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Abstract
Whether basal metabolic rate-body mass scaling relationships have a single exponent 
is highly discussed, and also the correct statistical model to establish relationships. 
Here, we aimed (1) to identify statistically best scaling models for 17 mammalian or-
ders, Marsupialia, Eutheria and all mammals, and (2) thereby to prove whether correct-
ing for differences in species’ body temperature and their shared evolutionary history 
improves models and their biological interpretability. We used the large dataset from 
Sieg et al. (The American Naturalist 174, 2009, 720) providing species’ body mass (BM), 
basal metabolic rate (BMR) and body temperature (T). We applied different statistical 
approaches to identify the best scaling model for each taxon: ordinary least squares 
regression analysis (OLS) and phylogenetically informed analysis (PGLS), both without 
and with controlling for T. Under each approach, we tested linear equations (log-log-
transformed data) estimating scaling exponents and normalization constants, and such 
with a variable normalization constant and a fixed exponent of either ⅔ or ¾, and also 
a curvature. Only under temperature correction, an additional variable coefficient 
modeled the influence of T on BMR. Except for Pholidata and Carnivora, in all taxa 
studied linear models were clearly supported over a curvature by AICc. They indicated 
no single exponent at the level of orders or at higher taxonomic levels. The majority of 
all best models corrected for phylogeny, whereas only half of them included T. When 
correcting for T, the mathematically expected correlation between the exponent (b) 
and the normalization constant (a) in the standard scaling model y = a x b was removed, 
but the normalization constant and temperature coefficient still correlated strongly. In 
six taxa, T and BM correlated positively or negatively. All this hampers a disentangling 
of the effect of BM, T and other factors on BMR, and an interpretation of linear BMR-
BM scaling relationships in the mammalian taxa studied.
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O R I G I N A L  R E S E A R C H

Mass, phylogeny, and temperature are sufficient to explain 
differences in metabolic scaling across mammalian orders?

Eva Maria Griebeler  | Jan Werner

1  | INTRODUCTION

For the last two centuries, the relationship between body mass and 
metabolic rate has been of great interest. The relationship between 
metabolic rate (MR) and body mass (BM) is typically expressed as 

a power function (MR = a BM b) with an exponent b and a nor-
malization constant a. A linear scaling model results from a log-
log transformation of the power function (log10(MR) = log10(a) + b 
log10(BM)). Here, b is the slope and log10(a) the intercept of a 
straight line.
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While some studies support that metabolic rate scales in propor-
tion to BM ⅔ (Heusner, 1991; Rubner, 1883; White & Seymour, 2003), 
others reject the ⅔ exponent. The latter studies suggest an exponent of 
¾ (Brown, Gillooly, Allen, Savage, & West, 2004; Kleiber, 1932; Savage 
et al., 2004) or that the exponent varies between taxa and depends on 
physiology, environment and taxonomy (Glazier, 2005; McNab, 2008, 
2009; Sieg et al., 2009; White, 2010; White, Phillips, & Seymour, 2006).

Within the field of ecology, interest in metabolic scaling has in-
creased greatly during the last decade due to the Metabolic Theory 
of Ecology (MTE; Brown et al., 2004). The MTE relies on a general ¾ 
power scaling of resting (basal) metabolic rate with body mass. It uti-
lizes an Arrhenius approach to model differences in metabolic rates of 
similar-sized species that result from temperature effects on underly-
ing biochemical reactions. The MTE provides a mechanistic theory for 
a quarter-power scaling—the West, Brown and Enquist resource dis-
tribution network model (WBE; West, Brown, & Enquist, 1997)—and 
links the metabolic rate of organisms to their biology and the ecology 
of populations, communities and even ecosystems.

In the context of the MTE, Kolokotrones, Savage, Deeds, and 
Fontana (2010) reported a convex curvilinear metabolic scaling for 
mammals (log-log plot), and thus an increasing scaling exponent with 
increasing body mass. This pattern was corroborated by other authors 
(Capellini, Venditti, & Barton, 2010; Clarke, Rothery, & Isaac, 2010; 
Isaac & Carbone, 2010; Müller et al., 2012). Kolokotrones et al. (2010) 
argued that the curvature resolves the controversy surrounding the 
scaling exponent (¾ vs. ⅔ power) for mammals, that the curvature de-
mands a modification of the WBE, and that the curvature explains the 
upper limit of animal body mass in mammals (the blue whale).

