
RESEARCH ARTICLE

Psychotic Experiences and Overhasty

Inferences Are Related to Maladaptive

Learning

Heiner Stuke1*, Hannes Stuke2, Veith Andreas Weilnhammer1, Katharina Schmack1

1 Department of Psychiatry and Psychotherapy, Charité–Universitätsmedizin Berlin Berlin, Germany,
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Abstract

Theoretical accounts suggest that an alteration in the brain’s learning mechanisms might

lead to overhasty inferences, resulting in psychotic symptoms. Here, we sought to elucidate

the suggested link between maladaptive learning and psychosis. Ninety-eight healthy indi-

viduals with varying degrees of delusional ideation and hallucinatory experiences performed

a probabilistic reasoning task that allowed us to quantify overhasty inferences. Replicating

previous results, we found a relationship between psychotic experiences and overhasty

inferences during probabilistic reasoning. Computational modelling revealed that the behav-

ioral data was best explained by a novel computational learning model that formalizes the

adaptiveness of learning by a non-linear distortion of prediction error processing, where an

increased non-linearity implies a growing resilience against learning from surprising and

thus unreliable information (large prediction errors). Most importantly, a decreased adap-

tiveness of learning predicted delusional ideation and hallucinatory experiences. Our current

findings provide a formal description of the computational mechanisms underlying overhasty

inferences, thereby empirically substantiating theories that link psychosis to maladaptive

learning.

Author Summary

Predictive coding theories represent a unifying account of psychosis, stating that the cen-

tral psychosis-related alteration affects the interplay between prior predictions and incom-

ing information. Since every incoming information is imprecise and potentially allows for

different interpretations, prior expectations achieve the enforcement of interpretations

with a higher prior probability. Disturbances in this basic framework might let unlikely

interpretations come into effect, resulting in proneness for delusions and hallucinations.

Here, we contribute to these theories by devising a novel computational model for behav-

ior in a reasoning task that quantifies the participants’ readiness to draw inferences from

very surprising information. We thereby demonstrate that precisely this increased learn-

ing from surprising and thus potentially spurious information, as opposed to non-specific

alterations in the general learning speed, predispose healthy individuals for delusions and
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Program funded by the Charité Universitätsmedizin
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hallucinations. The present results hence speak for the hypothesis that hallucinations and

delusions arise when noisy information is considered as precise and is thus not suppressed

by opposing prior beliefs. In this sense, our findings also tie with recent neurophysiologi-

cal models of psychosis that posit aberrations in modulatory neurotransmitters such as

dopamine (or its interactions with GABAergic interneurons) as a correlate of perturbed

computations of information precision in the cortex.

Introduction

Psychotic symptoms are a core symptom of devastating psychiatric disorders such as schizo-

phrenia. They comprise many different kinds of experiences, among others beliefs that are

unfounded in the external reality (delusions), and percepts in the absence of a causative stimu-

lus (hallucinations). Accordingly, it poses a key challenge to theoretically and empirically

establish models that can capture the multifariousness of psychotic experiences by a few (or

even one) core alterations.

Influential theories [1–3] explain psychotic symptoms in the framework of predictive cod-

ing [4–6]. According to predictive coding, one central challenge for the brain is to draw infer-

ences about the state of the external world from incoming information of relatively poor

quality. It is stated that the brain deals with this challenge by recurring to predictive beliefs

about the world. Such predictive beliefs are proposed to shape incoming information via top-

down signals, thereby enabling stable and unitary inferences from imprecise and ambiguous

information and constituting a protection against an over-interpretation of sporadically occur-

ring irrelevant information. Importantly, predictive beliefs are assumed to be continuously

updated by prediction errors. Such prediction errors are thought to drive learning via bottom-

up signals, and to arise when predictive beliefs do not precisely match incoming information.

Hence, ongoing learning in response to surprising information is thought to ensure the flexible

adaptation of belief-dependent inferences.

Along these lines, psychotic symptoms can be framed as maladaptive learning that occurs if

irrelevant information is considered as surprising and relevant due to altered prediction error

signaling [1,7,8]. As a result, no stable and valid predictive beliefs would be built up and the

brain would become susceptible to overhasty and erroneous inferences yielding delusions and

hallucinations. In line with the idea that overhasty and erroneous perceptual inferences from

irrelevant noise information are implicated in hallucinations and hallucination-proneness, hal-

lucinatory experiences have been repeatedly associated with a greater tendency to perceive illu-

sory contents in auditory noise [9,10]. Moreover, delusional ideation has been consistently

linked to “jumping to conclusions” (JTC, see [11–13] for detailed meta-analyses), a cognitive

reasoning bias that leads to a rash acceptance of hypotheses based on little evidence. However,

it is a matter of ongoing debate, which particular cognitive alteration predisposes delusional

and delusion-prone individuals for an overhasty acceptance of possible hypotheses [14–17].

With regard to the predictive coding account of psychosis outlined above, we suggest that JTC

might reflect a pivotal alteration underlying psychotic symptoms, namely maladaptive learning

from irrelevant information, leading to overhasty inferences.

To empirically test the claim that maladaptive learning contributes to psychotic symptoms,

one will necessarily have to tackle the question of what constitutes adaptive learning, or, in

other words, how non-psychotic individuals can generate and adapt beliefs sufficiently quickly

in response to relevant information, and, nevertheless, resist inadequate belief revision due to

irrelevant noise. Common computational learning models (e.g., [18]) formalize learning in

terms of prediction errors and learning rates. Here, the current belief is obtained as a function
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of the prediction error that denotes the difference between the expectation (i.e., the belief

before the actual observation) and the actual observation. The magnitude of this prediction

error multiplied with a subject-specific learning rate determine the degree to which the belief

is updated (i.e., the learning). An alternative formulation of evidence accumulation (and state

estimation) calls on Bayesian filtering schemes as metaphors for neuronal computations.

These schemes accumulate evidence for hidden states of the world in proportion to their esti-

mated precision or reliability. The most celebrated Bayesian filter is called the Kalman filter,

where the Kalman gain corresponds to the relative precision (inverse variance) of sensory evi-

dence in relation to prior beliefs. Biologically plausible implementations of Kalman filtering

include predictive coding, where Bayesian belief updating (i.e., evidence accumulation) is

mediated by precision weighted prediction errors. In short, Rescorla Wagner models, Bayesian

filtering and predictive coding are all equivalent formulations of evidence accumulation (see

[19]). They all speak to the importance of precision as learning rates in modulating the impact

of prediction errors on belief updating, which we will refer to as adaptive learning.

Thus, these common computational learning models capture adaptive learning, as opposed

to maladaptive learning from irrelevant information that lead to overhasty and erroneous

inferences, by small learning rates. Hence, resilience against irrelevant information would be

formalized by smaller learning rates and thus comes at the expense of a generally decreased

speed of learning (see Fig 1). Here, we propose a novel computational learning model that is

able to capture the resilience against irrelevant information without substantially impairing

the general speed of learning. The central and very simple idea of our model is that prediction

errors are processed in a non-linear fashion. Concretely, we introduce a saturating non-linear

function of prediction error that attenuates the effect of very large prediction errors on belief

updating, relative to smaller prediction errors. Effectively, this means that very surprising or

large prediction errors are treated as imprecise information; very much in the same way that

we discard outliers in statistical analyses of data. In the technical literature this is known as

Winsorizing and represents one of the simplest and most fundamental modifications of linear

predictive coding. Formally, this compressive non-linearity can be considered a hyperprior

that certain prediction errors are generated by a class of outliers that can be construed as "irrel-

evant". In other words, the non-linearity enables the accumulation of evidence in a way that is

resistant to the effect of spurious (i.e., very surprising) events. Importantly, learning from

small prediction errors is preserved, leading to adaptive inferences in response to moderately

surprising and hence relevant information. Thus, our model captures the resilience against

irrelevant information, and hence overhasty and erroneous inferences, by the non-linearity of

prediction error processing (see Fig 1). Conversely, we would predict that a weaker resilience

against irrelevant information that leads to overhasty and erroneous inferences in psychotic

and psychosis-prone individuals is paralleled by a more linear processing of prediction errors.

