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Background: Although accurate treatment response assessment for brain metastases
(BMs) is crucial, it is highly labor intensive. This retrospective study aimed to develop a
computer-aided detection (CAD) system for automated BM detection and treatment
response evaluation using deep learning.

Methods: We included 214 consecutive MRI examinations of 147 patients with BM
obtained between January 2015 and August 2016. These were divided into the training
(174 MR images from 127 patients) and test datasets according to temporal separation
(temporal test set #1; 40 MR images from 20 patients). For external validation, 24 patients
with BM and 11 patients without BM from other institutions were included (geographic test
set). In addition, we included 12 MRIs from BM patients obtained between August 2017
and March 2020 (temporal test set #2). Detection sensitivity, dice similarity coefficient
(DSC) for segmentation, and agreements in one-dimensional and volumetric Response
Assessment in Neuro-Oncology Brain Metastases (RANO-BM) criteria between CAD and
radiologists were assessed.

Results: In the temporal test set #1, the sensitivity was 75.1% (95% confidence interval
[CI]: 69.6%, 79.9%), mean DSC was 0.69 ± 0.22, and false-positive (FP) rate per scan
was 0.8 for BM ≥ 5 mm. Agreements in the RANO-BM criteria were moderate (k, 0.52)
and substantial (k, 0.68) for one-dimensional and volumetric, respectively. In the
geographic test set, sensitivity was 87.7% (95% CI: 77.2%, 94.5%), mean DSC was
0.68 ± 0.20, and FP rate per scan was 1.9 for BM ≥ 5 mm. In the temporal test set #2,
sensitivity was 94.7% (95% CI: 74.0%, 99.9%), mean DSC was 0.82 ± 0.20, and FP per
scan was 0.5 (6/12) for BM ≥ 5 mm.
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Conclusions:Our CAD showed potential for automated treatment response assessment
of BM ≥ 5 mm.
Keywords: brain metastasis, computer-aided detection, machine learning, deep learning, Response Assessment in
Neuro-Oncology Brain Metastases (RANO-BM)
INTRODUCTION

Brain metastases (BMs) are the most common brain tumors in
adults (1, 2). Increasing evidence suggests that stereotactic
radiosurgery can be safely used for patients with up to 10 BM
nodules (3, 4). Thus, accurate determination of the number, size,
and location of metastatic lesions on brain imaging has become
crucial for selecting the most appropriate treatment method. The
introduction of three-dimensional (3D) sequences in MRI, which
allows the acquisition of thin-section thickness images in a
reasonable time, has significantly enhanced the sensitivity of
BM detection, particularly for small nodules (5, 6). However, this
is highly labor intensive and time consuming for radiologists
owing to the high number of images, which could account for as
many as several hundred images for a single MRI study.

Previous studies found that computer-aided diagnosis system
(CAD) increases the sensitivity of detecting lesions in the brain (7–
11), breast (12, 13), lung (14, 15), and colon (16). With several
milestones (17–20), deep learning (DL) has seen a sudden increase
in interest and applications across the field of medical imaging. A
few DL approaches based on semantic segmentation using fully
convolutional networks have been proposed for BM identification
with MRI (21–23). Zhou et al. (24) demonstrated that DL-CAD
may assist radiologists in the detection of BM, with limited false-
positive (FP) findings. Ardila et al. (25) also reported the possibility
of end-to-end lung screening through DL-CAD.

The Response Assessment in Neuro-Oncology Brain
Metastases (RANO-BM) criteria (26) stipulates that the sum of
the longest diameter of up to five target lesions should be
compared between two studies to assess the treatment response
of BM, which is also considerably tedious and time-consuming.
A recent study showed that semi-automated size measurements
of BM could aid in reducing the interobserver variability and
assessing the treatment response (27). Thus, this study aimed to
develop a DL-CAD for automated BM detection and treatment
response evaluation on MRI.
MATERIALS AND METHODS

This retrospective study adhered to the relevant reporting
guidelines (28–30). The patient information in MRI Digital
Imaging and Communications in Medicine files was
anonymized and de-identified prior to analysis. The
institutional review boards approved the study.