Several authors have demonstrated differences in basal metabolic 
rates of mammals at the level of single orders (Capellini et al., 2010; 
Clarke et al., 2010; Hayssen & Lacy, 1985; Isaac & Carbone, 2010; 
McNab, 2008; White & Seymour, 2004) and at higher taxonomic levels 
(Duncan, Forsyth, & Hone, 2007; Müller et al., 2012; Sieg et al., 2009). 
Orders dominated by larger species have larger scaling exponents than 
orders dominated by smaller species (Clarke et al., 2010; Duncan et al., 
2007; Glazier, 2005). The majority of studies on metabolic scaling in 
mammalian taxa mainly focused on the variability seen in scaling expo-
nents, whereas the variability in normalization constants was often ig-
nored (but see Duncan et al., 2007; Sieg et al., 2009; Isaac & Carbone, 
2010). Statistical approaches used to assess differences in scaling 
exponents of mammalian orders considerably differ between studies, 
making a quantitative comparison of scaling relationships found prob-
lematic. For example, authors used ordinary least squares regression 
analysis (e.g., Hayssen & Lacy, 1985; White & Seymour, 2004), applied 
regression analysis without fully correcting for a shared evolutionary 
history of species (e.g., McNab, 2008), used phylogenetically informed 
regression analysis (e.g., Clarke et al., 2010; Sieg et al., 2009; White, 
2011; White, Blackburn, & Seymour, 2009), applied ANCOVA (e.g., 
McNab, 2008), or used linear mixed-effect models to assess differ-
ences between orders (e.g., Isaac & Carbone, 2010). To the best of our 
knowledge, only one study exists that simultaneously corrects for phy-
logeny and body temperature at the order level and studies a broader 
taxonomic range in mammals (Clarke et al., 2010). The most important 

reason given by authors for ignoring the shared evolutionary history 
of species is that physiological “performance” characteristics of spe-
cies such as metabolism have been repeatedly described as sensitive 
to environmental conditions (e.g., food availability and quality, climate, 
altitude, an island or continental distribution, the use of torpor and rate 
of reproduction; for a summary, see McNab, 2012) and thus do not re-
flect ancestral relationships. The pattern that and how basal metabolic 
rate, body temperature and body mass correlate in all mammals and in 
mammalian taxa is complex, which questions whether correcting by 
body temperature is indeed useful in scaling analyses. For Carnivora, 
Erinaceomorpha and Artiodactyla (Clarke & Rothery, 2007), a decrease 
in body temperature with increasing body mass has been shown, and 
an increase in all mammals (Griebeler, 2013), Eutheria (Griebeler, 2013), 
Marsupialia (Clarke & Rothery 2007; Griebeler, 2013) and Chiroptera 
(Clarke & Rothery 2007). For Insectivora, basal metabolic rate and body 
temperature correlate positively, while at a lower taxonomic level (sub-
family, family) this correlation considerably diminishes (McNab, 2006).

In this study, we established metabolic scaling relationships for 
17 mammalian orders, for Marsupialia, Eutheria and all mammals. Our 
aims were (1) to identify best scaling models for taxa, and (2) thereby 
to prove whether a correction for differences in species’ body tem-
perature and the shared evolutionary history indeed statistically im-
proves these best scaling models and their biological interpretability. 
We therefore used the large dataset from Sieg et al. (2009) compris-
ing 695 mammalian species. It provides information on species’ body 
mass, basal metabolic rate, and body temperature. For 519 of these, 
phylogenetic information was also available to us. The total dataset of 
Sieg et al. (2009) was analyzed by Kolokotrones et al. (2010), and these 
authors additionally studied a similar dataset from McNab (2008). The 
dataset of McNab (2008), however, has fewer species and fewer body 
temperatures than the dataset of Sieg et al. (2009). Nevertheless, both 
datasets show a large overlap in species.

We performed linear and quadratic (curvature; Capellini et al., 
2010; Clarke et al., 2010; Isaac & Carbone, 2010; Kolokotrones et al., 
2010; Müller et al., 2012) least squares regression analyses on log-log-
transformed data to identify the best scaling relationship for mammalian 
orders, Marsupialia, Eutheria, and all mammals. In particular, we tested 
three linear models (slope and intercept are estimated, fixed slope of 
0.75 or of 0.67 with an estimated intercept) and one quadratic model 
for these taxa under four statistical scenarios, yielding a total of 16 
models considered for each taxon. The four statistical scenarios were 
(1) ordinary least squares regression analysis (OLS) without and (2) with 
temperature correction, and (3) phylogenetic generalized least squares 
regression analysis (PGLS; Pagel, 1997, 1999; Freckleton, Harvey, & 
Pagel, 2002) without and (4) with temperature correction. For each of 
the studied taxa, we assessed the overall best model out of the 16 mod-
els considered from their AICc values. This enabled us to assess whether 
a correction for phylogeny and body temperature improves the scaling 
relationship obtained for a taxon, and in the case that a linear model 
worked best whether its slope supports a ¾ or ⅔ power scaling or none 
of both. Finally, for each statistical scenario, we explored across orders 
correlations between their regression coefficients of linear scaling mod-
els estimating the exponent, normalization constant, and if applicable 
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of the temperature term. For standard allometric relationships (y = a x b), a 
correlation between the exponent and normalization constant is math-
ematically expected (Gould, 1966; White & Gould, 1965). Thus, we 
extended the empirical study of Sieg et al. (2009) who reported correla-
tions between exponents and normalization constants when examining 
heterogeneous taxonomic levels of mammals. With this analysis, we 
aimed to figure out the effect of temperature correction on this built-in 
correlation between exponents and normalization constants in order to 
disentangle the effect of body mass, temperature, phylogeny and other 
factors on scaling relationships of studied mammalian taxa.

