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Abstract

Background: The number of microbial genome sequences is increasing exponentially, especially thanks to recent advances
in recovering complete or near-complete genomes from metagenomes and single cells. Assigning reliable taxon labels to
genomes is key and often a prerequisite for downstream analyses. Findings: We introduce CAMITAX, a scalable and
reproducible workflow for the taxonomic labelling of microbial genomes recovered from isolates, single cells, and
metagenomes. CAMITAX combines genome distance–, 16S ribosomal RNA gene–, and gene homology–based taxonomic
assignments with phylogenetic placement. It uses Nextflow to orchestrate reference databases and software containers and
thus combines ease of installation and use with computational reproducibility. We evaluated the method on several
hundred metagenome-assembled genomes with high-quality taxonomic annotations from the TARA Oceans project, and
we show that the ensemble classification method in CAMITAX improved on all individual methods across tested ranks.
Conclusions: While we initially developed CAMITAX to aid the Critical Assessment of Metagenome Interpretation (CAMI)
initiative, it evolved into a comprehensive software package to reliably assign taxon labels to microbial genomes. CAMITAX
is available under Apache License 2.0 at https://github.com/CAMI-challenge/CAMITAX.
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Introduction

The direct costs for sequencing a microbial genome are at an
all-time low: a high-quality draft now costs <$100, a “finished”
genome sequence <$500. This has resulted in many culture-
dependent genome studies, in which thousands of isolates—
selected by, e.g., their distinct phylogeny [1,2], abundance in the
human microbiome [3,4], or biotechnological relevance [5,6]—
are sequenced.

Single-cell genome and shotgun metagenome studies fur-
ther contribute to this expansion in genome numbers by en-
abling access to the genome sequences of (as-yet) uncultured
microbes [7–9]. Notably, new bioinformatics methods can recon-
struct complete or near-complete genomes even from complex
environments [10,11] and easily scale to hundreds or even thou-
sands of metagenome samples [12–16].

Typically, the sequencing and assembly of a new genome is
merely a prerequisite for further bioinformatics analyses (and
their experimental validation) to uncover novel biological in-
sights by, e.g., functional annotation [17,18] or phenotype pre-
diction [19,20], which often require the genome’s taxonomy.

Historically, a bacterial or archaeal species was defined as
a collection of strains that share 1 (or more) trait(s) and show
DNA-DNA reassociation values of ≥70% [21]. However, with the
advent of genomics and—more recently—culture-independent
methods, this definition was found to be impractical and diffi-
cult to implement [22].

Today, 16S ribosomal RNA (rRNA) gene similarity, average nu-
cleotide identity (ANI), genome phylogeny, or gene-centric vot-
ing schemes are used for taxonomic assignments [23–28]. These
approaches all have their merits (see below), but, to the best of
our knowledge, no unifying workflow implementation existed.

Received: 8 June 2019; Revised: 23 November 2019; Accepted: 10 December 2019

C© The Author(s) 2020. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0001-6739-7899
http://orcid.org/0000-0003-2370-3430
mailto:andreas.bremges@helmholtz-hzi.de
http://orcid.org/0000-0001-6739-7899
http://orcid.org/0000-0001-6739-7899
mailto:alice.mchardy@helmholtz-hzi.de
http://orcid.org/0000-0003-2370-3430
http://orcid.org/0000-0003-2370-3430
https://github.com/CAMI-challenge/CAMITAX
http://creativecommons.org/licenses/by/4.0/


2 CAMITAX: Taxon labels for microbial genomes

To jointly use these complementary approaches, we developed
CAMITAX, a scalable and reproducible workflow that combines
genome distance–, 16S rRNA gene–, and gene homology–based
taxonomic assignments with phylogenetic placement onto a
fixed reference tree to reliably infer genome taxonomy.

Methods

In the following, we describe CAMITAX’s assignment strategies
and its implementation (Fig. 1).

Genome distance–based assignment

An ANI value of 95% roughly corresponds to a 70% DNA-DNA re-
association value (the historical species definition) [24]. In other
words, strains from the same species are expected to show >95%
ANI [29]. This species boundary appears to be widely applicable
and has been confirmed in a recent large-scale study, in which
the analyses of 8 billion genome pairs revealed a clear genetic
discontinuity among known genomes, with 99.8% of the pairs
showing either >95% intraspecies ANI or <83% interspecies ANI
values [30].