In this work, we sought to devise a formal approach to assess and quantify the maladaptive

learning mechanisms underlying overhasty and erroneous inferences related to psychotic

symptoms. To this end, we devised an adapted probabilistic reasoning task that allowed us to

continuously track participants’ belief trajectories. We then used this task to quantify overhasty

inferences in a sample of healthy individuals with varying degrees of delusional ideation and

hallucinatory experiences, based on the view that clinically relevant psychotic symptoms repre-

sent an extreme of a trait continuously distributed in the general population [20,21]. In order

to investigate the computational mechanisms underlying psychosis-related biases in learning

and inference, we fitted the behavioral data with our novel learning model that quantifies the

adaptiveness of learning by a non-linear prediction error processing. We hypothesized that

psychosis-related experiences would inversely relate to the resilience against irrelevant infor-

mation quantified by the non-linearity of prediction error processing.

Psychotic Experiences and Maladaptive Learning
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Methods

Participants and psychometric assessments

Ninety-eight healthy individuals from the general population were recruited for study par-

ticipation through advertising. The study was approved by the Ethical Committee of the

Charité, Universitätsmedizin Berlin. Participants who received treatment due to psychiatric

diseases were excluded. After complete description of the study to the participants, written

informed consent was obtained in accordance with the Declaration of Helsinki of 1975 before

participation.

The participants’ tendency towards delusional ideation was quantified using the Peters

Delusion Inventory (PDI, [22]). The 40 items of this self-rating questionnaire cover a wide

range of delusional convictions, including beliefs in the paranormal, grandiosity ideas or suspi-

cious thoughts. For every endorsed belief, the questionnaire asks for dimensional ratings on

the degree of belief-related distress, preoccupation and conviction. The total score obtained by

adding up these three dimensional ratings was used for analyses.

Additionally, proneness to hallucinatory experiences was assessed with the Cardiff ano-

malous perception scale (CAPS, [23]). This 32-item self-rating scale assesses anomalous

Fig 1. Relationship between prediction error (x-axis) and belief update (y-axis). Linear relationships with

a high learning rate in blue and with low learning rate in yellow, non-linear relationship in red. We can see that

although achieving a resilience against irrelevant information (attenuation of high prediction errors) comparable

to the slow-learning agent in yellow, the non-linear red agent learns from small prediction errors similarly to

the fast learning blue agent. Two hypotheses regarding the learning alterations that lead to hasty inferences

and psychotic experiences may be suggested: Firstly, increased psychosis-proneness might be linked to a

generally increased learning speed that predisposes for unfounded cognitive and perceptual inferences.

According to this hypothesis, a psychosis-prone individual would behave like the blue as compared to the

yellow agent (i.e., show an increased learning rate). Secondly, psychosis-proneness might be linked to a

specifically decreased attenuation of large prediction errors (that can be interpreted as a reduced resilience

against irrelevant and strongly surprising noise information). According to this hypothesis, a psychosis-prone

individual would behave like the blue as compared to the red agent (i.e., show a decreased non-linearity of the

relationship between prediction error and learning).

doi:10.1371/journal.pcbi.1005328.g001
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perceptual experiences in different sensory domains like proprioception, time perception,

somatosensation and visual and auditory perception. The intensity of every anomalous percep-

tion is quantified from one to five on subscales for intrusiveness, frequency and distress.

Again, the total score was calculated by adding up all subscore ratings and used for analyses.

Probabilistic reasoning task

An adapted version of the “beads task” [24] was used to assess psychosis-related alterations in

probabilistic reasoning, especially overhasty inferences such as the JTC bias. In the beads task,

beads are continuously drawn from one of two different urns that contain different numerical

proportions of different kinds of beads. The participants have to infer from which urn beads

are currently being drawn based on their knowledge about the numerical proportions of differ-

ent kinds of beads in the two urns and the number of already drawn beads of each kind. The

task thus implies a continuous update of the belief about the correct urn with every new draw,

which can be either consistent with the current belief about the correct urn (relevant informa-

tion) or inconsistent with it (irrelevant information).

In our version of this task, the participants were shown pictures of two different lakes (a

“mountain lake” and a “flatland lake”) and told that these lakes are home to a different propor-

tion of carps and trouts with the mountain lake containing 70% carps and 30% trouts and the

flatland lake 30% carps and 70% trouts. For reasons of simplicity, we will refer to the mountain

lake as the "carp lake" and to the flatland lake as the "trout lake" in the following.

The task was structured in 30 rounds with a varying number of draws. On each round,

fishes were sequentially angled from one of the two lakes and the participants were instructed

to evaluate from which of the lakes the fishes were more likely angled in this round using the

number of so far angled carps and trouts and their knowledge about the numerical proportion

of fishes in the two lakes (thus with every angled carp making the carp lake more probable and

every angled trout making the trout lake more probable). Moreover, participants were told

that both lakes contained so many carps and trouts that the numerical proportions did not

change due to the fishing.

Each round started with only one angled fish and, accordingly, with a rather imprecise

information about which of the two lakes being correct in this round. To gain further informa-

tion, participants were allowed to make new draws until they felt confident enough to make a

final decision about the correct lake in this round (Fig 2). With every new draw, one new fish

was angled and the number of so far angled trouts and carps was updated and presented. After

each draw, the participants indicated their new belief about from which lake the fishes were

probably angled in this round. For this purpose, they entered their guess and its certainty

using the mouse on a visual scale (ranging from absolute certainty of the carp lake being cor-

rect at the very left to absolute certainty of the trout lake being correct at the very right with

positions close to the center indicating uncertainty). In this way, we obtained a continuous

assessment on the participants’ current belief for each draw. After having placed their guess,

the participants were asked if they wanted to commit themselves to the given response on the

correct lake (by pressing either the up or the down arrow key). If they did not commit to their

response, a new fish was angled (new draw). If they committed to their response, a final deci-

sion on the lake was made and a new round started with once again only one angled fish and

accumulating evidence with every further draw.

To induce prediction errors even in rounds with few draws, we added a prior information

about the lakes’ probabilities in the form of a high- or low-pitched tone that was played shortly

before every newly angled fish. In one round, always the same tone pitch was played. If the

fishes were angled from the carp lake in the round, the high-pitched tone was played more

Psychotic Experiences and Maladaptive Learning
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frequently (80%) and if the fishes were angled from the trout lake, the low-pitched tone was

played more frequently (80%). Thus, the tone pitch constituted a probabilistic initial infor-

mation about the lake probabilities for each round. The associations between tone pitch and

lake probabilities were learned in a preceding learning run of 15 rounds and did not change

throughout the experiment. By these means, we could assess prediction errors already in the

Fig 2. Experimental sequence of the probabilistic reasoning task. To determine, from which of the two possible

lakes fishes were being angled, the participants used their knowledge about the numerical proportions of fishes in

the lakes (70% carps and 30% trouts in the carp lake and vice versa in the trout lake) and the number of so far

angled carps and trouts. Prior information about the lakes’ probabilities was given by a tone that was–dependent on

the pitch–in 80% of the cases associated with the one or the other lake. After each draw, the current belief about the

correct lake was indicated on a continuous response bar. Subsequently, the participants decided if they want to

make a final decision on the lake (commit to their response) or if they want to gain further information in the form of

newly angled fishes (i.e., making a new draw).

doi:10.1371/journal.pcbi.1005328.g002
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first draw (one angled fish) and increase the variance of prediction error values occurring

throughout the course of the experiment.