2  | MATERIAL AND METHOD

2.1 | Dataset analyzed

For our large-scale analyses on scaling in mammalian basal metabolic 
rate (BMR), we used the dataset on body mass (BM), BMR and body tem-
peratures (T) published by Sieg et al. (2009). This dataset covers a total 

of 695 species from 27 orders. We used a subset of 519 species from 
this dataset for which information on BM, BMR and T was given therein 
and for which phylogenetic information was also available. The 519 
species comprise 17 orders which are represented by at least five spe-
cies (Figure 1). These were four marsupialian orders (Dasyuromorphia, 
Didelphimorphia, Diprotodontia, Peramelemorphia), and 13 eutherian 
orders (Afrosoricida, Artiodactyla, Carnivora, Chiroptera, Cingulata, 
Erinaceomorpha, Lagomorpha, Macroscelidea, Pholidota, Pilosa, 
Primates, Rodentia, Soricomorpha). Due to the lack of information on 
species’ body temperatures or phylogeny, we had to exclude ten or-
ders in our analysis covered in the original dataset of Sieg et al. (2009) 
(Cetacea, Hyracoidea, Microbiotheria, Monotremata, Notoryctemorphia, 
Perissodactyla, Proboscidea, Scandentia, Sirenia, Tubulidentata).

2.2 | Phylogeny of mammals used

For phylogenetic correction, we used the fullest available mammalian 
phylogeny published by Bininda-Edmonds et al. (2007). Following Sieg 

F IGURE  1  (a) Sample sizes of mammalian taxa 
studied here and covered in the original dataset of 
Sieg et al. (2009). (b) Body mass and temperature 
range of mammalian taxa studied by us, medians 
(circle) and ranges (whiskers) are shown
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et al. (2009), we eliminated misspellings and taxonomical inconsisten-
cies in this super tree. The latter correction was needed, because the 
tree is based on the second edition of the encyclopedia “Mammal 
Species of the World,” and the dataset of Sieg et al. (2009) refers to 
the third edition (Wilson & Reader, 2005).

2.3 | Statistical analyses

Four equations linking BMR (log10-transformed) to BM (log10-
transformed) in mammals, marsupials, eutherians, and in each of the 
17 mammalian orders are basal to our study. They implement con-
troversial current hypotheses on metabolic scaling in mammalian taxa 
and refer to empirical approximations (Hulbert, 2014). In all equations, 
ε is the error term.

The first equation models a standard linear scaling relationship in 
which the slope (β1) and intercept (β0) are estimated.

Equation (1) is consistent with observations that the scaling expo-
nent varies between taxa due to differences in species’ physiology, 
environment, and taxonomy (Glazier, 2005; McNab, 2008, 2009; Sieg 
et al., 2009; White, 2010; White et al., 2006). Two further equations 
that we used are linear scaling models that either have a fixed slope of 
0.75 or a fixed slope of 0.67. Here, only the intercepts are estimated.

Equation (2) models a quarter-power scaling (Kleiber, 1932; Brown 
et al., 2004; WBE), and equation (3) a geometric scaling of basal meta-
bolic rate (Rubner, 1883, surface to volume ratio).

The last equation is a quadratic scaling model.

It models that the scaling exponent is a nonconstant value that in-
creases or decreases with BM (convex curvature with β2 > 0 suggested 
by Kolokotrones et al., 2010 for all mammals; concave curvature for 
β2 < 0).

The four equations (1–4) relating log10 BMR to log10 BM were 
basal to our four statistical scenarios. In the first scenario, we used or-
dinary least squares regression analysis (OLS) to evaluate equations (1) 
through (4). The respective scaling models applied to orders, marsupi-
als, eutherians, and all mammals are denoted L, L0.75, L0.67, and C. These 
assume that neither a correction for their shared evolutionary history 
nor for differences in T values of species improves the metabolic scal-
ing relationship of a given mammalian taxon. In the second scenario, 
we used again OLS, but additionally corrected for T. We therefore in-
troduced the term β3/T (Kolokotrones et al., 2010) into equations (1) 
through (4). This resulted in four additional equations and in the four 
scaling models LT, L0.75,T, L0.67,T, and CT. In the third and fourth sce-
narios, we applied phylogenetic informed regression analysis (PGLS; 
Pagel, 1997, 1999; Freckleton et al., 2002) instead of OLS to control 

for a shared evolutionary history of species. Thus, scaling models LPGLS, 
L0.75,PGLS, L0.67,PGLS, and CPGLS using equations (1) through (4) corrected 
only for phylogeny, whereas LT,PGLS, L0.75,T,PGLS, L0.67,T,PGLS, and CT,PGLS 
using equations (1) through (4) with the temperature term corrected 
for both phylogeny and differences in T values between species. In 
total, we considered for each of the 17 orders, Marsupialia, Eutheria, 
and all mammals four statistical scenarios (OLS without and with tem-
perature correction, PGLS without and with temperature correction) 
and four equations. This resulted in a total of 16 scaling models tested 
for each mammalian taxon studied.

