ter contact with the type I pneumocyte, P. carinii tropho-

zoites anchor themselves to the host cell. It was found

that the major surface glycoprotein of P. carinii up-regu-

lates the expression of integrins on the surface of cul-

tured lung cells [1] to facilitate this attachment. P. carinii
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attachment to type I pneumocytes may also be mediated

by laminin, vitronectin [2,3], or mannose [4].

Alveolar macrophages interact with P. carinii in the lung
as the first line of defense against infection. The major

surface glycoprotein of P. carinii has been shown to be a

chemotactic factor for macrophages and monocytes in

vitro [5]. The interaction of alveolar macrophages with

P. carinii is mediated by fibronectin [6]. P. carinii organ-

isms are phagocytized when they bind to mannose recep-

tors on the surface of macrophages [7]. Alveolar

macrophages have been shown to release TNF-α, pros-

taglandin E2, and leukotriene B4 upon interaction with

P. carinii [8]. These compounds are potent modulators

of pulmonary inflammation and lung injury [9]. These

are early and important events in the acute response to

infection and clearance of P. carinii organisms from the

lung [10].

Although it is not certain whether P. carinii organisms

attach to type II pneumocytes, type II pneumocytes do

respond to P. carinii infections. Type II pneumocytes

maintain the structural integrity of alveoli for gas ex-

change. They produce alveolar surfactant and replicate

and differentiate into type I pneumocytes after lung inju-

ry [11]. Type II pneumocytes have been shown to in-

crease the production of surfactant protein-A (SP-A) in

patients with P. carinii pneumonia (PcP), and the in-

crease of SP-A correlates with the organism load in the
lung [12]. The secretion of phosphatidylcholine from

type II cells has been found to be inhibited upon P. cari-

nii infection [13], leading to a deficiency of phosphati-

dylglycerol and the loss of surfactant function in patients

with PcP [14].

The purpose of this study was to detect alterations in

host cell gene expression that occur in response to P. car-

inii infection. We have compared gene expression pat-

terns in P. carinii-infected and mock-infected cells using

mRNA differential display and found that the mitochon-

drial ATPase 6 gene is over-expressed in response to P.

carinii infection in rats. We also found that type II pneu-

mocytes and Clara cells are responsible for over-expres-

sion of the ATPase 6 gene in P. carinii-infected rat lung.

Results
In order to determine whether P. carinii infection causes

increases in gene expression in host cells, experiments

using mRNA differential display were performed. Hu-

man embryonic lung (HEL) cells were used as host cells

and were inoculated with lung homogenate of dexameth-

asone-immunosuppressed and P. carinii-infected rats. A

separate set of HEL cell cultures was inoculated with

lung homogenate of dexamethasone-immunosup-
pressed, non-infected rats to serve as non-infected

(mock-infected) control. Several PCR product bands

were seen in the P. carinii-infected but not in the mock-

infected lanes of the mRNA differential display gel.

Three of these bands (Fig. 1), designated A4II, A6I, and
A8I, were selected for further study. To identify the

genes represented by the differentially displayed PCR

products, the DNA was recovered from the gel, re-ampli-

fied, cloned, and sequenced. The Basic Local Alignment

Search Tool (BLAST) was used to identify the sequences

thus obtained. The A4II product was determined to be a

234-bp DNA fragment with sequence approximately

60% homologous to nucleotides 134 - 234 of the yeast

mitochondrial ori 1 sequence (gb|K02488|YSCMTO-

RIA). This product was not further investigated since it is

not a human or rat gene. The A6I product was found to

be a 332-bp fragment with sequence identical to nucle-

otides 177 - 508 of the rat ribosomal protein S19 gene

(emb|X51707|RRRPS19). The 287-bp A8I product was

100 % identical to nucleotides 3421 - 3707 of the rat mi-

tochondrial ATPase 6 gene (gb|J01435|RATMTCYOS).

Since we sought to detect genes that were up-regulated in

the human host cell line, HEL 299, in response to P. car-

inii infection, it was surprising that none of the three se-

lected PCR product bands were of human origin.