MRI Examination
At Seoul National University Bundang Hospital (SNUBH), a
tertiary hospital, MRI examinations were performed using a 1.5-
T (Intera, Philips Healthcare, Best, the Netherlands) or 3.0-T
2

(Achieva or Ingenia, Philips Healthcare) MR scanner with an 8-
or 32- channel head coil. The MRI parameters for 3D gradient-
echo sequence (GRE) were as follows: field of view (FOV), 240 ×
240 mm2; acquisition matrix, 240 × 240; slice thickness, 1 mm;
number of excitations, 1; repetition time (TR), 8–10.6 msec; echo
time (TE), 3.7–5.7 msec; and flip angle, 8°. For contrast
enhancement, gadobutrol (Gadovist®, Bayer Schering Pharma
AG, Berlin, Germany; 0.1 mmol/kg) was intravenously injected.

At Seoul National University Hospital (SNUH), MRI
examinations were performed using a 3.0-T (Verio, Siemens
Healthcare, Erlangen, Germany, or Discovery 750w, GE
Healthcare, Milwaukee, WI) MR scanner. The MRI parameters
for the 3D GRE were as follows: FOV, 250 × 250 mm2; acquisition
matrix, 256 × 256; slice thickness, 1 mm; number of excitations, 1;
TR, 1500 msec; TE, 1.9 msec; inversion time, 900 msec; partition,
176; and flip angle, 9°. For contrast enhancement, gadobenate
dimeglumine (MultiHance, Bracco Diagnostics, Princeton, NJ; 0.1
mmol/kg) was injected intravenously as a bolus.

While the DL-CAD system analyzed only the 3D GRE
contrast-enhanced T1-weighted imaging (T1WI), reviewers
also assessed other imaging sequences, including pre-contrast
T1WI, T2-weighted images, and fluid-attenuated inversion
recovery images, in the routine protocol.

MRI Analysis
A total of 1710 BM nodules were identified from the SNUBH
data (8.0 BM nodules per patient). For the training set, 1298
nodules from 147 MRI examinations in 127 patients were used.
For the testing set, 200 nodules on initial MRI and 212 nodules
on follow-up MRI in 20 patients were used. The longest diameter
of each BM on the axial plane was measured. In the training
set, the median BM size was 6.5 mm (interquartile range [IQR],
4.8–9.7 mm). In total, 374 and 924 BMs measured < 5 mm and
≥ 5 mm, respectively. In the temporal test set, the median BM
size was 6.0 mm (IQR, 4.1–9.2 mm), and 147 and 265 BMs
measured < 5 mm and ≥ 5 mm, respectively. A total of 87 BM in
24 patients were identified from the geographic test set. The
median BM size was 7.3 mm (IQR, 4.5–18.0 mm). There were 65
BM lesions that measured ≥ 5 mm. The ground truth for
treatment response according to the RANO-BM criteria was
assessed by two neuroradiologists (L.S. and B.S.C., with 11 and
22 years of clinical experience, respectively) by consensus as
complete response, partial response, stable disease, and
progressive disease. Although the RANO-BM criteria defines
measurable disease as lesions with a long diameter of ≥ 10 mm,
we opted to use the size threshold of measurable disease as 5 mm
so that we can include smaller BM nodules. Such modification of
the criteria was suggested by the RANO-BM working group only
when brain MRI with 1-mm slice thickness and no gap were used
(26). The presence of any new lesion, regardless of its size, was
October 2021 | Volume 11 | Article 739639
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assessed as progressive disease. In addition to the conventional
criteria using one-dimensional measurement of the longest
diameter of BM, we assessed volumetric response using the
modified criteria suggested by Oft et al. (31). The regions-of-
interest in all BM nodules were carefully drawn along the
enhancing tumor margin by an experienced radiologist
(T.Q.N., with 11 years of clinical experience) using an in-house
developed software.

Development of the CAD Software
The algorithms of the CAD system were classified into pre-
processing, brain segmentation, BM detection, BM
segmentation, and BM volumetry. An IBM Power System
AC922 8335-GTH (IBM, Armonk, NY, USA) server equipped
with four NVIDIA Tesla V100-SXM2 16GB (NVIDIA, Santa
Clara, CA, USA) graphics processing units was used for DL. DL
training was conducted using Python 2.7.6 and the Keras 2.1.5
framework with a TensorFlow backend in the Ubuntu 14.04
operating system. The programs used in the experiment were
Microsoft Visual Studio (Version 2010, Microsoft, Redmond,
WA, USA), ITK (Insight Segmentation and Registration Toolkit,
Kitware Inc., NY, USA), and VTK (Visualization Toolkit,
Kitware Inc., NY, USA). Figure 1 shows the flowchart of the
algorithm that our study proposes.