For each order, marsupials, eutherians, and all mammals, we iden-
tified the overall statistical best out of the 16 models considered by 
two approaches. First, to rate absolute goodness of fit of models ob-
tained for each of the analyzed taxa we always inspected their residual 
standard errors. Second, to assess relative goodness of fit of models, 
we used the corrected Akaike information criterion (AICc; Burnham & 
Anderson, 2002) values. We preferred AICc over standard AIC values, 
because sample sizes of some of the studied orders were small (≥5, 
Figure 1; Burnham & Anderson, 2002). For large sample sizes, there is 
nearly no difference between AICc and AIC values. We identified the 
best of the candidate models for a given taxon by model selection and 
followed the AIC evaluation approach given in Burnham and Anderson 
(2002). Therefore, at first, all candidate models were ranked according 
to their AICc values, and then the statistically best supported model 
with the lowest AICc (min(AICc)) was identified. Next, ∆AICc values 
(AICc-min(AICc)) were calculated for each of all other candidate mod-
els. A ∆AICc score less than two suggests well-supported models, a 
score between two and ten suggests a moderate support, and a score 
larger than ten suggests a weak support of the model relative to the 
alternative model (with the lowest AICc; Burnham & Anderson, 2002).

When a linear model worked best in terms of AICc for a given order, 
the marsupials, eutherians, or all mammals, we inspected the model’s 
slope. If it had a fixed slope, this either indicated a statistical support of a 
¾ or a ⅔ power scaling. If the model estimating slopes and intercepts (L, 
LT, LPGLS, or LT,PGLS) worked best, we checked, whether 0.75 and 0.67 is 
found in the 95% confidence interval of the slope to assess which scal-
ing exponent(s) is (are) statistically supported. If several models obtained 
a similar statistical support (∆AICc ≤ 2) for a given taxon, we merged the 
information on the exponents provided by each of these models.

In our last analysis, we examined correlations between all beta co-
efficients estimated by models L, LT, LPGLS, and LT,PGLS across orders. 
We therefore conducted Spearman rank correlation analysis for pairs 
of coefficients obtained for all orders studied (slope β1 vs. intercept β0, 
slope β1 vs. temperature coefficient β3, intercept β0 vs. temperature co-
efficient β3). With this analysis, we extended the empirical study of Sieg 
et al. (2009) on correlations between slopes and intercepts when ex-
amining heterogeneous taxonomic levels of mammals to scaling mod-
els accounting for differences in species’ body temperatures. With this 
analysis, we aimed to assess whether temperature informed models 
are able to disentangle the effect of BM, T, and other factors on BMR.

All statistical analyses were carried out in the free statistics soft-
ware R (version 3.0.2). For curve fittings, we used the packages nlme 
(version 3.1.111) and ape (version 3.1.4).

(1)log10 (BMR)=β0+β1 log10 (BM)+ε

(2)log10 (BMR)=β0+0.75 log10 (BM)+ε

(3)log10 (BMR)=β0+0.67 log10 (BM)+ε

(4)
log10 (BMR)=β0+β1 log10 (BM)+β2( log10 (BM))2+ε

=β0+{β1+β2 log10 (BM)} log10 (BM)+ε
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3  | RESULTS

Figure 2 summarizes models L, LT, LPGLS, and LT,PGLS obtained for or-
ders, marsupials, eutherians, and all mammals graphically. Exact values 
of the beta coefficients of all linear and curvilinear regression models 
tested, their residual standard errors, and their AICc values are found 
in Tables S1 through S20 in the Supporting Information. Table 1 lists 
∆AICc values of all 16 models considered for each of the mammalian 
taxa studied and provides information on scaling exponents corrobo-
rated by best models.

3.1 | Best models scaling models for mammalian 
taxa studied

Except for Pholidota and Carnivora, a linear model worked best 
in terms of AICc for all mammalian taxa studied. In Pholidota, the 
concave (β2 < 0) curvilinear scaling relationship worked best and in 
Carnivora the second best model (∆AICc ≤ 2) was a convex relation-
ship (β2 > 0). In terms of residual standard error, a concave curvature 
was best for Pholidota and Peramelemorphia, and a convex one for 
Carnivora, Rodentia, Eutheria, and all mammals (Table S1 through 
S20 in the Supporting Information). For the other 14 taxa studied, 
the model with the lowest residual standard error had also the lowest 
AICc value.