CAMITAX uses Mash [31] to rapidly estimate the input
genomes’ ANI to all bacterial or archaeal genomes in the Ref-
Seq database [32] (114,176 strains as of 10 May 2018). CAMITAX’s
genome distance–based assignment is the lowest common an-
cestor (LCA) of all Mash hits with >95% ANI; a genome is placed
at ”root” if there is no RefSeq genome with >95% ANI.

This strategy works best if the query genome is >80% com-
plete (Mash does not accurately estimate the genome-wide ANI
of incomplete genomes [33]) and is represented in RefSeq. CAMI-
TAX’s other assignment strategies are complementary by design
and better suited for incomplete genomes or underrepresented
lineages. If a Mash hit is found, however, CAMITAX most likely
assigns a taxonomy at the species or genus level.

16S rRNA gene–based assignment

The 16S rRNA gene is widely used for classification tasks because
it is a universal marker gene likely present in all bacteria and
archaea [34,35].

CAMITAX uses nhmmer [36] to identify 16S rRNA genes in
the input genomes and Dada2 [37] to assign taxonomy. Dada2
uses the naive Bayesian classifier method [38] for kingdom to
genus assignments, and exact sequence matching against a ref-
erence database for species assignments. CAMITAX supports 2
commonly used databases: SILVA [39] and Ribosomal Database
Project (RDP) [40], which both were found to map back well to
the NCBI Taxonomy [41].

Of course, this strategy only is applicable if the genome
assembly contains a copy of the 16S rRNA gene—which is
not always the case, particularly for genomes recovered from
metagenomes or single cells.

Gene homology–based assignments

Metagenomics and single-cell genomics are complementary ap-
proaches providing access to the genomes of (as-yet) uncul-
tured microbes, but both have strings attached: Single amplified
genomes (SAGs) are hindered by amplification bias and, as a con-
sequence, are often incomplete [42,43]. Metagenome-assembled
genomes (MAGs) on the other hand rarely contain full-length
16S rRNA genes [44,45]. While there are notable exceptions to

this rule [46,47], the above assignment strategies are generally
not expected to work well for today’s SAGs and MAGs.

To overcome these problems, CAMITAX implements a gene-
based voting scheme. It uses Prodigal [48] to predict protein-
coding genes, and then Centrifuge [49] and Kaiju [50] for gene
homology searches on the nucleotide and protein level, respec-
tively. Both tools scale to large reference databases, such as
NCBI’s nr/nt [51], but (by default) CAMITAX resorts to the (much
smaller) proGenomes genes and proteins datasets [52,53]. The
proGenomes database was designed as a resource for consistent
taxonomic annotations of bacteria and archaea.

Inferring genome taxonomy from a set of gene-level assign-
ments is not trivial, and—inspired by procedures implemented
in anvi’o [27] and dRep [33]—CAMITAX places the query genome
on the lowest taxonomic node with ≥50% support in gene as-
signments (which corresponds to the interval-union LCA algo-
rithm [28]) for nucleotide and protein searches.

Phylogenetic placement

CAMITAX uses CheckM [25] for a phylogeny-driven estimate of
taxonomy. Relying on 43 phylogenetically informative marker
genes (consisting primarily of ribosomal proteins and RNA poly-
merase domains), CheckM places the query genome onto a fixed
reference tree with Pplacer [54] to infer taxonomy. We note that
phylogenetic placement is often quite conservative and does not
necessarily provide resolution at the species level [26,55].

Last, CAMITAX reports the query genome’s completeness
and contamination as estimated by CheckM using its lineage-
specific marker genes [25].

Classification algorithm

CAMITAX considers the lowest consistent assignment as the
longest unambiguous root-to-node path in the taxonomic tree
spanned by the individual assignments; i.e., it retains the most
specific, yet consistent taxonomic label among all tools. For ex-
ample, CAMITAX would determine as “consistent” assignments
for the individual assignments (derived with the different as-
signment strategies) the following:

� 3× E. coli, 2× Bacteria �→ E. coli
� 3× E. coli, 2× E. albertii �→ Escherichia
� 3× E. coli, 2× Archaea �→ Root

This strategy is more robust than computing the LCA of in-
dividual assignments because outliers, e.g., missing predictions
of conservative methods, do not affect the overall assignment.