The signal intensity of each voxel on MRI varies based on the
scan parameters. To solve this problem, we normalized the image
by resampling the signal of the image excluding the background
to a range from 0 to 1 based on the signal intensity of the position
manually selected in the gray matter. Then, we limited the
application range of the BM detection algorithm to segmented
brain regions by automatically cropping the brain regions from
the MR image using a DL-based approach. This prevented the
CAD from rendering potential false detections that can occur
outside the brain regions. Specifically, the 2D U-Net architecture
(32), which uses DenseNet201 pre-trained with ImageNet
database as encoder (33), was utilized. For model training, we
used 3388 MR images that were manually drawn for the brain
regions. This was followed by data augmentation using flip,
rotation, parallel translation, and scale adjustment (34).

BM has a relatively small size compared to the entire brain
area. Therefore, it is difficult to accurately segment the BM in the
entire brain region. To solve this problem, we used two DL
models. First, we detected the location of the BM, and second, we
performed fine segmentation by increasing the size of the
detected BM.

The training set was divided into the training and validation
datasets using a ratio of approximately 90%:10% (1175:123). We
used a 3D U-Net architecture based on the Dice loss function for
detecting a relatively small BM compared to the brain (35–38). A
3D structure is advantageous over a 2D structure for recognizing
the edges of BM. Furthermore, the Dice loss methodology
provides improved detection results for class imbalance and
weak boundaries.

The image data were resampled to have a size of 192 × 192 ×
192 pixels, i.e., identical along the x, y, and z axes. In addition, the
ratio between the axes of the original data was maintained
constant via zero padding. For the hyperparameters of
Frontiers in Oncology | www.frontiersin.org 3
learning, the Adam activation function was used along with
the Dice loss function, and the Epoch, batch size, and learning
rate were set to be 300, 1, and 1×10−3, respectively. For cases in
which the Epoch was between 100 and 250, the learning rate was
set to be 1×10−4, whereas for cases in which the Epoch was over
250, the learning rate was set to be 1×10−5 to lower the learning
rate as the learning progresses. The bounding box was calculated
based on the information on segmented BM regions via the 3D
U-Net architecture and used as a BM location.

For BM segmentation, we used the 2D U-Net architecture
that uses DenseNet201 pre-trained with ImageNet database as an
encoder (32, 33). After cutting off the location of the bounding
box circumjacent to BM detected by the 3D U-Net, MR image
was resampled to have a size of 512 × 512 pixels so that each BM
could fit in the image. The training and testing dataset in the DL
model consisted of the same patients and the same number of
BM as that in the BM detection using data augmentation by 16
times. The schematic U-Net architecture used for the detection
and segmentation of the BM is illustrated in Figure 2.

The results segmented by DL were labeled, and the volume for
each BM was measured. The volume was measured by calculating
the number of pixels included in each segmented BM and
multiplying the spacing of x and y axes by the slice thickness.

Tomatch the sameBMin the initial and follow-upMRI,weused
the 3D rigid registration methodology provided by the ITK library
(39, 40). The rigid registrationmethodology repeats the adjustment
and comparison of three parameters, namely, rotation, translation,
and scale, while maintaining the morphological structure of a
patient in the initial and follow-up images and finds the location
where the similarity of these images is the highest. Because the
patient in the two images subjected to adjustment was the same,
good resultswere obtainedbyusing only rigid registration.After the
adjustment, we could compare the volumes of BMmatching in the
initial and follow-up MRI.

Statistical Analysis
We evaluated our CAD in three ways. First, we assessed detection
sensitivity, DSC for segmentation, and number of FP nodules per
scan in the temporal test set. Second, the success rate of
registration on serial MRIs was calculated in the temporal test
set. Finally, the one-dimensional and volumetric agreements of
the RANO-BM criteria (26) between CAD and the ground truth
were calculated using weighted kappa in the temporal test set.
Agreement between the two assessments was categorized as poor
(k < 0), slight (k, 0–0.20), fair (k, 0.21–0.40), moderate (k, 0.41–
0.60), substantial (k, 0.61–0.80), and almost perfect (k > 0.80).