3.2 | ¾ or ⅔ power scaling or none of both in 
mammalian taxa studied

For Diprotodontia, Lagomorpha, and Artiodactyla, a linear model with 
a fixed slope of 0.75 was best in terms of AICc, which indicates a scaling 
exponent of ¾ in these orders. For Dasyuromorphia, Didelphimorphia, 
Pilosa, and Cingulata, models with a slope fixed to 0.67 were best 
in terms of AICc values suggesting a ⅔ power scaling for these or-
ders. For all mammals, marsupials, eutherians, Peramelemorphia, and 
Soricomorpha, models estimating the slope and intercept obtained the 
highest support in terms of AICc values. The 95% confidence intervals 
of estimated slopes suggested an exponent intermediary to ⅔ and ¾ 
for all mammals and eutherians, larger than ⅔ but not than ¾ for mar-
supials, larger than ¾ for Peramelemorphia, and smaller than or equal 
to ⅔ for Soricomorpha. For Chiroptera, Macroscelidea, Afrosoricida, 

Rodentia, Erinaceomorpha, and Primates, more than one linear model 
obtained a similar support in terms of AICc values (∆AICc ≤ 2). For 
Chiroptera, these indicated an exponent larger than ⅔ but not larger 
than ¾, for Macroscelidea ⅔, ¾ or even larger, for Afrosoricida and 
Erinaceomorpha ⅔ or ¾, for Rodentia ⅔ but smaller than ¾, and for 
Primates ⅔ up to ¾. For Pholidota, for which a concave curvature 
obtained clearly the highest support in terms of AICc the best linear 
model suggested an exponent of ¾. For Carnivora, two linear models 
and a convex curvature obtained a similar high support in terms of 
AICc. The two linear models indicated an exponent larger than ⅔ but 
not larger than ¾ in Carnivora. In total, we observed a high variability 
in scaling exponents of the 20 analyzed mammalian taxa and found 
no support for a single scaling exponent across all mammals and also 
none for a single exponent in marsupilian and eutherian orders.

3.3 | Correlations between coefficients of models L, 
LT, LPGLS, and LT,PGLS

Exponents (β1) and normalization constants (10^β0) of models L and 
LPGLS estimated for orders correlated highly negatively (Figure 3). 
Higher exponents resulted in lower normalization constants and vice 
versa. When correcting for temperature (LT, LT,PGLS), exponents and 
normalization constants of orders were uncorrelated, and also expo-
nents and temperature term coefficients (β3). Contrary, normalization 
constants and values of the coefficient of the temperature term cor-
related highly negatively (Figure 3).

3.4 | Correction for a shared evolutionary 
history and body temperature of species needed?

For seven of a total of 20 mammalian taxa analyzed, a model correcting for 
body temperature and the shared evolutionary history of species clearly 
worked best in terms of AICc. These were all mammals, the Eutheria, 
the two marsupilian orders Dasyuromorphia and Diprotodontia, and the 
three eutherian orders Soricomorpha, Chiroptera, and Erinaceomorpha. 
For seven taxa, the Marsupialia, the marsupilian order Peramelemorphia, 
and the eutherian orders Lagomorpha, Pilosa, Cingulata, Carnivora, and 
Artiodactyla, the best model corrected only for phylogeny, and for the 
marsupilian order Didelphimorphia and the eutherian order Pholidota, it 
corrected only for differences in body temperatures between species. 

F IGURE  2 Metabolic scaling in 17 mammalian orders, Marsupialia, Eutheria, and all mammals. Shown are beta coefficients of linear models 
estimated under four statistical scenarios (L, LT, LPGLS, LT,PGLS), and their 95% confidence intervals (whiskers). In all panels, the marsupialian 
and eutherian orders are separated, and marsupialian and eutherian orders are ordered by the average body masses of taxa (median, S21 in 
the Supporting information). Exact values of regression models are found in Tables S1 through S20 in the Supporting Information. Confidence 
intervals of estimated slopes, intercepts, and if applicable of the coefficients of the temperature term of models L, LT, LPGLS, and LT,PGLS are also 
given in the Supporting Information. (a) OLS: ordinary least squares regression analysis without correction for temperature and phylogeny, 
OLS + T.: OLS with correction for temperature, but not for phylogeny, (b) PGLS: phylogenetic generalized least squares regression analysis (Pagel 
1997, 1999; Freckleton et al., 2002) without correction for temperature, PGLS + T: PGLS with correction for temperature. Slope panels: red 
lines = ⅔ power scaling, blue lines = ¾ power scaling. Intercept panels: red lines = intercept of the all mammals model with a fixed slope of 0.67, 
blue lines = intercept of the all mammals model with a fixed slope of 0.75. Temperature panels: red lines = temperature coefficient of the all 
mammals model with a fixed slope of 0.67, blue lines = temperature coefficient of the all mammals model with a fixed slope of 0.75. * = all beta 
coefficients (slope, intercept, temperature) differ significantly from zero, n.s. = at least one of the coefficients does not significantly differ from 
zero, div. = no model could be established, the fitting algorithm diverged
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For the eutherians Macroscelidea, three best models in terms of AICc 
(∆AICc ≤ 2) were identified. The one with the highest statistical support 
corrected only for phylogeny, that with the second highest support cor-
rected for phylogeny and temperature, and that with the lowest support 
for none of both. For the eutherians Rodentia, the best model corrected 
for both body temperature and phylogeny and the second best only 
for phylogeny (Table 1). In total, whether correction for differences in 
body temperature between species and for their shared evolutionary 
history improved the scaling model obtained depended on the mam-
malian taxon studied.