To verify the expression pattern seen in the mRNA dif-

ferential display, the cloned A6I and A8I fragments were

used to probe Northern blots of RNAs derived from non-

infected and P. carinii-infected rat lungs. The A6I probe
reacted with a 0.8-kb RNA band, but the intensities of

the RNA bands of samples from mock- and P. carinii-in-

fected rat lungs were approximately the same. Therefore,

the A6I product band was not further studied. The A8I

probe reacted with an RNA band of approximately 0.7 kb

(Fig. 2), which is the size of the rat ATPase 6 mRNA [15].

Both P. carinii-infected and mock-infected RNA samples

showed the 0.7-kb band. The intensity of the band of the

RNA sample from P. carinii-infected rat lung is approxi-

mately 4 times stronger than that of the sample from

non-infected rat lungs based on densitometric analysis

of the autoradiogram. The band intensities of the same

blot probed with a fragment of the 18S rRNA gene were

used as an internal control for variations in the amount

of RNA loaded on the blot (Fig. 2). These results indicate

that non-infected rat lungs have a basal level of ATPase 6

gene expression and that this expression is increased in

P. carinii-infected lungs.

To verify over-expression of the ATPase 6 gene in rat

lung tissue, in situ hybridization with digoxigenin-la-

beled riboprobes was performed. Slides, each of which

contained lung tissue sections of both dexamethasone-

immunosuppressed non-infected (NRL) and P. carinii-

infected (PcIRL) rats, were probed with sense and anti-
sense riboprobes of the ATPase 6 gene. The sections re-
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acted with the sense probe served as a control for non-

specific background signal. The sections reacted with the

anti-sense probe were expected to show a dark blue pre-

cipitate in cells as an indication of ATPase 6 gene expres-

sion. A dark blue precipitate was not seen in NRL and

PcIRL sections reacted with the sense riboprobe (Fig. 3,

ATPase 6 probe, panels NRL, S and PcIRL, S) but was

seen in 2 - 3 cells per alveolus in the NRL sections reacted

with the anti-sense riboprobe (Fig. 3, ATPase 6 probe,

NRL, AS). Large alveolar macrophages with blue precip-

itates were also seen in some of the alveolar spaces. In

addition, some of the epithelial cells of the very distal

parts of the respiratory tree also showed blue precipitate

(Data not shown). In sections of PcIRL reacted with the

anti-sense riboprobe, hybridization signal was seen in

many more cells per alveolus when compared to those of

NRL. Some alveoli were packed with foamy exudate in-

dicative of a heavy P. carinii infection. Most of the cells

in the septal areas around these alveoli reacted with the

probe (Fig. 3, ATPase 6 probe, PcIRL, AS), but there was

no reaction with the probe in consolidated alveolar spac-

es, indicating that the probe did not react with P. carinii

organisms.

Cells in the apical areas of the alveoli are usually type II

pneumocytes, and the non-ciliated cuboidal epithelial

cells in the very distal parts of the respiratory tree are

usually Clara cells [16]. The observation that cells reacted

with the ATPase 6 gene probe are located in these two ar-

eas suggests that type II pneumocytes and Clara cells are

the cell types that over-expressed the ATPase 6 gene. To

confirm this possibility, in situ hybridization with a

probe specific for type II pneumocytes and Clara cells

was performed. This probe was a 202-bp fragment of a

portion of the rat surfactant protein-B (SP-B) gene

(emb|X14778|RNSPB) that is expressed only in type II

pneumocytes and Clara cells [17].

As seen in Fig. 3 (SPB probe, S), tissue sections (NRL or

PcIRL) reacted with the SP-B sense probe showed no hy-

bridization signal. Similarly to those probed with the AT-

Pase 6 gene, cells in the apical area of alveoli (2-3 per

alveolus) and epithelial cells lining the distal airways of

NRL sections showed blue precipitate when reacted with

the anti-sense SP-B probe (Fig. 3, SPB probe, NRL, AS).