Relationship between jumping-to-conclusions, delusional convictions

and anomalous perceptions

To quantify the tendency towards overhasty inferences in each participant, we calculated the

mean number of draws a participant needed on each round before committing to a final deci-

sion. This measure ("draws to decision") is an accepted measure for the JTC bias found to be

associated with psychotic symptoms [14].

To replicate prior findings that participants with growing psychosis proneness tend to exert

jumping-to-conclusions (see introduction), we tested associations between the participants’

draws to decision and the tendency towards delusional convictions (PDI scores) as well as the

proneness to hallucinatory experiences (CAPS scores) in two different ways. Firstly, as sug-

gested by [25], we performed a binary analysis with our sample separated into two groups

(with and without JTC). There were only six of 94 participants showing JTC according to the

commonly applied threshold of two draws to decision, probably due to the differing set-up of

our adapted version of the lake task (introduction of prior knowledge associated with the tone,

usage of continuous response bar). Thus, we used a slightly higher threshold and considered

participants in the lowest quartile of draws to decision (i.e., with an average of 3.2 or less draws

to decision) as exhibiting JTC and compared their PDI and CAPS scores with the remaining

(non-JTC) sample. Secondly, we investigated continuous relationships by correlating PDI and

CAPS scores with the mean number of draws to decision.

Since the distribution of PDI and CAPS scores differed significantly from a normal distri-

bution (Z = 1.374, p = 0.046 for PDI scores and Z = 1.941, p = 0.001 for CAPS scores, one-sam-

ple Kolmogorov-Smirnov tests), we used non-parametric Mann-Whitney tests for the first

(categorical) and Spearman rank correlations for the second (correlational) analysis.

To our knowledge, there are no previous studies reporting associations between hallucina-

tions and JTC, giving our analysis on relationships between CAPS scores and JTC a rather

exploratory character. Nevertheless, because we tested associations between JTC and both PDI

and CAPS scores, we report among uncorrected p values also p values with adjustment for

multiple testing (tests for PDI and CAPS scores, e.g., two tests with correlated outcomes). To

this end, p values were adjusted according to the approach proposed by [26] and outlined in

[27] for multiple comparisons with correlated outcomes.

Computational modeling

By fitting the behavioral data with computational learning models, we aimed at quantifying

the resilience against irrelevant information and thereby assessing the adaptiveness of learning,

which we expected to be inversely related to psychotic symptoms.

Two computational models were designed to track the participants’ trajectories of belief in

the probabilistic reasoning task. Firstly, we applied a conventional linear prediction-error-

based learning model (e.g., [28]). Secondly, we developed a novel model that enabled the quan-

tification of the participants’ resilience against irrelevant information through a non-linear

relationship between prediction error and learning, which we expected to provide a more pre-

cise description of adaptive learning in probabilistic reasoning.

In both models, the participants’ beliefs about the correct lake were captured on a trial-by-

trial basis as a continuous value between 0 (certainty that the “carp lake” is correct) and 1 (cer-

tainty that the “trout lake” is correct). Thus, the high-pitched tone as well as newly angled

carps brought the belief nearer to the 0 and the low-pitched tone as well as newly angled trouts

Psychotic Experiences and Maladaptive Learning
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nearer to the 1. Eq 1 shows accordingly, that the neutral belief of 0.5 was initially shifted

towards 1 in case of the "trout-lake"-associated low-pitched tone and towards 0 in case of the

"carp-lake"-associated high-pitched tone and that the magnitude of the tone-dependent belief

shift depended on the subject-specific parameter θ. Since the neutral belief of 0.5 could be

shifted by maximally 0.5 by the tone, we used a uniform distribution between 0 and 0.5 as a

prior distribution for the estimation of θ values based upon choice behavior.

Initial tone � dependent belief ð� : þ if trout is angled; � if carp is angledÞ:

b1 ¼ 0:5þ y
Eq1

Whereas this initial tone-dependent belief was calculated in the same way in both models, the

effect of newly angled fishes differed between the conventional linear and our novel non-linear

model. In the linear model, the prediction error determined the learning linearly. Eq 2 shows

that the belief update here depended on the non-modified prediction error bi-1 –oi (difference

between the former belief bi-1 and the current observation oi) that was multiplied with a sub-

ject-specific constant learning rate α that captures the general rapidity of belief generation

regardless of the typicality of the new information. Since the learning rate is naturally bounded

between 0 and 1, we used a uniform distribution between 0 and 1 as a prior distribution for

estimation of α values based upon choice behavior.

Linear belief update ðbi : current belief; oi : current ðbinaryÞ observation ð1 if trout is angled;

0 if carp is angledÞ; � : þ if trout is angled; � if carp is angledÞ:

bi ¼ bi� 1 � a�ðbi� 1 � oiÞ Eq2

In the non-linear model on the other hand, the learning depended on the prediction error

with a varying degree of non-linearity expressed by the non-linearity parameter z. Please note

that high values of z imply a marked non-linearity / flattening of the relationship between

prediction error and learning, whereas this relationship is linear for z = 0. Thus, high values

of z imply a strong resilience against irrelevant information, since high prediction errors

have a reduced impact on learning in this case: Hence, this modulation can be thought of as a

dynamic learning rate that adaptively decreases if information is unreliable and potentially

irrelevant. As in common behavioral learning models, the resulting non-linear learning term

was multiplied with a subject-specific constant learning rate α that captures the general rapid-

ity of belief generation regardless of the typicality of the new information. Eq 3 shows how the

current belief bi is updated depending on the learning rate α and the prediction error bi-1 –oi,

whose impact on the learning decreases with increasing values of z. Compared to other possi-

ble implementations of a non-linear prediction error, the definition outlined above has the

advantage of yielding one simple parameter that determines the degree of non-linearity and is

zero for an entirely linear relationship between prediction error and learning. Furthermore

and importantly, it cannot generate overshooting beliefs below zero or above one without hav-

ing to assume an additional softmax transformation (see proof in the Supplementary Material).

Fig 1 shows exemplary relationships between prediction error and learning, with linear rela-

tionships (z = 0) in blue (α = 0.6) and yellow (α = 0.2) and a non-linear relationship in red

with z = 4 and α = 1. Since such a non-linear prediction error processing has to our knowledge

not been implemented so far, we used a uniform distribution between 0 and 5 (thus allowing

for a wide range of non-linearity) as a prior distribution for estimation of z values based upon

Psychotic Experiences and Maladaptive Learning
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choice behavior.

Non � linear belief update ðbi : current belief; oi : current ðbinaryÞ observation ð1 if trout

is angled; 0 if carp is angledÞ; � : þ if trout is angled; � if carp is angledÞ:

bi ¼ bi� 1 � a�
1

zþ
1

ðbi� 1 � oiÞ

Eq3

Both models were applied to explain the trajectory of the participants’ beliefs about the cor-

rect lake throughout the course of the experiment. For this purpose, the trial-by-trial belief

indicated on the continuous response bar was scaled between 0 and 1, yielding the trajectory

of belief vector g. Subsequently, each participants’ trajectory of belief g was fitted with both

models using the VBA Toolbox for Matlab [29]. This approach uses Variational Bayesian

methods to estimate the parameter values of our two models for which the trajectory of the

belief b predicted by the model optimally traces the real belief g indicated by the participants

(Fig 3). Furthermore, the (lower bound on the) model’s evidence (marginal likelihood), i.e.,

the likelihood that the real trajectory of belief g could have been generated by the respective

model, was computed and used for model comparison (see below).