At the same time, requiring a consistent assignment is less
error prone than, e.g., selecting the maximal root-to-leaf path,
which would introduce many false-positive assignments espe-
cially on lower ranks.

The trade-off is that incorrect individual assignments, e.g.,
due to potentially misassembled or misbinned 16S rRNA gene
sequences in MAGs, can result in overly conservative assign-
ments on high taxonomic ranks. CAMITAX therefore also reports
the maximal root-to-leaf path as an alternative, and we sug-
gest that the user investigate taxonomic discrepancies manu-
ally, taking individual assignments into account.

Implementation

CAMITAX incorporates many state-of-the-art pieces of software,
and automatically resolves all software and database dependen-
cies with Nextflow [56] in a containerized environment (Table 1).
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Figure 1: The CAMITAX taxonomic assignment workflow. CAMITAX assigns 1 NCBI Taxonomy ID (taxID) to an input genome G by combining genome distance–,

16S rRNA gene–, and gene homology–based taxonomic assignments with phylogenetic placement. (A) Genome distance–based assignment. CAMITAX uses Mash to
estimate the average nucleotide identity (ANI) between G and >100,000 microbial genomes in RefSeq and assigns the lowest common ancestor (LCA) of genomes
showing >95% ANI, which was found to be a clear species boundary. (B) 16S rRNA gene–based assignment. CAMITAX uses Dada2 to label G’s 16S rRNA gene sequences
using the naive Bayesian classifier method to assign taxonomy across multiple ranks (down to genus level) and exact sequence matching for species-level assignments

against the SILVA or RDP database. (C) Gene homology–based assignments. CAMITAX uses Centrifuge and Kaiju to perform gene homology searches against nucleotide
and amino acid sequences in NCBI’s nr and nt (or proGenomes’ genes and proteins datasets), respectively. CAMITAX determines the interval-union LCA (iuLCA) of
gene-level assignments and places G on the lowest taxonomic node with ≥50% coverage. (D) Phylogenetic placement. CAMITAX uses Pplacer to place G onto a fixed

reference tree, as implemented in CheckM, and estimates genome completeness and contamination using lineage-specific marker genes. (E) Classification algorithm.
CAMITAX considers the lowest consistent assignment as the longest unambiguous root-to-node path in the taxonomic tree spanned by the 5 taxIDs derived in (A)–(D);
i.e., it retains the most specific, yet consistent taxonomic label among all tools.

Table 1: Software used in the CAMITAX workflow

Software Version BioContainer

Centrifuge 1.0.3 centrifuge:1.0.3–py36pl5.22.0 2
CheckM 1.0.11 checkm-genome:1.0.11–0
Dada2 1.6.0 bioconductor-dada2:1.6.0–r3.4.1 0
Kaiju 1.6.2 kaiju:1.6.2–pl5.22.0 0
Mash 2.0 mash:2.0–gsl2.2 2
Nhmmer 3.1
Pplacer 1.1
Prodigal 2.6.3 prodigal:2.6.3–0

CAMITAX automatically resolves all software dependencies with Nextflow using
BioContainers in a containerized environment. Nhmmer and Pplacer are bun-
dled with CheckM.

This fosters reproducibility in bioinformatics research [57,58],
and we strongly suggest running CAMITAX using BioContainers
[59] (automated container builds for software in Bioconda [60]).
CAMITAX can be run on a local machine or in a distributed fash-
ion.

Results

We applied CAMITAX to real data not present in its databases, a
recent collection of 885 bacterial and archaeal MAGs from Del-
mont et al. [15], who used state-of-the-art metagenomic assem-
bly, binning, and curation strategies to create a non-redundant
database of microbial population genomes from the Tara Oceans
project [61].

Delmont et al. [15] used CheckM for an initial taxonomic
inference of the MAGs. Thereafter, they used Centrifuge [49],
RAST [62], and manual BLAST searches of single-copy core genes

against NCBI’s nr/nt to manually refine their taxonomic infer-
ences. Last, they trained a novel machine learning classifier to
also identify MAGs affiliated to the Candidate Phyla Radiation
(CPR) [8].