In PcIRL sections reacted with the anti-sense probe,

more cells than in the NRL sections in apical areas of al-

Figure 1
Products of mRNA Differential Display. Samples from mock-infected (M) and P. carinii-infected (I) cells were run in adja-
cent lanes on a 6% denaturing polyacrylamide gel. These PCR reactions contained the "A" anchored primer (H-T11A) and one
of the arbitrary primers (AP4, AP6, or AP8). The arrows indicate differentially displayed products A4II, A6I, and A8I.
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veoli had blue precipitate, indicating SP-B expression

(Fig. 3, SPB probe, PcIRL, AS).

To confirm that ATPase 6-expressing cells are type II
pneumocytes and Clara cells, double-probe fluorescent

in situ hybridization was performed. Sections of NRL

and PcIRL tissues were hybridized simultaneously with

fluorescein-labeled SP-B and digoxigenin-labeled AT-

Pase 6 riboprobes. Hybridized fluorescein-labeled SP-B

or digoxigenin-labeled ATPase 6 riboprobes were visual-

ized as green or red fluorescence, respectively, using the

appropriate filter on a fluorescent microscope. Cell nu-

clei were stained with DAPI and emitted a blue fluores-

cence under the appropriate filter. Sections of NRL and

PcIRL hybridized with the sense probes for both ATPase

6 and SP-B showed little red or green fluorescence (Fig.

4, G and H). These sections exhibited predominately

host cell nuclei that appeared as large blue elliptical rings

or spherical masses, whereas P. carinii nuclei appeared

as small blue, punctate clusters in the alveolar spaces

(Fig. 4H). Composite images of NRL (Fig. 4A) and PcIRL

(Fig. 4B) sections hybridized with the anti-sense ribo-

probe for both ATPase 6 and SP-B exhibited large blue

nuclei surrounded by yellow fluorescence in the cyto-

plasm. This yellow fluorescence was due to complemen-

tation between red and green signals derived from anti-

sense ATPase 6 (red signal) and SP-B (green signal)

probes that hybridized with RNAs in the same cells. Pan-

els 4, C and D; and E and F are images of 4A and 4B, re-
spectively, split into individual green (SP-B) and red

(ATPase 6) channels. With very rare exceptions, cells

that expressed the ATPase 6 gene also expressed the SP-

B gene. In addition, no hybridization signal (red or

green) was seen in areas that had clusters of P. carinii or-
ganisms. These results strongly indicate that type II

pneumocytes and Clara cells are the sources of ATPase 6

over-expression during P. carinii infection.

Discussion
The technique of mRNA differential display has been

used to detect differences in gene expression between

different types of cells [18,19], during cell transformation

[20,21], and in various stages of disease development

[22]. In this study, we used it to detect genes that are

over-expressed in P. carinii-infected cells. Homogenates

of lungs from non-infected and P. carinii-infected rats

were used to inoculate a human cell line, the HEL cell

line, to determine whether P. carinii would up-regulate

or induce gene expression in infected HEL cells. Unex-

pectedly, we detected and identified the mitochondrial

ATPase 6 gene, which appears to be over-expressed in re-

sponse to P. carinii infection as demonstrated by North-

ern blot analysis (Fig. 2) and in situ hybridization (Figs.

3 and 4) in rat lungs. The possibility that the observed in-

crease in hybridization signal to the rat ATPase 6 probe

was due to crossover contamination by yeast- or P.cari-

nii-derived ATPase 6 mRNA is remote because the mito-

chondrial ATPase 6 gene of yeast shares only 16 %

sequence identity with that of rat. Furthermore, there
was no indication of ATPase 6 signal originating from

yeast or P. carinii organisms in the in situ experiments

that were performed (Figs. 3 and 4).

ATPase 6 is a component of the F0F1 ATP synthase com-

plex, which converts the energy stored in the form of the

proton motive force to chemical energy in the form of

ATP. This complex is composed of 2 major domains, F1

and F0. F1 is the catalytic portion of the enzyme. It lies on

the matrix side of the inner mitochondrial membrane

and is composed of 6 subunits of α3β3γδε [23, 24] and an

ATPase inhibitor protein [25]. F0 is the integral mem-

brane domain of the complex and functions as a proton

channel in ATP synthesis. F0 has 2 domains: the stalk-

like domain and the integral membrane domain. The

stalk-like domain of F0 is composed of two proteins,

OSCP (oligomycin sensitivity-conferring protein) [26]

and F6 [27]. OSCP is found as a dimer in each F0 sector.