4  | DISCUSSION

4.1 | Best scaling models of mammalian taxa

A clear statistical support of a curvilinear scaling relationship in 
terms of AIC values and residual standard errors was only observed 
for Pholidota. However, our dataset on Pholidota is the smallest of 
this study (N = 5), especially in comparison with the number of model 
parameters estimated. This strongly questions whether Pholidota in 
general show a concave curvilinear scaling relationship. For all other 
orders, marsupilians, eutherians, and all mammals, the model with the 
lowest AICc value was linear (Table 1). Our results thus strongly ques-
tion a curvilinear scaling in mammals, marsupials, eutherians, and in at 
least 16 of 17 orders studied. For all mammals, this observation is un-
expected as numerous papers applying different statistical approaches 
report a slight, convex curvature of BMR versus BM (Capellini et al., 
2010; Clarke et al., 2010; Isaac & Carbone, 2010; Kolokotrones et al., 
2010; Müller et al., 2012). A statistical problem in detecting a poten-
tial curvature in all marsupilian orders, except for Diprotodontia and 
in all eutherian orders, except for Rodentia and Carnivora could be 
related to their small body mass range covered. Müller et al. (2012) 
showed that this range should comprise four up to five magnitudes in 
order to find a slight curvature in mammals.

However, when using residual standard errors to select the best 
model for a mammalian taxon, a convex curvature worked best for 
all mammals, but also for Eutheria, Peramelemorphia, Carnivora, and 
Rodentia. For Carnivora, the second best model in terms of AICc values 
was also a convex curvature. For all mammals, the difference in AICc 
values between the best linear model and the best curvilinear model 
was 32.9, which is a considerable stronger support of the linear over the 
quadratic model than indicated by their small difference in residual stan-
dard errors (0.145 vs. 0.185, Table S1 in the Supporting Information).

Whether the curvilinear scaling of mammalian metabolism is a 
true pattern is highly discussed. Deficiencies of the analyzed datasets 
themselves and statistical problems are reasons for this (e.g., MacKay, 
2011; Müller et al., 2012; Packard, 2015). Body masses, metabolic 
rates, and temperatures of species are often sampled from multiple 
sources (Packard, 2015) or body mass ranges are not broad enough to 
resemble the slight curvature (Müller et al., 2012). Kolokotrones et al. 
(2010) applied R2 for model selection, which is incorrect when com-
paring linear and nonlinear models (Quinn & Keough, 2002). For the 
total dataset of Sieg et al. (2009), they observed an increase in R2 from 

0.958 (linear model) to 0.961 (curvature), which is anyway minimal. As 
the curvature in BMR strongly questions the theoretical framework of 
the MTE and led to a modification of the WBE by Kolokotrones et al. 
(2010), other studies aimed at whether the curvature in metabolic 
scaling is also seen in other taxa and whether it scales up to higher 
ecological levels. For the more ecologically relevant field metabolic 
rate (FMR), Hudson, Isaac, and Reuman (2013) and Bueno and López-
Urrutia (2014) corroborated a curvilinear scaling in mammals, but for 
birds, Hudson et al. (2013) found no statistical support for a curvature 
in FMR. For mammals, a curvature in BMR and FMR was also demon-
strated by Müller et al. (2012), but these authors found no curvature 
in the scaling of BMR for reptiles and birds. Bueno and López-Urrutia 
(2014) showed that the curvature seen in BMR and FMR prevailed in 
six further mammalian traits (four individual traits and two population 
traits), but their scaling coefficients derived were not consistent with 
those expected from the MTE. All these results suggest that curvilinear 
scaling relationships are a phenomenon only seen in mammals. They 
strongly question the WBE modification done by Kolokotrones et al. 
(2010), especially because the convex curvature is a slight pattern.