For external validation of CAD using the geographic test set
and another temporal test set, the sensitivity and FP per scan were
assessed. All statistical analyses were performed with MedCalc
(version 19.7; MedCalc Software, Mariakerke, Belgium).
RESULTS

Patient Characteristics
From January 2015 to August 2016, 1904 consecutive patients
who had a confirmed systemic malignancy and underwent MRI
October 2021 | Volume 11 | Article 739639
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using a “BM work-up” protocol were selected from the radiology
database of SNUBH. Patients with a history of primary brain
cancers were excluded. Data from January 2015 through March
2016 were collected and labeled according to the previous study
(7). Two radiologists (L.S. and J.C., with 11 and 5 years of clinical
experience, respectively) reviewed the data from April 2016
through August 2016. All the radiologists had access to the
patients’ histories and follow-up imaging studies and determined
the reference standard of BM nodules based on consensus.

In total, 1757 patients were excluded based on the following
criteria: [1] presence of metastasis involving the bone, dura, or
skin or suspicious lesions for leptomeningeal seeding (n = 177), [2]
presence of other pathological conditions, such as meningioma,
vestibular schwannoma, pituitary adenoma, cavernous
malformation, or hemorrhagic infarction (n = 72), [3] presence
of equivocal nodule(s) determined to be BM (n = 104), [4]
presence of excessive artifacts or poor image quality (n = 31),
[5] presence of more than 50 metastatic nodules (n = 32), and [6]
absence of BM (n = 1341). Among patients who underwent MRI
Frontiers in Oncology | www.frontiersin.org 4
after April 2016, only those, whose serial MRIs were available,
were included in the evaluation of treatment response.

Finally, we included 214 consecutive MRI examinations with
post-contrast 3D T1-weighted images conducted between January
2015 and August 2016 in 147 patients with BM (74 women and 73
men; median age, 62 ± 12 years). These were divided into the
training dataset (174 MRIs from 127 patients) and the internal test
dataset according to temporal separation (hereafter denoted as the
temporal test set #1) (40MRIs from 20 patients). The temporal test
set #1 included 12 men and 8 women (mean age ± standard
deviation, 63 ± 13 years). The primary malignancies in the
temporal test set were lung cancer and breast cancer in 17 and 3
patients, respectively.All patients in the temporal test set #1had two
serial MRIs. The study includes 110 MRIs from 110 patients who
had been included in a previous study (7), all of which are included
in the training set of the current study.Noneof the training set cases
were included in the test set.

For external validation, we randomly selected 35 patients (19
men; age, 61 ± 12 years) who underwent “BM work-up” MRI at
FIGURE 1 | Flowchart of the proposed deep learning-based computer-aided detection system. F/U, follow-up; BM, brain metastasis.
October 2021 | Volume 11 | Article 739639
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SNUH between May 2014 and March 2015 (hereafter denoted as
the geographic test set). In the geographic test set, there were 24
patients with BM and 11 patients without BM. With respect to
the type of cancer diagnosis in patients with BM, 18, 2, 2, 1, and 1
patient had lung cancer, breast cancer, melanoma, ovarian
cancer, and papillary thyroid carcinoma, respectively. Two
experienced neuroradiologists (L.S. and C.H.S., with 11 and 32
years of clinical experience, respectively) reviewed the brain MRI
and determined BM based on consensus. We also randomly
selected 12 patients (6 men; age, 67 ± 12 years) who underwent
“BMwork-up”MRI in SNUBH between August 2017 andMarch
2020 (hereafter denoted as the temporal test set #2). Two
experienced neuroradiologists (L.S. and S.J.C., with 11 and 9
years of clinical experience, respectively) reviewed the brain MRI
and determined BM based on consensus. For indeterminate
lesions even after consensus, we used available follow-up MRI
for adjudication. The clinicodemographic characteristics of the
included patients are summarized in Table 1.