It interacts with the F1 sector and is required for H+

translocation [28]. The integral membrane domain is

composed of 3 main proteins: subunits 6, A6L, and 9.

Subunit 6 is the product of the ATPase 6 gene. Little is

known about the structure and function of the subunit 6

protein except that it is an integral membrane protein

that interacts with the OSCP subunit and may be in-
volved in energy coupling to the F1 sector. The A6L sub-

Figure 2
Northern Hybridizations Using the Cloned ATPase 6
Gene Fragment as Probe. Eight µg each of total RNAs
derived from non-infected rat lung (N) and P. carinii-infected
rat lung (I) were electrophoresed on an agarose gel contain-
ing formaldehyde, transferred to Nytran Plus membrane, and
probed with a fragment of the 18S rRNA gene (control
probe) and the mitochondrial ATPase 6 gene fragment.
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Figure 3
in situ Hybridizations Using Digoxigenin-labeled Riboprobes for ATPase 6 (A) and SP-B (B) with Colorimetric
Detection. Three micrometer-thick sections of dexamethasone-suppressed non-infected rat lung (NRL) and Pc-infected rat
lung (PcIRL) were hybridized with ATPase 6 or SP-B probes. Left-side panels are representative sections probed with sense
probes (S). Right-side panels show representative sections probed with anti-sense probes (AS). Arrows indicate cells that show
the blue precipitate (indicating ATPase 6 expression) in the section of NRL probed with AS probe.
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Figure 4
Double-probe Fluorescent in situ Hybridization Using Digoxigenin-labeled ATPase 6 and Fluorescein-labeled
SP-B Riboprobes. Three micrometer-thick sections of normal rat lung (NRL) (A and G) and Pc-infected rat lung (PcIRL) (B
and H) were processed for double-probe fluorescent in situ hybridization. Panels A (NRL) and B (PcIRL) are composite images
of sections reacted with a mixture of anti-sense digoxigenin-labeled ATPase 6 and fluorescein-labeled SP-B probes. Panels C
and E are split images of the composite A, and panels D and F are split images of the composite B, showing concurrence of red
(ATPase 6) and green (SP-B) signal in the same cells. Panels G (NRL) and H (PcIRL) are composite images of sections reacted
with both ATPase 6 and SP-B sense probes showing very little background signal. Arrows in panel B indicate the punctate
DAPI-stained (blue) nuclei of P. carinii organisms.
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unit is also an integral membrane protein associated

with the F0 sector [29]. There are approximately 10 cop-

ies of subunit 9 involved in forming the proton channel

[30].

Except for ATPase 6 and A6L, which are encoded by the

mitochondrial genome, all of the subunits of the F0F1

ATP synthase complex are encoded by nuclear genes

[23]. It is not clear how expression of each of the protein

subunits is regulated or how the complexes are assem-

bled on the mitochondrial inner membrane. It has been

shown that triiodothyronine (T3) increases the tran-

scription of the ATPase 9 gene of the F0 complex but has

no effect on the transcription of the β subunit of the F1

sector [31]. This result suggests that the two sectors of

the complex are not necessarily coordinately expressed.

As mentioned above, the cells that expressed the ATPase

6 gene were found to be located at the apical areas of the

alveoli and in the epithelium of the very distal parts of

the respiratory tree. The apical areas are where type II

pneumocytes are located, and the very distal parts of the

respiratory tree are where Clara cells are located. Cells in

these locations were also found to react with the SP-B

probe. Since the SP-B gene is known to be expressed only

in type II pneumocytes and Clara cells, the results sug-

gest that these two types of cells are over-expressing the

ATPase 6 gene in response to P. carinii infection.