In our study, only residual standard errors indicated curvilinear 
scaling relationships in Peramelemorphia, Carnivora, and Rodentia. 
Hayssen and Lacy (1985) also found a convex curvature for Carnivora, 
whereas Rodentia showed a linear scaling. Clarke et al. (2010) de-
tected a convex curvature for both Carnivora and Rodentia, and none 
in any other mammalian order (with a sample size >20), but these au-
thors did not study the Peramelemorphia. Several other authors have 
studied Rodentia and Carnivora (Capellini et al., 2010; Duncan et al., 
2007; Sieg et al., 2009; White & Seymour, 2004). They detected dif-
ferences in the exponents between these orders and found a high 
variability even within each of the orders. The latter could reflect dif-
ferent ecological characteristics of species (McNab, 2008) and could 
yield spurious results on the presence and absence of a curvature in 
these orders. However, in all orders for which a curvature was only 
indicated by residual standard errors in our study, the difference be-
tween the curvilinear and best linear model was small (difference is 
0.061 for Peramelemorphia, 0.056 for Carnivora, 0.014 for Rodentia).

The scaling exponents of the 17 mammalian orders studied herein 
showed a high variability and thus corroborated no single exponent in 
mammals (Table 1). Even the orders from marsupials and eutherians 
had no single exponent (Table 1). When evaluating all best linear mod-
els for mammalian taxa studied (Table 1), the Soricomorpha had the 
lowest exponent. It was smaller than or equal to ⅔. A ⅔ power scaling 
was observed in Dasyuromorphia, Didelphimorphia, and Xenarthra 
(Cingulata, Pilosa). A ¾ power scaling was seen in Diprotodontia, 
Lagomorpha, Artiodactyla, and Pholidota. In Peramelemorphia, 
an even higher exponent than ¾ was indicated. For Afrosoricidea, 
Erinaceomorpha, and Primates, neither a ⅔ nor a ¾ power scaling was 
rejected. The Chiroptera and Carnivora could have an exponent higher 
than ⅔ but not greater than ¾, whereas the exponent of Rodentia 
could be ⅔ or smaller than ¾. For Macroscelidea, the exponent could 
be ⅔, ¾ or even higher. For all mammals and Eutheria, an exponent in-
termediary to ⅔ and ¾ was indicated, whereas in Marsupialia an expo-
nent of ¾ was indicated. Thus, our results contradict previous findings 
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TABLE  1 ΔAICc values derived for scaling models and statistical scenarios studied for different mammalian taxa. Statistical scenarios and 
respective scaling models are OLS (L, L0.75, L0.67, C), OLS+T (LT, L0.75,T, L0.67,T, CT), PGLS (LPGLS, L0.75,PGLS, L0.67,PGLS, CPGLS), and PGLS+T (LT,PGLS, 
L0.75,T,PGLS, L0.67,T,PGLS, CT,PGLS). Straight line denotes models L, LT, LPGLS, and LT,PGLS, respectively, straight line β1 = 0.75 denotes models L0.75, 
L0.75,T, L0.75,PGLS, and L0.75,T,PGLS, respectively, and straight line β1 = 0.67 denotes models L0.67, L0.67,T, L0.67,PGLS, and L0.67,T,PGLS, respectively. The 
overall best models in terms of the lowest AICc values out of the 16 models tested is marked in bold for each taxon (all models differing in their 
ΔAICc not more than 2 compared with the model with the lowest AICc, Burnham & Anderson, 2002). For linear models, it is shown which 
information on the exponent is supported by the bold models for a taxon. For quadratic models, the shape of the curvature is given, that is, 
whether it is convex (β2 > 0) or concave (β2 < 0). N = number of species analyzed; n.s.: nonsignificant model, div: no convergence of fitting, inf.: 
infinity. The complete statistics of models and their regression coefficients are found in Tables S1 through S20 in the Supporting Information

Taxon N
Statistical 
scenario

Straight 
line

Straight line 
β1 = 0.75

Straight line 
β1 = 0.67 Exponent Quadratic Shape

All mammals 519 OLS 214.5 279.4 217.0 205.0 Convex

OLS+T 59.7 175.1 58.1 37.0 Convex

PGLS 37.8 48.1 47.8 198.0 Convex

PGLS+T 0 21.8 4.6 (0.67, 0.75) 32.9 Convex

Marsupialia 63 OLS 27.1 29.1 31.9 n.s.

OLS+T 23.6 n.s. 24.3 n.s.

PGLS 0 14.6 34.0 (0.67, 0.75] div.

PGLS+T div. div. 26.5 div.

Eutheria 456 OLS 154.8 184.8 166.6 139.1 Convex

OLS+T 61.4 132.6 61.0 34.7 Convex

PGLS 22.6 26.2 32.8 127.6 Convex

PGLS+T 0 8.9 6.0 (0.67, 0.75) div.

Dasyuromorphia 21 OLS 19.2 17.8 16.7 n.s.

OLS+T n.s. n.s. n.s. n.s.

PGLS 3.4 14.2 18.1 div.

PGLS+T n.s. 6.0 0 = 0.67 div.