Summing up, the following parameters were estimated to optimally model the participants’

behavior:

θ: Tone-dependent initial (i.e., prior) belief

α: General learning rate

z: Non-linear prediction error processing (resilience against irrelevant information, z = 0 in

case of the linear model)

Model comparison

To test if the non-linear model that allowed for a non-linear relationship between prediction

error and learning explained the participants’ behavior better than the conventional linear

model, we performed a formal Bayesian model comparison between the two models. There-

fore, both models were used to fit the participants’ continuous belief trajectories and the result-

ing model evidences were compared using the approach outlined in [30] and implemented in

Statistical Parametric Mapping 12 (SPM 12). In this approach, the ability of a model to accu-

rately predict the participants behavior is balanced against its complexity, where growing

model complexity is punished. In our case, this means that if the non-linear model proves

to be superior in the model comparison, the growing complexity which results from the inclu-

sion of the additional non-linearity parameter is overcompensated by the gain in accuracy

afforded by it. In addition to formal model comparison, we calculated the explained variance

R2 of each participants’ belief trajectory by the model in order to obtain a clear measure of how

well the models were able to capture the participants’ behavior. Please note that in contrast to

Bayesian model comparison as described above, this assessment of model fit does not take into

account the model complexity and is therefore not an appropriate measure for formal model

comparison.

Learning and usage of the tone parameter

The introduction of the tone as prior information about the lakes’ probabilities allowed us to

assess prediction errors even in participants with few draws to decision (see above). However,

it has to be ensured, that the tone meanings has been learned by the participants during the

Psychotic Experiences and Maladaptive Learning
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learning run. Moreover, it has to be ensured, that differences in learning the tone meaning

associated with varying psychosis-proneness constitute no alternative explanation for the rela-

tionships between psychosis-proneness and altered information processing assessed in this

study.

For the former purpose, we performed a “proof of concept” model comparison between the

full model with the tone parameter estimated as a free parameter and a model in which the

tone parameter was fixed to 0 (i.e., that assumes that the tone has not been used by the partici-

pants). A superiority of the full model over the model with fixed tone parameter would prove

that the tone was indeed used by the participants. Formal model comparison was carried out

as described in the “model comparison” paragraph above.

For the latter purpose (excluding psychosis-related differences in learning the tone), we cor-

related PDI and CAPS scores with the value of the tone parameter θ. A lack of such a relation-

ship would demonstrate that there is no evidence that learning and usage of the tone depended

on the participants’ psychosis proneness.

Fig 3. Sample trajectory of belief for nine rounds in one exemplary participant. The participant’s belief, i.e., the probability with

which the participant considered the one or the other lake as correct (indicated on the response bar), is shown in green, the predicted

belief by the non-linear model in red and by the linear model in blue. The upper bound (belief = 1) indicates absolute certainty that the

trout lake is correct in this round, whereas the lower bound (belief = 0) indicates absolute certainty that the carp lake is correct. Circles

on the upper bound mean that a trout and on the lower bound that a carp has been angled in this draw. Vertical lines indicate that a

decision on the lake has been made and a new round started. If a decision was made at a current belief of below 0.5, the participant

had decided in favor of the carp lake (and accordingly above 0.5 in favor of the trout lake). The top row shows which of the two lakes

has been correct in each round and we can see that the participant gave no incorrect answer in these nine rounds. The row below

shows if a high- or a low-pitched tone has been played. Thus, we can see that the sixth and seventh round had unrepresentative tone

meanings.

doi:10.1371/journal.pcbi.1005328.g003

Psychotic Experiences and Maladaptive Learning

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005328 January 20, 2017 10 / 20



Distribution of the non-linearity parameter

Contrary to most computational learning models, our model included a non-linear relation-

ship between prediction error and learning that captures a reduced impact of high prediction

errors resulting in adaptive reduced learning from irrelevant information, and, thus, in a resil-

ience against overhasty and erroneous inferences. The degree of the adaptiveness of learning is

quantified by the non-linearity parameter z, with higher values of z indicating a stronger adap-

tiveness of learning. Because there are to our knowledge no prior studies that implemented

this kind of non-linear prediction error processing, we computed the subject-specific values of

z without prior assumptions on its distribution, i.e., with a uniform prior distribution that

made every value between 0 and 5 equally likely. To generally assess the form in which the

degree of resilience against irrelevant information was distributed in our sample of partici-

pants, we tested the hypotheses that the estimated values of z were uniformly distributed (like

the naive prior distribution) or normally distributed (like many psychological and biological

variables). To this end, one-sample Kolmogorov-Smirnov tests were applied.

Relationship between model parameters and jumping-to-conclusions

To test if a low resilience against irrelevant information was related to overhasty inferences

(i.e., to jumping-to-conclusions), we correlated the values of z with the participants’ mean

number of draws to decision in the probabilistic reasoning task. This analysis primarily served

as a proof-of-concept since the parameter values of an appropriate behavioral model for the

probabilistic reasoning task should be able to explain a large part of the interindividual vari-

ance in jumping-to-conclusions.

To additionally demonstrate that JTC can be more accurately explained by a reduced

resilience against irrelevant information compared to a generally increased learning speed, we

subsequently calculated correlations between the number of draws to decision and the partici-

pants’ learning rates (values of α in the linear model).

Relationships between model parameters, delusional convictions and

anomalous perceptions

To test our hypothesis that psychosis-related experiences would inversely relate to the adap-

tiveness of learning, we calculated correlations between the participants’ values of z and the

proneness for delusional convictions (PDI scores) as well as hallucinatory experiences (CAPS

scores). Since the distribution of PDI and CAPS scores differed significantly from a normal

distribution (as reported above), we again used non-parametric Spearman rank correlations

for this purpose.

To additionally demonstrate that this relationship is specific for a reduced resilience against

irrelevant information and does not only reflect a generally increased learning speed, we

repeated the analysis including the participants’ learning rates (values of α in the linear model)

as a covariate in a Spearman partial correlation between PDI and CAPS scores and z values.

Finally, we repeated these analyses correcting for multiple comparisons with correlated out-

comes (according to [26], see above).

Results

Sample characteristics

Four participants were excluded from analyses because they showed excessively high error

rates at the final decision of the probabilistic reasoning task (more than two standard devia-

tions above sample mean, corresponding to more than 26.2% wrong decisions), suggesting

Psychotic Experiences and Maladaptive Learning
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that they did not perform properly in the task. The characteristics of the remaining sample of

94 participants are summarized in Table 1.

Relationship between jumping-to-conclusions, delusional convictions

and anomalous perceptions

A large body of evidence has linked psychosis and psychosis-proneness to a reduced number

of draws to decisions in the beads task (JTC, [11,31]). To test whether we could replicate this

relationship in our current sample, we related the mean number of draws to decision to PDI

scores (proneness for delusional convictions) and CAPS scores (proneness for anomalous sen-

sory experiences). Indeed, our categorical assessment revealed a significantly increased PDI in

the JTC group (n = 23, median of PDI scores = 79) as compared with the no-JTC group

(n = 71, median of PDI scores = 45), Mann-Whitney test with U = 585, p = 0.042, two-sided.

No significant difference was found for CAPS scores (median CAPS score in JTC group = 30,

median score in no-JTC group = 15, Mann-Whitney test with U = 681,5, p = 0.233).

Correlational analyses reproduced the effect for PDI scores on a trend level (fewer draws to

decision with rising PDI scores, rho = -0.177, p = 0.089, two-sided Spearman rank correlation),

whereas CAPS scores again showed no significant relationship (rho = -0.154, p = 0.139, two-

sided Spearman rank correlation).

When adjusted for multiple comparisons with correlated outcomes, the relationship between

JTC and PDI scores was still present, but failed to reach statistical significance (p adjusted = 0.051

in the categorical analysis and p adjusted = 0.108 for the correlational analysis).

Model comparison

To test if our model that allowed for a non-linear relationship between prediction error and

learning explained the participants’ behavior better than a standard linear model, we per-

formed a Bayesian Model Comparison between the two models. Here, the non-linear model

proved to be superior to the standard linear model in explaining participants’ behavior with a

protected exceedance probability of 100%. The mean value of explained variance (R2) of the

participants trajectory of belief was 0.696 for the non-linear and 0.661 for the linear model.