The fact that the rat mitochondrial ATPase 6 gene was

isolated from HEL cells inoculated with homogenate of

P. carinii-infected rat lungs suggests that rat cells were

present in the inoculum and survived in culture. This

possibility is consistent with the nature of type II pneu-

mocytes, as they are known to be long-lived in culture

[32]. In this study, the HEL cells were incubated with the

inoculum for 5 days before the cultures were processed

for RNA isolation. This 5-day incubation was to allow

sufficient time for P. carinii organisms to interact with

the feeder layer (HEL cells) and for apoptosis of the

short-lived rat-derived cells that were present in the in-

oculum. It is likely that type II pneumocytes survived for

the entire 5-day period of incubation. It is also likely that

some of the HEL cells died in the incubation period and

that differentially expressed HEL RNAs were missed.

Since no human genes were found to be over-expressed

by the mRNA differential display performed in this

study, the effects of P. carinii infection in gene expres-

sion in HEL cells or in human lungs remain to be inves-

tigated.

The significance of over-expression of the mitochondrial

ATPase 6 gene in P. carinii-infected lung is unknown.

Since type II pneumocytes transform into type I pneu-
mocytes in response to lung injury [11], it is possible that

this process requires a higher amount of ATP. To satisfy

this need, these cells may increase the expression of the

genes of the F0F1 ATP synthase complex. This hypothesis

implies that the expression of all or most of the genes en-
coding various components of the ATP synthase complex

would be up-regulated in response to P. carinii infection.

It is also possible that ATPase 6 plays a role in other func-

tions that also respond to P. carinii infection. If this were

the case, genes of other components of the ATP synthase

would not necessarily be up-regulated together with the

ATPase 6 gene. All of these possibilities remain to be

studied. It also remains to be determined whether over-

expression of the ATPase 6 gene is specific for P. carinii

infection. It is conceivable that over-expression of the

ATPase 6 gene can be a diagnostic marker if it is unique

to P. carinii infection. Studies are underway to explore

these possibilities.

Conclusions
The technique of mRNA differential display was used to

detect genes that have an altered expression in Pneumo-

cystis carinii-infected hosts. The nucleotide sequence of

one differentially displayed fragment was found to be

identical to that of the gene encoding the rat mitochon-

drial ATPase 6, which is a subunit of the F0F1-ATP syn-

thase complex. Northern blot analysis of total RNA

extracted from P. carinii-infected rat lung versus that

from mock-infected rat lung revealed that the ATPase 6

gene is over expressed during P. carinii infection. Cells
that expressed the ATPase 6 gene were found lining the

distal parts of the respiratory tree and in apical areas of

alveoli by in situ hybridization. With a two-color fluores-

cent in situ hybridization, most cells that expressed the

ATPase 6 gene were also found to express the SP-B gene,

indicating that type II pneumocytes and Clara cells are

the cell types responsible for the over-expression of the

ATPase 6 gene in P. carinii infection.

Materials and Methods
Development of P. carinii infections in rats and prepara-
tion of P. carinii inoculum
To develop P. carinii infection, Sprague-Dawley female

rats were immunosuppressed with dexamethasone and

then trans-tracheally inoculated with 0.2 ml of homoge-

nate of an infected rat lung containing 1 × 106 P. carinii

trophozoites or with a homogenate of uninfected rat lung

as controls as described previously [33]. After develop-

ment of P. carinii infection (approximately six weeks af-

ter inoculation), rats were sacrificed, and lungs were

removed and homogenized in minimal essential medium

(MEM) (Life Technologies, Inc., Grand Island, New

York) containing 10% fetal calf serum and 1% non-essen-

tial amino acids. Following removal of gross cellular de-

bris by centrifugation at 400 × g, the number of P. carinii
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organisms per ml of supernatant in the infected lung ho-

mogenate was determined as described previously [34].