Performance of CAD
Temporal Test Set #1
The sensitivity for BM detection in the temporal test set was
58.0% (239 of 412; 95% confidence interval [CI], 53.2%–62.7%),
Frontiers in Oncology | www.frontiersin.org 5
the mean DSC was 0.67 ± 0.23, and the FP rate per scan was 2.5
(99/40). For BM measuring ≥ 5 mm, the sensitivity was 75.1%
(199 of 265; 95% CI, 69.6%–79.9%), the mean DSC was 0.69 ±
0.22, and the FP rate per scan was 0.8 (33/40). The median BM
volume was 30 mL (IQR, 8–119 mL). The sensitivity and number
of BMs across the nodule size in each dataset are shown in
Figure 3. For registration, all 69 BMs detected on serial MRI
examinations were successfully matched.

Agreements in the RANO-BM Criteria
The agreements in the RANO-BM criteria between DL-CAD and
ground truth assessed by experienced radiologists were moderate
(k, 0.52; 95% CI, 0.26–0.79) for one-dimensional measurement
and substantial (k, 0.68; 95% CI, 0.41–0.94) for volumetric
measurement (Table 2). Representative cases are illustrated in
Figures 4 and 5.

Geographic Test Set
Regarding the geographic test set, the sensitivity of detection was
75.9% (66 of 87; 95% CI, 65.5%–84.4%), the mean DSC was
0.66 ± 0.22, and the FP rate per scan was 7.6 (265/35). For BMs
measuring ≥ 5 mm, the sensitivity was 87.7% (57 of 65; 95% CI,
77.2%–94.5%), the mean DSC was 0.68 ± 0.20, and the FP per
FIGURE 2 | U-Net architecture for brain metastasis (BM) detection and segmentation. BN, batch normalization; ReLU, rectified linear unit.
October 2021 | Volume 11 | Article 739639
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scan was 1.9 (67/35). The median BM volume was 279 mL (IQR,
83–1629 mL).

Temporal Test Set #2
Regarding the temporal test set #2, the sensitivity of detection was
80.0% (24 of 30; 95% CI, 61.4%–92.3%), the mean DSC was 0.76 ±
0.26, and the FP rate per scanwas 2.2 (26/12). ForBMsmeasuring≥
5 mm, the sensitivity was 94.7% (18 of 19; 95% CI, 74.0%–99.9%),
the mean DSC was 0.82 ± 0.20, and the FP per scan was 0.5 (6/12).
The median BM volume was 353 mL (IQR, 65–2140 mL).
DISCUSSION

Accurate treatment response assessment for BM is crucial;
however, it is highly labor intensive. Our proposed DL-CAD
Frontiers in Oncology | www.frontiersin.org 6
showed promising results for automated assessment of treatment
response of BM. Using the modified RANO-BM size criteria for
measurable disease, the detection sensitivity was 75.1%, 94.7%,
and 88% for BMs measuring ≥ 5 mm in the temporal test #1,
temporal test #2, and geographic test sets, respectively. In all
cases, the automatic co-registration of detected lesions on serial
MRIs (pre-treatment and post-treatment) was successful.
Subsequent automated treatment response assessment showed
a moderate degree of agreement for one-dimensional measurement,
and substantial agreement for volumetric measurement between
DL-CAD and experienced neuroradiologists.

As previously reported (24), the detection sensitivity of DL-
CAD models primarily depends on the size of BM nodule. Small
metastases with poorly defined boundaries and low contrast
typically cause an inevitable increase of FP nodules detected on
DL-CAD. However, the issue of impaired sensitivity due to small
TABLE 1 | Clinicodemographic patient characteristics according to the dataset.

SNUBH SNUH

Training Temporal test #1 Temporal test #2 Total Geographic test

Demographics 127 20 12 159 35
Mean age (years) 61 ± 12 63 ± 13 67 ± 12 62 ± 12 61 ± 12
M/F ratio 61/66 12/8 6/6 79/80 19/16

MRI 174 40 12 226 35
1.5 T 114 (66%) 20 (50%) 4 (33%) 138 (61%) –

3.0 T 60 (34%) 20 (50%) 8 (67%) 88 (69%) 35 (100%)
Primary cancer type
Lung 98 (78%) 17 (85%) 11 (92%) 126 (79%) 28 (80%)
Melanoma 1 (1%) – – 1 (1%) 2 (6%)
Breast 17 (14%) 3 (15%) – 20 (13%) 2 (6%)
Renal 3 (2%) – – 3 (2%) –