Since this measure of accuracy does not take into account the differing model complexity, it is

not suitable for directly comparing the quality of the models. It however shows that especially

the non-linear model appropriately tracked the course of the participants’ belief.

Learning and usage of the tone parameter

With two proof-of-concept analyses, we aimed at ensuring, that the tone meaning was learned

by the participants during the learning run, but that psychosis-proneness was not associated

with differences in learning the tone meaning.

Table 1. Sample characteristics. PDI = Peters Delusions Inventory; CAPS = Cardiff Anomalous Per-

ceptions Scale.

Characteristic Mean (SD)

Age 30.52 (10.08)

PDI score 64.54 (57.11)

CAPS score 30.39 (35.61)

Characteristic Absolute numbers

Sex female: 56; male: 38

Smoking yes: 27; no: 67

Graduation lower secondary school: 6; higher secondary school: 24; high school: 63; missing

information: 1

doi:10.1371/journal.pcbi.1005328.t001
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To ensure the significance of the tone for the participants’ belief updating, we performed a

formal model comparison between the full model, in which the tone parameter was estimated

as an individual free parameter and a model without tone parameter (i.e., with θ fixed to 0,

assuming that the tone was not used by the participants). Here, the model, in which θ was

freely estimated, proved to be superior with a protected exceedance probability of 99.5%.

Thus, taking into account the usage of the tone significantly improved the tracking of the par-

ticipants’ belief trajectory.

No significant or trend-wise relationships were found between the value of the tone param-

eter and delusion-proneness (PDI scores, rho = 0.030, p = 0.771, two-sided Spearman correla-

tion) or hallucination-proneness (CAPS scores, rho = 0.038, p = 0.714), not providing any

evidence that individual differences in the learning of the tone might provide an alternative

explanation for the found relationships between psychosis proneness and the lowered resil-

ience against irrelevant information.

Distribution of the non-linearity parameter

The non-linearity parameter z quantifies the degree to which the impact of the prediction error

on learning is attenuated if new information is very surprising. Accordingly, low values indicate

maladaptive learning with a low resilience against irrelevant information. In common learning

models, a linear relationship, i.e., a parameter value of z = 0, is assumed. We estimated the

values of z that optimally explained our participants’ behavior with an uninformative prior

distribution uniformly distributed between 0 (linear relationship) and 5 (strongly non-linear

relationship). It turned out that none of our participants showed a linear processing of the pre-

diction error. Instead, more than 95% of the participants showed values of z between 2.5 and 4

with a marked peak around 3.5 (Fig 4). Interestingly, the distribution of the estimated values of

z differed significantly from the prior uniform distribution (Z = 4.663, p< 0.001, Kolmogorov-

Smirnov test), but not from a normal distribution (Z = 1.051, p = 0.219, Kolmogorov-Smirnov

test). These results suggest that in our probabilistic reasoning task, learning depended on the

prediction error in a non-linear fashion and all participants showed resilience against irrelevant

information, although the degree of this resilience varied across participants.

Fig 4. Histogram of the distribution of ζ values in our sample. Prior distribution (uniform between 0 and 5) in red, real

distribution in blue. It can be seen that, contrary to the uniform prior distribution, estimated parameter values show a normal-like

distribution with a mean value of 3.44. This is confirmed by Kolmogorov-Smirnov tests on the form of the underlying distribution.

doi:10.1371/journal.pcbi.1005328.g004
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Relationships between model parameters and jumping-to-conclusions

To test if the participants’ resilience against atypical information was associated with jumping-

to-conclusions behavior, we correlated parameter values of z with the participants mean num-

ber of draws to decision in the probabilistic reasoning task. This analysis yielded a strong posi-

tive correlation (r = 0.705, p< 0.001, Pearson Correlation), indicating that participants with a

lower resilience against irrelevant information took decisions based on less evidence (JTC).

As predicted, the learning rate α of the linear model also showed a (negative) correlation

with draws to decision, albeit weaker than z in the non-linear model (r = -0.460, p< 0.001,

Pearson Correlation).

Relationships between model parameters, delusional ideation and

hallucinatory experiences

According to predictive coding models of psychosis, maladaptive learning with a reduced resil-

ience against irrelevant information would result in overhasty and erroneous inferences, and

should therefore be related to an increased proneness towards delusional ideation and halluci-

natory experiences.

Notably and in line with this hypothesis, estimated parameter values of z were negatively

correlated with PDI scores (rho = -0.235, p = 0.022, two-sided Spearman rank correlation, Fig

5A) and trend-wise with CAPS scores (rho = -0.198, p = 0.056, two-sided Spearman rank cor-

relation, Fig 5B), indicating that individuals with a low resilience against irrelevant informa-

tion showed an increased proneness for delusional ideation and (as a tendency) hallucinatory

experiences. To exclude significant correlations due to four outliers with z values two standard

deviations below mean (i.e., below 2.794, outliers are marked with white squares in Fig 5),

we repeated these analyses excluding the outliers (thus with n = 90). This resulted in rather

Fig 5. Association between resilience against irrelevant information in the probabilistic reasoning task and psychotic experiences. (a) association

with delusion proneness (PDI scores, rho = -0.235, p = 0.022, Spearman’s correlation), (b) association with hallucination proneness (CAPS scores, rho =

-0.198, p = 0.056). Empty squares mark outliers with ζ values two standard deviations below mean. Exclusion of these outliers yielded magnified effect sizes.

doi:10.1371/journal.pcbi.1005328.g005
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stronger effects (rho = -0.261, p = 0.014 for the correlation between PDI scores and z, rho =

-0.212, p = 0.044 for the correlation between CAPS scores and z).

These correlations remained unchanged when controlling for the unspecific learning rate

obtained from the linear model: A Spearman partial correlation including the linear learning

rate as a covariate revealed similar results to those reported above (r = -0.234, p = 0.024 for cor-

relation between PDI scores and z, r = -0.196, p = 0.062 for correlation between CAPS scores

and z). This shows that effects between psychosis proneness and belief updating specifically

affect the treatment of irrelevant information and cannot be explained by the nonspecific lin-

ear learning rate.

When p-values were adjusted for multiple comparisons (two tests with correlated out-

comes for CAPS and PDI scores), the relationship between PDI scores and z values remained

significant (adjusted p of two-sided Spearman rank correlation = 0.027) and the relationship

between CAPS scores and z values a statistical trend (adjusted p of two-sided Spearman rank

correlation = 0.068).

Discussion

In the present study, we tested the claim put forward by predictive coding models [1–3] that

psychotic experiences may be linked to maladaptive learning, i.e., an aberrant encoding of pre-

cision, that results from a reduced resilience against irrelevant information and leads to over-

hasty and erroneous inferences. In line with our hypothesis, we found that delusional ideation

and hallucinatory experiences of healthy individuals were predicted by a low resilience against

irrelevant information in a probabilistic reasoning task.