Cell cultures
The human embryonic cell line HEL 299 (American Type

Culture Collection, Rockville, MD) was used for P. carinii

culture. When the cell monolayer was confluent, the cells

were split into six 75-cm2 flasks and grown to conflu-

ence. The medium on all 6 confluent HEL cell culture

flasks was then removed. Two flasks, designated non-in-

fected (NI) controls, were each replenished with 30 ml of

fresh complete media. Two flasks, designated mock-in-

fected (M), were inoculated with an aliquot of normal rat

lung homogenate in 30 ml of complete media. The re-

maining two flasks, designated infected (I), were each in-

oculated with an aliquot of P. carinii-infected lung

supernatant containing 7 × 105 P. carinii organisms per

ml in 30 ml of media. These 6 flasks were then incubated

in an isolation chamber containing a gas mixture of 5%

O2, 10% CO2, and balance N2 at 35°C for five days.

RNA extraction
RNA was isolated using the hot-acidic phenol extraction

method described by Chuang et al. [35]. HEL cells were

dislodged from the flask with a trypsin-EDTA solution,

washed with DEPC-treated PBS, and then resuspended

in 6 ml of ice-cold resuspension buffer [10 mM Tris-HCl

(pH 7.5), 10 mM KC1, 5 mM MgCl2]. Six ml of hot (70°C)

lysis buffer [20 mM Tris-HCl (pH 7.4), 0.4 M NaCI, 40
mM EDTA, 1% β-mercaptoethanol, 1% SDS] and 1 ml of

citrate-buffered phenol (pH 4.0) were added to each cell

suspension. The resulting mixtures were boiled for 1

minute and then extracted with phenol:chloroform (1:1).

The aqueous portion of the extraction was layered onto a

cushion of 5.7 M CsCl in ultracentrifuge tubes. The tubes

were centrifuged at 147,000 × g for 18.5 hours at 18°C.

After ultracentrifugation, the supernatant was removed

and the RNA pellets were dissolved in TE buffer [10 mM

Tris-HCl (pH 8), 1 mM EDTA] and then treated with

RNase-free DNase I (100 U/ml) to remove any residual

DNA. To extract RNA from tissue, 100 mg of rat lung was

ground in 6 ml of ice-cold resuspension buffer. The re-

sulting homogenate was centrifuged at 400 × g for 10

minutes to remove the gross cellular debris. The super-

natant was then treated as above starting with the addi-

tion of 6 ml of hot lysis buffer. Eight µg of each RNA was

electrophoresed in triplicate on a formaldehyde agarose

gel to check for integrity of the RNA and to perform

Northern hybridizations, which were done as described

previously [36].

Densitometry of Northern Blots
The intensities of hybridization signal on autoradio-

grams of Northern blots were determined by laser densi-
tometry. An LKB 2202 UltroScan Laser Densitometer set

in absorbance mode was used to scan 20 mm-long areas

of each lane on the autoradiogram. Height, width, and

area of each peak were determined by a least-squares-fit

method, and the amount of absorbance over the scan
length was evaluated and corrected for baseline absorb-

ance by the LKB 2190 GelScan software package.

mRNA differential display
The RNAimage™ Kit (GenHunter Corporation, Nash-

ville, TN) was used to detect differences between RNA

samples of mock- (M) and P. carinii-infected (I) HEL

cells. Three 20-µl reverse transcription (RT) reactions

were set up per sample. Each reaction contained 200 ng

of RNA, reaction buffer [25 mM Tris-HCl (pH 8.3), 37.6

mM KC1, 1.5 mM MgCh, 5 mM DTT], 20 µM of each de-

oxribonucleoside triphosphate (dNTP), and 0.2 µM of

one of the following anchored primers: H-T11-A, H-T11-

G, or H-T11-C (H= AAGCTT). The RT reactions were per-

formed as described in the procedure manual of the kit.