As expected, CAMITAX outperformed CheckM, which is
rather conservative in its assignments, by adding low-ranking
annotations based on high-quality predictions of other tools,
such as Kaiju (Fig. 2). Notably, 95% of CAMITAX’s predictions
were consistent with Delmont et al. [15], i.e. the two assignments
were on the same taxonomic lineage and their LCA is either of
the two. CAMITAX assignments of 46 MAGs (5%) were in conflict
with the manually curated taxonomy. Of these, CAMITAX made
species assignments for 12 MAGs based on Mash hits against
RefSeq genomes. These we consider trustworthy because >95%
ANI was shown to be a clear species boundary [30], and we
assume that Delmont et al. assigned them incorrectly. On the
other hand, CAMITAX for instance misclassified MAGs affiliated
to the CPR based on their 16S rRNA gene sequences to other
phyla.

To quantify taxonomic assignment performance, we calcu-
lated precision, recall, and accuracy across all ranks with AM-
BER 2.0 [63] (Fig. 3). As the gold standard, we used the Del-
mont et al. [15] assignments up to genus rank. CAMITAX was
very precise down to class level and reasonably (>80%) pre-
cise below. Overall, it was more accurate across all ranks than
each of its assignment strategies individually. While the recall
of CAMITAX dropped at the mid-range ranks, largely due to
a more conservative assignment strategy compared with the
expert curation of Delmont et al., it recovered for genus-level
assignments.

We thus propose CAMITAX as a reliable and reproducible tax-
onomic assignment workflow, ideally followed by a manual re-
finement step—as always.



4 CAMITAX: Taxon labels for microbial genomes

Figure 2: Comparison of high-quality taxonomic assignments for 885 MAGs. Using genome-resolved metagenomics, Delmont et al. [15] assembled 885 bacterial and
archaeal genomes from the Tara Oceans metagenomes and used CheckM for an initial taxonomic inference. Subsequently, they manually refined the taxonomic
assignments using additional analyses and expert knowledge. The alluvial diagram shows the assigned taxonomic ranks for CheckM (left), manual curation (middle),

and CAMITAX (right) on kingdom (K), phylum (P), class (C), order (O), family (F), genus (G), and species (S) level. Colored links between these ranks represent the “flow,”
i.e. changes in the assignment depth, among the 3 methods.

Figure 3: Taxonomic assignment performance metrics across ranks for 885 MAGs. Performance across ranks was assessed with the AMBER software using the manually

assigned taxonomy by Delmont et al. [15] as the gold standard. Shown are precision, recall, and accuracy for CAMITAX (and the individual tools combined therein) on
kingdom (K), phylum (P), class (C), order (O), family (F), and genus (G) level.

Discussion

CAMITAX was initially developed while preparing the second
Critical Assessment of Metagenome Interpretation (CAMI) chal-
lenge [64]. The challenge datasets include new genomes from

taxa (at different evolutionary distances) not found in public
databases yet, which need high-quality taxon labels for the sub-
sequent microbial community and metagenome data simula-
tion [65]. Owing to this need, we created CAMITAX to system-
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atically double-check, newly infer, or refine genome taxon label
assignments in a fully reproducible way.

CAMITAX combines different taxonomic assignment strate-
gies into one unifying workflow implementation. It uses
Nextflow to orchestrate reference databases and software con-
tainers. Therefore, both databases and software can be easily
substituted, providing the flexibility to cope with rapid change
of standards oftentimes observed in the field. For instance,
Parks et al. recently proposed a standardized bacterial taxon-
omy based on genome phylogeny, the so-called Genome Taxon-
omy Database (GTDB) [66]. While CAMITAX currently uses the
NCBI Taxonomy [67], it is (at least in principle) agnostic to the
underlying database and could thus be easily adapted to other
taxonomy versions that will arise in future.

Software and Availability of Supporting Data
and Materials

CAMITAX is implemented in Nextflow and Python 3 and is freely
available under Apache License 2.0 at https://github.com/CAMI-
challenge/CAMITAX.

Mash sketches for all bacterial and archaeal genomes in
RefSeq, snapshots of the NCBI Taxonomy databases, and Cen-
trifuge and Kaiju indices for the proGenomes genes and proteins
datasets are collected in Zenodo [68], as are the snapshots used
in this study, generated on 10 May 2018 [69].

Dada2-formatted training fasta files, derived from SILVA (re-
lease 132) and RDP (training set 16, release 11.5), are also avail-
able in Zenodo [70, 71].

The CheckM reference databases are available at https://data
.ace.uq.edu.au/public/CheckM databases.

Snapshots of our code and other data further supporting this
work are available in the GigaScience respository, GigaDB [72].
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