In order to quantify the resilience against irrelevant information, we applied a novel compu-

tational learning model that allowed for a non-linear relationship between prediction error and

learning. Compared to a linear relationship, individuals with a non-linear processing of the

prediction error are relatively resilient against an overestimation of excessively surprising infor-

mation, since the relationship between prediction error and learning is flattened for high pre-

diction errors. On the other hand, they are still capable of rapidly building predictive beliefs

about the world, since learning of moderately surprising information (low prediction errors) is

not relevantly impaired. By this approach, we were thus able to disentangle inter-individual dif-

ferences in the general speed of learning (that is captured in the learning rate) from specific dif-

ferences in the impact of former beliefs on learning (that is captured in the resilience against

irrelevant information). Our results suggest that specifically the latter is related to an increased

proneness for delusional and hallucinatory experiences. Considering that every incoming signal

is noisy and naturally contains both relevant and irrelevant information, it seems plausible that

an attenuation of specifically the excessively surprising and hence irrelevant information con-

stitutes an effective protection against overhasty and erroneous inferences, while a weakening

of this attenuation in turn predisposes for delusional beliefs and hallucinatory percepts. This

understanding is additionally supported by our finding that the resilience against irrelevant

information indeed was the parameter with the strongest association with hasty inferences

(jumping-to-conclusions) and that jumping-to-conclusions was, consistent with prior studies

[11,31], in turn related to the proneness for delusional convictions. Obviously, the adaptiveness

of a non-linear prediction error processing depends on the particular task: In volatile tasks with

frequent changes of the underlying probabilities, large prediction errors might in fact provide

vital information, namely that the context of learning has changed. Our task however included

no volatility in that sense, because in one round, there were no changes in the task probabilities

(the lake, from which fishes were being angled remained the same). Thus, the degree of non-lin-

earity indeed provides a measure for adaptive learning in the adapted beads task.
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The idea that a core alteration in psychosis lies in the weighting of new information with

regard to prior beliefs has a longstanding history in cognitive schizophrenia research evolving

from the suggestion that “the basic disturbance in schizophrenia is ’a weakening of the influ-

ences of stored memories of regularities of previous input on current perception‴ [32] via

hypotheses of an aberrant attribution of salience to stimuli [8,33] to predictive coding frame-

works that embed these hypotheses into a broader framework of Bayesian information pro-

cessing in the brain [2,3]. In line with this, schizophrenia and/or psychotic symptoms have

been consistently linked to the aberrant attribution of salience to stimuli ([34,35] for reviews).

Similarly, schizophrenia and psychotic symptoms have been associated with a decreased influ-

ence of prior beliefs in perceptual inference ([36], see [37] for a review on visual illusions),

although recent work suggests a complex interplay between prior beliefs and perceptual infer-

ence in psychosis-related conditions [38,39]. By the use of a feasible and interpretable model,

our current study provides a formal description for the interaction between prior beliefs and

new information, thereby elucidating the computational mechanisms underlying maladaptive

learning and inference in psychosis.

Intriguingly, we found that our participants showed without exception a resilience against

irrelevant information that cannot be captured in models that assume a linearly processed pre-

diction error. Especially considering the significant clustering of parameter values in a region

with a marked non-linearity in our experiment, this finding suggests that learning in some

tasks might not be driven linearly by prediction errors. From a more general perspective, a

growing non-linearity between prediction error and learning implies that the impact that a

certain new information has on the belief (i.e., the learning) becomes increasingly independent
from the current belief itself: Whilst under the assumption of a linearly processed prediction

error, one and the same information (e.g., a certain fish in our task) has a massively different

impact on the learning depending on whether it is surprising or not, a strong non-linearity

implies that every fish is treated more or less equally, regardless of the current belief. Similar

concepts have previously been proposed in terms of precision-weighted prediction errors,

where the learning of strongly surprising information is attenuated if a marked and precise

opposing belief has already been built, e.g., if the precision of the belief is high and the preci-

sion of the new information low [19]. Compared to these frameworks, our approach has the

advantage of simplicity and that the degree of resilience against irrelevant information is cap-

tured in one single and easily interpretable parameter: It is noteworthy, that a reduced non-lin-

earity of the relationship between prediction error and learning that could be proven to be

associated with psychosis-proneness in this study effectively and straightforwardly models

what has been theoretically proposed as a core alteration behind psychotic experiences, namely

“a reduction in the precision of prior beliefs, relative to sensory evidence” [1]. Nevertheless,

whilst providing a substantial model fit in rather simple tasks like the one carried out in this

study, it is questionable if our non-hierarchical model can sufficiently account for more com-

plex environments (e.g., environments with changing volatility). Based on the continuity view

of psychosis, we studied psychotic experiences in a sample of non-clinical participants. Mount-

ing evidence suggests that clinical and non-clinical psychotic experiences reflect different

expressions of a continuously distributed trait, as they share a common factor structure [40],

similar risk factors and demographics [21] as well as a co-clustering in relatives [41,42]. It

could moreover be prospectively demonstrated that an increased, but non-clinical proneness

for psychotic experiences massively increases the risk of developing a "full" clinical psychosis

in the future [43–45], further indicating that non-clinical and clinical psychotic experiences

can be explained in terms of similar underlying mechanisms. Importantly, studying psychotic

experiences in non-clinical participants does preclude potential confounds associated with

clinical diseases and their pharmacological treatment. Hence, although future work is needed
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to confirm whether our current findings generalize to patients suffering from psychotic dis-

ease, the link between maladaptive learning and psychotic experiences established here might

generally shed light on the computational mechanisms underlying both non-clinical psychotic

experiences and psychosis.

One of the studies limitations is that we only yielded a modest and non-significant associa-

tion between conventional JTC measures (draws to decision) and psychosis proneness. This is

however consistent with previous reports on the relationship between JTC and psychosis

proneness in healthy individuals that yielded small effects and mixed results [46–49] and sug-

gest that conventional JTC measures such as draws to decision might not provide a sufficiently

fine-grained measure for individual psychosis-related differences in learning and reasoning in

healthy individuals.

Taken together, our current findings suggest that a less non-linear processing of prediction

error gives rise to overhasty and erroneous inferences, thereby leading to delusional ideas and

hallucinatory experiences. Our current work thus empirically substantiates theories that link

maladaptive learning to psychotic experiences both in health and disease.

Supporting Information

S1 Text. Mathematical proof that the belief in the non-linear model is bounded between

zero and one.

(PDF)

Author Contributions

Conceptualization: HeS KS VAW.

Formal analysis: HeS HaS KS.

Funding acquisition: KS.

Investigation: HeS.

Methodology: HeS HaS KS.

Project administration: HeS VAW KS.

Resources: KS.

Software: HeS HaS KS.

Supervision: KS.

Validation: HeS KS.

Visualization: HeS KS.

Writing – original draft: HeS.

Writing – review & editing: HeS HaS VAW KS.

References

1. Adams RA, Stephan KE, Brown HR, Frith CD, Friston KJ (2013) The computational anatomy of psycho-

sis. Front Psychiatry 4: 47. doi: 10.3389/fpsyt.2013.00047 PMID: 23750138

2. Corlett PR, Frith CD, Fletcher PC (2009) From drugs to deprivation: a Bayesian framework for under-

standing models of psychosis. Psychopharmacology (Berl) 206: 515–530.

Psychotic Experiences and Maladaptive Learning

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005328 January 20, 2017 17 / 20

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005328.s001
http://dx.doi.org/10.3389/fpsyt.2013.00047
http://www.ncbi.nlm.nih.gov/pubmed/23750138


3. Fletcher PC, Frith CD (2009) Perceiving is believing: a Bayesian approach to explaining the positive

symptoms of schizophrenia. Nat Rev Neurosci 10: 48–58. doi: 10.1038/nrn2536 PMID: 19050712

4. Friston K (2005) A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci 360: 815–836. doi:

10.1098/rstb.2005.1622 PMID: 15937014

5. Knill DC, Pouget A (2004) The Bayesian brain: the role of uncertainty in neural coding and computation.

Trends Neurosci 27: 712–719. doi: 10.1016/j.tins.2004.10.007 PMID: 15541511

6. Mumford D (1992) On the computational architecture of the neocortex. II. The role of cortico-cortical

loops. Biol Cybern 66: 241–251. PMID: 1540675

7. Heinz A (2002) Dopaminergic dysfunction in alcoholism and schizophrenia—psychopathological and

behavioral correlates. Eur Psychiatry 17: 9–16. PMID: 11918987

8. Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology,

and pharmacology in schizophrenia. Am J Psychiatry 160: 13–23. doi: 10.1176/appi.ajp.160.1.13

PMID: 12505794

9. Galdos M, Simons C, Fernandez-Rivas A, Wichers M, Peralta C, et al. (2011) Affectively salient mean-

ing in random noise: a task sensitive to psychosis liability. Schizophr Bull 37: 1179–1186. doi: 10.1093/

schbul/sbq029 PMID: 20360211

10. Vercammen A, de Haan EH, Aleman A (2008) Hearing a voice in the noise: auditory hallucinations and

speech perception. Psychol Med 38: 1177–1184. doi: 10.1017/S0033291707002437 PMID: 18076771

11. McLean BF, Mattiske JK, Balzan RP (2016) Association of the Jumping to Conclusions and Evidence

Integration Biases With Delusions in Psychosis: A Detailed Meta-analysis. Schizophr Bull.