Gastrointestinal 4 (3%) – 1 (8%) 5 (3%) –

Genitourinary – – – – 1 (3%)
Sarcoma 1 (1%) – – 1 (1%) –

Thyroid 1 (1%) – – 1 (1%) 1 (3%)
Ovary 1 (1%) – – 1 (1%) 1 (3%)
Head and neck 1 (1%) – – 1 (1%) –
October 2021 | Volume 1
MRI, magnetic resonance imaging; SNUBH, Seoul National University Bundang Hospital; SNUH, Seoul National University Hospital.
A B C

FIGURE 3 | Sensitivity and number of brain metastases (BMs) in different nodule sizes in the temporal test set #1 (A), the geographic test set (B), and the temporal
test set #2 (C). The x-axis indicates the size of the nodules (mm).
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metastases was minimized by following the RANO-BM criteria,
in which up to five target lesions were selected based on their size
(26). In our study, the average sum of the longest diameters and
volumes of five target lesions on the initial MRI in the testing set
was 43.7 mm and 1859.6 mL per patient, respectively. We
showed that automated quantitative analysis of MRI using a
comprehensive DL approach could be a valuable tool for clinical
decision making in neuro-oncology. As was demonstrated by
Bauknecht et al. (27) automated treatment response assessment
Frontiers in Oncology | www.frontiersin.org 7
using the RANO-BM criteria is promising for lowering
interobserver variability and improving individualized patient
management. Although quantitative volumetric assessment of
tumor response might arguably be one of the most quintessential
parameters for accurate assessments of tumor burden and response
(41–43), it has previously been cited as a labor-intensive, time-
consuming, and complex task that ultimately prevents clinical
adoption (44, 45). Our effort to evaluate the usefulness of a fully
automated quantitative analysis ofMRI in neuro-oncology showed
that it has the potential to overcome the inherent limitations of
manual assessment of tumor burden. We assume that suboptimal
detection sensitivity and FP detection rate influenced the moderate
agreement of RANO-BM assessment using one-dimensional
measurement. A single, small FP nodule on follow-up MR images
could lead to “progression” onRANO-BMassessment. In addition,
inaccurate segmentation also could affect the accuracy of RANO-
BM assessment due to inaccurate size measurement. However, the
agreement of the RANO-BM criteria was higher for volumetric
assessment than for one-dimensional assessment, indicating that
the volumetric assessment could be reliably used to reduce the
interobserver variability.

Compared with previously reported approaches using DL for
assessing BM, our study has three major strengths. First, we
TABLE 2 | Agreement in the response assessment in neuro-oncology brain
metastases (RANO-BM) criteria.

One-dimensional GT Volumetric GT

CR PR SD PD Total CR PR SD PD Total

DL-CAD
CR 2 1 1 0 4 2 1 0 1 4
PR 0 3 3 2 8 0 3 1 1 5
SD 0 1 0 0 1 0 0 3 1 4
PD 0 0 1 6 7 0 0 0 7 7
Total 2 5 5 8 20 2 4 4 10 20
GT, ground truth; CR, complete response; PR, partial response; SD, stable disease; PD,
progressive disease; DL-CAD, deep learning-based computer-aided detection system.
FIGURE 4 | Representative cases (A–E) for automated brain metastasis (BM) detection, segmentation, and treatment response assessment using our proposed
deep learning computer-aided detection (DL-CAD) system. (A) Stable disease. (B) Progressive disease. (C) Partial response. (D) False-negative detection of a small
BM in the left temporal lobe on initial MRI, which showed enlargement and was correctly detected on a follow-up MRI. (E) False-positive detection. A small cortical
vein was falsely detected by DL-CAD (dotted square), which could be easily differentiated by radiologists.
October 2021 | Volume 11 | Article 739639
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FIGURE 5 | Graphical representation of one-dimensional and volumetric
measurement of the ground truth (upper row) and deep learning computer-
aided detection (DL-CAD) system (lower row). The longest diameter and
volume of the ground truth was 19 mm and 1597 mL, respectively, whereas
the longest diameter and volume measured by DL-CAD was 27 mm and
1590 mL, respectively. Thus, volumetric measurement showed better
agreement between DL-CAD and the ground truth than one-dimensional
measurement (Dice similarity coefficient was 0.85).