The resulting RT reaction products were used to prepare

eight 20-µl PCRs per RT reaction. Each PCR included 2

µl of the RT reaction containing the primary strand cD-

NA, reaction buffer [10 mM Tris-HCl (pH 8.4), 50 mM

KC1, 1.5 mM MgCl2, 0.001% gelatin], 2 µM of each

dNTP, 0.2 µM of the same anchored primer used in the

RT reaction, 0.2 µM of one of the eight 13-mer arbitrary

primers API-8 (Table 1), 12.5 µCi of α-[35S] dATP (1270

Ci/mmole), and 1 U of AmpliTaq DNA polymerase (Per-

kin-Elmer, Foster City, CA). Thermal cycling parameters

included 40 cycles of denaturation at 94°C for 15 sec-

onds, annealing at 40°C for 2 minutes, and extension at
72°C for 30 seconds. The final cycle included five addi-

tional minutes at 72°C to ensure complete extension of

all products and a subsequent hold at 4°C.

Approximately one fifth of the PCR products from each

reaction were electrophoresed on a 6% denaturing poly-

Table 1: Sequences of the 8 Arbitrary Primers Used in the Differ-
ential mRNA Reactions.

Primer Sequence

AP1 aagcttGATTGCC
AP2 aagcttCGACTGT
AP3 aagcttTGGTCAG
AP4 aagcttCTCAACG
AP5 aagcttAGTAGGC
AP6 aagcttGCACCAT
AP7 aagcttAACGAGG
AP8 aagcttTTACCGC



BMC Microbiology (2001) 1:8 http://www.biomedcentral.com/1471-2180/1/8
acrylamide gel to display the PCR product bands. The

samples of reactions performed with the same primer

pairs but different templates (M or I) were loaded into

adjacent wells of the gel. An autoradiogram of the gel was
obtained and analyzed to detect bands which were

present in one of the paired lanes but not in the other.

Each band was labeled with a three-part designation rep-

resenting the anchored primer (H-T11-A, H-T11-G, or H-

T11-C), arbitrary primer (API - 8), and the number of the

differential band in the lane from the well. Therefore,

band A4II was found in the A-anchored primer (H-T11-

A) reaction with the AP4 arbitrary primer and was the

second differentially displayed band in that lane. Differ-

entially displayed bands were isolated and reamplified

with the same primer pair as that used to produce the

isolated differential display band. The amplified DNA

was cloned into the TA cloning vector pCRII (Invitrogen,

Carlsbad, CA) and then sequenced by the Sanger method

using the Sequenase (Amersham Life Science, Cleveland,

OH) protocol as described previously [37].

Cloning of a rat surfactant protein B gene fragment
A 202-bp portion corresponding to nucleotides 441 to

643 of the rat surfactant protein B gene

(emb|X14778|RNSPB) [38] was amplified from rat lung

RNA by RT-PCR and then cloned as follows. Two hun-

dred ng of rat lung total RNA was added to a reaction

which contained 10 mM Tris-HCl (pH 8.3), 50 mM KC1,

1.5 mM MgCl2, 0.001% gelatin, 1 mM of each dNTP, 5
mM dithiothreitol, 2.9 U RNasin, 20 pmoles of primer

SP-BR (5'-GAATCACAGCTTGGACCCGC-3'), and 16 U

MMLV reverse transcriptase. This RT reaction was incu-

bated at 42°C for 60 minutes. The RT reaction products

were mixed with 20 pmoles of primer SP-BF (5'-

GACTAAGCCAGAGCAGAAGC-3') and 2 U of AmpliTaq

DNA polymerase and then subjected to PCR which in-

cluded 7 minutes at 94°C followed by 35 cycles of 94°C

for 1 minute, 62°C for one minute, and 72°C for 1.5 min-

utes. The resulting RT-PCR product was cloned into TA

vector pCR2.1 (Invitrogen, Carlsbad, CA). Two clones,

pCR21/4SP-B and pCR22/lSP-B, which had the SP-B

gene fragment in opposite orientations, were selected.