12. Ross K, Freeman D, Dunn G, Garety P (2011) A randomized experimental investigation of reasoning

training for people with delusions. Schizophr Bull 37: 324–333. doi: 10.1093/schbul/sbn165 PMID:

19520745

13. So SH-w, Siu NY-f, Wong H-l, Chan W, Garety PA (2016) ‘Jumping to conclusions’ data-gathering bias

in psychosis and other psychiatric disorders—Two meta-analyses of comparisons between patients

and healthy individuals. Clinical Psychology Review 46: 151–167. doi: 10.1016/j.cpr.2016.05.001

PMID: 27216559

14. Fine C, Gardner M, Craigie J, Gold I (2007) Hopping, skipping or jumping to conclusions? Clarifying the

role of the JTC bias in delusions. Cogn Neuropsychiatry 12: 46–77. doi: 10.1080/13546800600750597

PMID: 17162446

15. Moore SC, Sellen JL (2006) Jumping to conclusions: a network model predicts schizophrenic patients’

performance on a probabilistic reasoning task. Cogn Affect Behav Neurosci 6: 261–269. PMID:

17458441

16. Moritz S, Scheu F, Andreou C, Pfueller U, Weisbrod M, et al. (2016) Reasoning in psychosis: risky but

not necessarily hasty. Cogn Neuropsychiatry 21: 91–106. doi: 10.1080/13546805.2015.1136611

PMID: 26884221

17. Moritz S, Woodward TS, Lambert M (2007) Under what circumstances do patients with schizophrenia

jump to conclusions? A liberal acceptance account. Br J Clin Psychol 46: 127–137. doi: 10.1348/

014466506X129862 PMID: 17524208

18. Rescorla RA, Wagner AW (1972) A theory of Pavlovian conditioning: Variations in the effectiveness of

reinforcement and nonreinforcement. In: Black AH, Prokasy WF, editors. Classical Conditioning II: Cur-

rent Research and Theory: Appleton-Century-Crofts. pp. 64–99.

19. Mathys C, Daunizeau J, Friston KJ, Stephan KE (2011) A bayesian foundation for individual learning

under uncertainty. Front Hum Neurosci 5: 39. doi: 10.3389/fnhum.2011.00039 PMID: 21629826

20. Nelson MT, Seal ML, Pantelis C, Phillips LJ (2013) Evidence of a dimensional relationship between

schizotypy and schizophrenia: a systematic review. Neurosci Biobehav Rev 37: 317–327. doi: 10.1016/

j.neubiorev.2013.01.004 PMID: 23313650

21. van Os J, Linscott RJ, Myin-Germeys I, Delespaul P, Krabbendam L (2009) A systematic review and

meta-analysis of the psychosis continuum: evidence for a psychosis proneness-persistence-

impairment model of psychotic disorder. Psychol Med 39: 179–195. doi: 10.1017/S0033291708003814

PMID: 18606047

22. Peters ER, Joseph SA, Garety PA (1999) Measurement of delusional ideation in the normal population:

introducing the PDI (Peters et al. Delusions Inventory). Schizophr Bull 25: 553–576. PMID: 10478789

23. Bell V, Halligan PW, Ellis HD (2006) The Cardiff Anomalous Perceptions Scale (CAPS): a new validated

measure of anomalous perceptual experience. Schizophr Bull 32: 366–377. doi: 10.1093/schbul/

sbj014 PMID: 16237200

24. Phillips LD, Edwards W (1966) Conservatism in a simple probability inference task. J Exp Psychol 72:

346–354. PMID: 5968681

Psychotic Experiences and Maladaptive Learning

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005328 January 20, 2017 18 / 20

http://dx.doi.org/10.1038/nrn2536
http://www.ncbi.nlm.nih.gov/pubmed/19050712
http://dx.doi.org/10.1098/rstb.2005.1622
http://www.ncbi.nlm.nih.gov/pubmed/15937014
http://dx.doi.org/10.1016/j.tins.2004.10.007
http://www.ncbi.nlm.nih.gov/pubmed/15541511
http://www.ncbi.nlm.nih.gov/pubmed/1540675
http://www.ncbi.nlm.nih.gov/pubmed/11918987
http://dx.doi.org/10.1176/appi.ajp.160.1.13
http://www.ncbi.nlm.nih.gov/pubmed/12505794
http://dx.doi.org/10.1093/schbul/sbq029
http://dx.doi.org/10.1093/schbul/sbq029
http://www.ncbi.nlm.nih.gov/pubmed/20360211
http://dx.doi.org/10.1017/S0033291707002437
http://www.ncbi.nlm.nih.gov/pubmed/18076771
http://dx.doi.org/10.1093/schbul/sbn165
http://www.ncbi.nlm.nih.gov/pubmed/19520745
http://dx.doi.org/10.1016/j.cpr.2016.05.001
http://www.ncbi.nlm.nih.gov/pubmed/27216559
http://dx.doi.org/10.1080/13546800600750597
http://www.ncbi.nlm.nih.gov/pubmed/17162446
http://www.ncbi.nlm.nih.gov/pubmed/17458441
http://dx.doi.org/10.1080/13546805.2015.1136611
http://www.ncbi.nlm.nih.gov/pubmed/26884221
http://dx.doi.org/10.1348/014466506X129862
http://dx.doi.org/10.1348/014466506X129862
http://www.ncbi.nlm.nih.gov/pubmed/17524208
http://dx.doi.org/10.3389/fnhum.2011.00039
http://www.ncbi.nlm.nih.gov/pubmed/21629826
http://dx.doi.org/10.1016/j.neubiorev.2013.01.004
http://dx.doi.org/10.1016/j.neubiorev.2013.01.004
http://www.ncbi.nlm.nih.gov/pubmed/23313650
http://dx.doi.org/10.1017/S0033291708003814
http://www.ncbi.nlm.nih.gov/pubmed/18606047
http://www.ncbi.nlm.nih.gov/pubmed/10478789
http://dx.doi.org/10.1093/schbul/sbj014
http://dx.doi.org/10.1093/schbul/sbj014
http://www.ncbi.nlm.nih.gov/pubmed/16237200
http://www.ncbi.nlm.nih.gov/pubmed/5968681


25. Garety PA, Freeman D, Jolley S, Dunn G, Bebbington PE, et al. (2005) Reasoning, emotions, and

delusional conviction in psychosis. J Abnorm Psychol 114: 373–384. doi: 10.1037/0021-843X.114.3.