Cho et al. Assessment of RANO-BM Using Deep-Learning
showed the possibility of end-to-end automation of treatment
response evaluation of BM, which is a tedious and time-
consuming task for radiologists. Typically, radiologists follow
several steps during evaluation of brain MRI in a patient with
suspected BM: detection, comparison with prior images if
available, followed by comparison of size changes. Most
previous investigations (7–11, 24) have mainly focused on
evaluating CAD in one or two steps such as detection or
segmentation. However, similar to a recent study of end-to-end
lung cancer screening (25) or brain tumor response (41), we
showed the possibility of end-to-end evaluation of BM.
Furthermore, these prior CAD studies typically report only a
lesion-level performance. In contrast, our DL-CAD performed
human-independent evaluation on full volumes. The excellent
performance of registration of serial brain MRIs supported the
possibility of end-to-end automated treatment response
evaluation of BM. Second, to lower the selection bias and to
enhance the generalizability of our results, we enrolled
consecutive patients and used temporal separation of internal
test data. In addition, we further performed validations using
another temporally separated dataset and data from another
institution. Cho et al. conducted a systematic review and meta-
analysis of 12 studies on BM detection by machine learning (46).
They found that only two studies included consecutive patients
and conducted an external validation or temporal separation of
Frontiers in Oncology | www.frontiersin.org 8
test data. Therefore, the results of our study better depicted the
real-world clinical setting than those of previous studies (7–11,
21, 22, 24). Third, we used the entire image context, therefore
avoiding patch-wise inferences, which may lack robustness
because of the broad range of BM sizes. The methodology
proposed in this study has the advantage of dividing BM using
two steps. In the first step, a 3D U-Net was used to locate small
BMs in a large brain region. In the second step, the detected BM
was cropped to avoid reducing the BM size in the image. In the
cropped image, the DenseNet based U-Net model provides more
accurate and detailed segmentation performance in the entire
brain region than the direct segmentation of BM.

However, our study also has some limitations. First, we
acknowledge the retrospective nature of the study and the
relatively small, single-center dataset with both 1.5-T and 3.0-T
MRI used for training of the DL-CAD, which may be insufficient
for addressing the variabilities in scanning techniques and
hardware implementations across hospitals. A larger training
dataset from a multi-center study might allow further
improvement of the accuracy of the DL-CAD. However, we
used an external test set as well as a temporally separated internal
test set to improve the generalizability of our results. In addition,
we found a slightly higher detection sensitivity for the geographic
test set and temporal test set #2 than that for the temporal test set
#1. Second, although the system achieved a high sensitivity for
larger metastases, it showed a limited detection performance for
smaller metastases. Although we used a 3D U-Net CAD model
based on the Dice loss function considering previous studies
using the models specialized in detection such as RetinaNet (47)
or YOLO (48), the system showed unsatisfactory detection
sensitivity for small BM. However, Zhou et al. similarly
reported a low sensitivity for smaller BM (24), in which their
system showed 15% and 70% sensitivity for BM measuring ≤ 3
mm and ≤ 6 mm, respectively. Considering that BM ≤ 5 mm
accounts for 35.7% of BMs in the internal testing set, consecutive
enrollment in our study also might have led to a more difficult
testing set. Recent imaging protocols in BM recommend that
turbo-spin echo T1WI should be preferred over conventional 3D
GRE T1WI (5). Therefore, larger future studies with black-blood
imaging (49, 50) might be helpful for improving the detection
sensitivity and reducing FP findings. Third, our DL-CAD has
limitations in evaluating leptomeningeal seeding or skull
metastasis. Fourth, this study did not include clinical
components such as steroid use or neurological deterioration
of patients during treatment response assessment. Finally, we
chose operating points for the DL-CAD primarily to compare
reader and model performance. It should be noted that the
selection of operating points for use in clinical practice remains
an ongoing area of research, potentially involving outcomes to
properly trade-off between sensitivity and specificity. More
robust retrospective and prospective studies would be required
to ensure clinical applicability.

Our proposed DL-CAD showed the potential for automated
treatment response assessment of BM lesions measuring ≥ 5 mm.
These results represent a step toward automated BM evaluation
via DL. We believe this research could supplement future
October 2021 | Volume 11 | Article 739639
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approaches to BM evaluation as well as support assisted- or
second-read workflows. In addition, we believe the general
approach employed in our work, which mainly involved
outcomes-based training, full-volume techniques, and directly
comparable clinical performance evaluation, may lay additional
groundwork toward DL medical applications.
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