Generation and preparation of riboprobes
The ATPase 6 clones were used as templates in PCRs

with primer pairs RATPase6F (5'-ACCCCCATCT-

CACTAATTCC-3') and RATPase6R (5'-AGTACTAGGG-

TAGCTCCTCC-3') to generate a 145 bp fragment to make

ATPase 6 riboprobes. Similarly, a 202 bp fragment was

amplified from pCR21/4SP-b with primers SP-BF and

SP-BR (see above) to produce SP-B riboprobes. Each

PCR product was ligated to adapters that contained an

SP6 promoter sequence (SP6 adapter) in one reaction or

to adapters with a T7 promoter sequence (T7 adapter) in
another reaction according to the Lig'nScribe™ (Ambi-

on, Austin, TX) protocol. The ligation products were am-

plified with an adapter-specific primer and either the

probe-specific forward primer RATPase6F or SP-BF (for

the T7 adapter ligation) or the probe-specific reverse
primer RATPase6R or SP-BR (for the SP6 adapter liga-

tion). Four PCR products were thus generated:

RATPase6F-T7 adapter, SP6 adapter-RATPase6R, SP-

BF-T7 adapter, and SP6 adapter-SP-BR.

The RATPase6F-T7 adapter and SP-BF-T7 adapter PCR

products were used as templates for in vitro transcrip-

tion to produce antisense riboprobes, and the SP6 adapt-

er-RATPase6R or SP6 adapter-SP-BR PCR PCR

products were used to make sense probes. The in vitro

transcription was performed for 2 hours at 37°C in reac-

tions containing 100 ng of template DNA, 40 U of T7

RNA polymerase (for antisense probes) or 40 U of SP6

RNA polymerase (for sense probes), 40 mM Tris-HCl

(pH 8.0), 6 mM MgCl2, 10 mM dithioerythritol, 2 mM

spermidine, 10 mM NaCl, 1 mM each of ATP, GTP, and

CTP, 0.65 mM UTP, 0.35 mM digoxigenin (DIG)-labeled

UTP (or fluorescein-12-UTP), and 20 U RNasin (Prome-

ga, Madison, WI). After in vitro transcription, 20 U of

RNase-free DNase I was added to digest the DNA tem-

plates, and the labeled riboprobes were precipitated with

ethanol and then resuspended in 100 µl of DEPC-treated

water. One µl of RNasin was added to the suspension,

and the RNA concentration was determined by spectro-

photometry.

in situ hybridization of rat lung tissue using riboprobes
Three-micrometer thick sections of lung tissue from dex-

amethasone-suppressed uninfected and P. carinii-in-

fected rats were mounted on a single ProbeOnPlus slide

(Fisher Scientific, Pittsburgh, PA). Processing of tissue

sections for hybridization and reactions with riboprobes

were performed as described previously [39]. For colori-

metric detection, hybridization with the targets was re-

vealed by reacting the tissue sections with anti-DIG-

alkaline phosphatase conjugate, followed by reaction

with nitroblue tetrazolium chloride (NBT), 5-bromo-4-

chloro-3-indolyl phosphate (BCIP), and levamisole as

previously described [39]. The sections were counter-

stained with nuclear fast red dye (0.1% nuclear fast red,

5% aluminum sulfate) and mounted in glycerin jelly

(10% gelatin, 70% glycerin, 1% phenol).

Florescent in situ hybridizations were performed as de-

scribed previously [40,41,42]. Detection of hybridized

fluorescein-labeled SP-B riboprobe was accomplished by

reacting the sections with rabbit anti-fluorescein anti-

body followed by FITC-conjugated goat anti-rabbit anti-

body. For detection of hybridized DIG-labeled ATPase 6

riboprobes, hybridized sections of rat lung were incubat-
ed with mouse anti-DIG antibody followed by Texas Red-
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conjugated horse anti-mouse antibody and then Texas

Red-conjugated rabbit anti-horse antibody.

For evaluation by fluorescence microscopy, slides were
covered with antifade containing 4', 6'-diamidine-2' phe-

nylindole dihydrochloride (DAPI), which stained the nu-

clei blue. Microscopic analysis of FISH images was done

using an Aristoplan fluorescence microscope (Leitz,

Rockleigh, NJ) with 63 × and 100 × oil-immersion objec-

tives and appropriate filters. Separate gray images of the

three probes (red, green, and blue) were taken using fil-

ters specific for FITC, Texas Red, and DAPI. The images

were colored and superimposed using a software pack-

age by Vysis, Inc (Downers Grove, IL) to yield the final

image.
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