373 PMID: 16117574

26. Dubey SD. Adjustment of p-values for multiplicities of intercorrelating symptoms; 1985; Germany.

27. Sankoh AJ, Huque MF, Dubey SD (1997) Some comments on frequently used multiple endpoint adjust-

ment methods in clinical trials. Stat Med 16: 2529–2542. PMID: 9403954

28. Sutton RS, Barto AG (1998) Reinforcement learning: An introduction: MIT press.

29. Daunizeau J, Adam V, Rigoux L (2014) VBA: a probabilistic treatment of nonlinear models for neurobio-

logical and behavioural data. PLoS Comput Biol 10: e1003441. doi: 10.1371/journal.pcbi.1003441

PMID: 24465198

30. Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ (2009) Bayesian model selection for group

studies. Neuroimage 46: 1004–1017. doi: 10.1016/j.neuroimage.2009.03.025 PMID: 19306932

31. Ross RM, McKay R, Coltheart M, Langdon R (2015) Jumping to Conclusions About the Beads Task? A

Meta-analysis of Delusional Ideation and Data-Gathering. Schizophr Bull 41: 1183–1191. doi: 10.1093/

schbul/sbu187 PMID: 25616503

32. Hemsley DR (1993) A simple (or simplistic?) cognitive model for schizophrenia. Behav Res Ther 31:

633–645. PMID: 8216165

33. Heinz A (1999) [Anhedonia—a general nosology surmounting correlate of a dysfunctional dopaminergic

reward system?]. Nervenarzt 70: 391–398. PMID: 10407834

34. Heinz A, Schlagenhauf F (2010) Dopaminergic dysfunction in schizophrenia: salience attribution revis-

ited. Schizophr Bull 36: 472–485. doi: 10.1093/schbul/sbq031 PMID: 20453041

35. Nelson B, Whitford TJ, Lavoie S, Sass LA (2014) What are the neurocognitive correlates of basic self-

disturbance in schizophrenia? Integrating phenomenology and neurocognition: Part 2 (aberrant

salience). Schizophr Res 152: 20–27. doi: 10.1016/j.schres.2013.06.033 PMID: 23863772

36. Schmack K, Schnack A, Priller J, Sterzer P (2015) Perceptual instability in schizophrenia: Probing pre-

dictive coding accounts of delusions with ambiguous stimuli. Schizophrenia Research: Cognition 2:

72–77.

37. Notredame CE, Pins D, Deneve S, Jardri R (2014) What visual illusions teach us about schizophrenia.

Front Integr Neurosci 8: 63. doi: 10.3389/fnint.2014.00063 PMID: 25161614

38. Schmack K, Gomez-Carrillo de Castro A, Rothkirch M, Sekutowicz M, Rossler H, et al. (2013) Delusions

and the role of beliefs in perceptual inference. J Neurosci 33: 13701–13712. doi: 10.1523/

JNEUROSCI.1778-13.2013 PMID: 23966692

39. Teufel C, Subramaniam N, Dobler V, Perez J, Finnemann J, et al. (2015) Shift toward prior knowledge

confers a perceptual advantage in early psychosis and psychosis-prone healthy individuals. Proc Natl

Acad Sci U S A 112: 13401–13406. doi: 10.1073/pnas.1503916112 PMID: 26460044

40. Shevlin M, McElroy E, Bentall RP, Reininghaus U, Murphy J (2016) The Psychosis Continuum: Testing

a Bifactor Model of Psychosis in a General Population Sample. Schizophrenia Bulletin.

41. Fanous A, Gardner C, Walsh D, Kendler KS (2001) Relationship between positive and negative symp-

toms of schizophrenia and schizotypal symptoms in nonpsychotic relatives. Arch Gen Psychiatry 58:

669–673. PMID: 11448374

42. Kendler KS, McGuire M, Gruenberg AM, O’Hare A, Spellman M, et al. (1993) The Roscommon Family

Study. III. Schizophrenia-related personality disorders in relatives. Arch Gen Psychiatry 50: 781–788.

PMID: 8215802

43. Chapman LJ, Chapman JP, Kwapil TR, Eckblad M, Zinser MC (1994) Putatively psychosis-prone sub-

jects 10 years later. J Abnorm Psychol 103: 171–183. PMID: 8040487

44. Hanssen M, Bak M, Bijl R, Vollebergh W, van Os J (2005) The incidence and outcome of subclinical

psychotic experiences in the general population. Br J Clin Psychol 44: 181–191. doi: 10.1348/

014466505X29611 PMID: 16004653

45. Poulton R, Caspi A, Moffitt TE, Cannon M, Murray R, et al. (2000) Children’s self-reported psychotic

symptoms and adult schizophreniform disorder: a 15-year longitudinal study. Arch Gen Psychiatry 57:

1053–1058. PMID: 11074871

46. Freeman D, Pugh K, Garety P (2008) Jumping to conclusions and paranoid ideation in the general pop-

ulation. Schizophr Res 102: 254–260. doi: 10.1016/j.schres.2008.03.020 PMID: 18442898

47. So SH, Kwok NT (2015) Jumping to conclusions style along the continuum of delusions: delusion-prone

individuals are not hastier in decision making than healthy individuals. PLoS One 10: e0121347. doi:

10.1371/journal.pone.0121347 PMID: 25793772

48. Van Dael F, Versmissen D, Janssen I, Myin-Germeys I, van Os J, et al. (2006) Data gathering: biased in

psychosis? Schizophr Bull 32: 341–351. doi: 10.1093/schbul/sbj021 PMID: 16254066

Psychotic Experiences and Maladaptive Learning

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005328 January 20, 2017 19 / 20

http://dx.doi.org/10.1037/0021-843X.114.3.373
http://dx.doi.org/10.1037/0021-843X.114.3.373
http://www.ncbi.nlm.nih.gov/pubmed/16117574
http://www.ncbi.nlm.nih.gov/pubmed/9403954
http://dx.doi.org/10.1371/journal.pcbi.1003441
http://www.ncbi.nlm.nih.gov/pubmed/24465198
http://dx.doi.org/10.1016/j.neuroimage.2009.03.025
http://www.ncbi.nlm.nih.gov/pubmed/19306932
http://dx.doi.org/10.1093/schbul/sbu187
http://dx.doi.org/10.1093/schbul/sbu187
http://www.ncbi.nlm.nih.gov/pubmed/25616503
http://www.ncbi.nlm.nih.gov/pubmed/8216165
http://www.ncbi.nlm.nih.gov/pubmed/10407834
http://dx.doi.org/10.1093/schbul/sbq031
http://www.ncbi.nlm.nih.gov/pubmed/20453041
http://dx.doi.org/10.1016/j.schres.2013.06.033
http://www.ncbi.nlm.nih.gov/pubmed/23863772
http://dx.doi.org/10.3389/fnint.2014.00063
http://www.ncbi.nlm.nih.gov/pubmed/25161614
http://dx.doi.org/10.1523/JNEUROSCI.1778-13.2013
http://dx.doi.org/10.1523/JNEUROSCI.1778-13.2013
http://www.ncbi.nlm.nih.gov/pubmed/23966692
http://dx.doi.org/10.1073/pnas.1503916112
http://www.ncbi.nlm.nih.gov/pubmed/26460044
http://www.ncbi.nlm.nih.gov/pubmed/11448374
http://www.ncbi.nlm.nih.gov/pubmed/8215802
http://www.ncbi.nlm.nih.gov/pubmed/8040487
http://dx.doi.org/10.1348/014466505X29611
http://dx.doi.org/10.1348/014466505X29611
http://www.ncbi.nlm.nih.gov/pubmed/16004653
http://www.ncbi.nlm.nih.gov/pubmed/11074871
http://dx.doi.org/10.1016/j.schres.2008.03.020
http://www.ncbi.nlm.nih.gov/pubmed/18442898
http://dx.doi.org/10.1371/journal.pone.0121347
http://www.ncbi.nlm.nih.gov/pubmed/25793772
http://dx.doi.org/10.1093/schbul/sbj021
http://www.ncbi.nlm.nih.gov/pubmed/16254066


49. Warman DM, Lysaker PH, Martin JM, Davis L, Haudenschield SL (2007) Jumping to conclusions and

the continuum of delusional beliefs. Behav Res Ther 45: 1255–1269. doi: 10.1016/j.brat.2006.09.002

PMID: 17052687

Psychotic Experiences and Maladaptive Learning

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005328 January 20, 2017 20 / 20

http://dx.doi.org/10.1016/j.brat.2006.09.002
http://www.ncbi.nlm.nih.gov/pubmed/17052687