Didelphimorphia 11 OLS 7.4 3.7 7.0 n.s.

OLS+T 4.6 n.s. 0 = 0.67 n.s.

PGLS 11.9 7.6 5.7 10.7 Concave

PGLS+T 16.7 div. 2.3 n.s.

Peramelemorphia 8 OLS 16.7 14.4 16.0 12.8 Concave

OLS+T n.s. n.s. n.s. n.s. .

PGLS 0 5.5 14.1 >0.75 23.4 Concave

PGLS+T n.s. 19.0 div. 77.1 Concave

Diprotodontia 23 OLS 26.4 27.4 27.7 n.s.

OLS+T 22.8 n.s. 21.4 n.s.

PGLS 24.9 24.3 24.0 n.s.

PGLS+T 3.2 0 2.6 = 0.75 n.s.

Soricomorpha 23 OLS 23.7 29.1 25.4 n.s.

OLS+T 10.8 19.0 13.4 n.s.

PGLS 21.2 28.2 23.2 n.s.

PGLS+T 0 div. div. ≤0.67 div.

Chiroptera 73 OLS 13.8 12.1 24.0 n.s.

OLS+T 3.5 1.6 7.6 = 0.75 n.s.

PGLS 9.5 11.2 24.1 n.s.

PGLS+T 1.3 0 div. (0.67, 0.75] n.s.

Macroscelidea 8 OLS 7.0 2.0 5.3 = 0.75 n.s.

OLS+T 7.7 n.s. n.s. n.s.

PGLS 0 7.6 10.5 >0.75 n.s.

PGLS+T 8.8 n.s. 0.5 = 0.67 n.s.

(continues)
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that orders dominated by larger species have larger scaling exponents 
than orders dominated by smaller species (Figure 2; Glazier, 2005; 
Duncan et al., 2007; Clarke et al., 2010).

Other studies corroborate our results on the considerable variabil-
ity found in exponents of mammalian orders (Table 2), although the 

statistical methods used in these studies are diverse, sample sizes and 
species composition for orders generally differ between studies, and 
even the taxonomic status of species could have changed in the mean-
time. For the comparison of our results with those of previous stud-
ies, we always chose our most similar statistical scenario as reference 

Taxon N
Statistical 
scenario

Straight 
line

Straight line 
β1 = 0.75

Straight line 
β1 = 0.67 Exponent Quadratic Shape

Afrosoricida 9 OLS 4.0 1.5 0 = 0.75, = 0.67 n.s.

OLS+T n.s. n.s. n.s. n.s.

PGLS div. 5.5 3.3 = 0.67 div.

PGLS+T div. 5.2 2.9 div.

Rodentia 236 OLS 44.4 66.9 42.4 42.4 Convex

OLS+T 29.7 55.9 27.6 27.7 Convex

PGLS 1.2 5.6 2.2 [0.67, 0.75) 36.5 Convex

PGLS+T n.s. n.s. 0 = 0.67 25.2 Convex

Erinaceomorpha 7 OLS 14.1 7.3 7.1 n.s.

OLS+T n.s. n.s. n.s. n.s.

PGLS 24.7 11.2 11.7 div.

PGLS+T 41.6 0 1.6 = 0.75, = 0.67 n.s.

Primates 18 OLS 2.6 0 0.5 = 0.75, = 0.67 n.s.

OLS+T n.s. n.s. n.s. n.s.

PGLS 5.8 4.4 3.8 div.

PGLS+T div. div. div. div.

Lagomorpha 11 OLS 13.0 10.5 9.2 n.s.

OLS+T n.s. n.s. n.s. n.s.

PGLS div. 0 div. = 0.75 n.s.

PGLS+T div. div. div. n.s.

Pilosa 6 OLS 9.2 7.4 3.3 n.s.

OLS+T n.s. n.s. n.s. n.s.

PGLS 8.4 10.7 0 = 0.67 +inf.

PGLS+T inf. div. n.s. n.s.

Cingulata 9 OLS 17.8 14.6 13.0 18.5 Concave

OLS+T n.s. n.s. n.s n.s.

PGLS 5.9 n.s. 0 = 0.67 23.6 Concave

PGLS+T n.s. n.s. n.s. n.s.

Pholidota 5 OLS 122.6 n.s. 105.1 n.s.

OLS+T n.s. n.s. n.s. 0 Concave

PGLS inf. 98.2 109.9 31.4 Concave

PGLS+T 177.8 inf. inf. 185.8 Concave

Carnivora 43 OLS 10.2 8.3 9.7 1.0 Convex

OLS+T 6.7 4.4 n.s. n.s.

PGLS 1.7 0 6.4 (0.67, 0.75] div.

PGLS+T n.s. n.s. n.s. div.

Artiodactyla 8 OLS 27.1 21.7 30.4 n.s.

OLS+T n.s. n.s. n.s. n.s.

PGLS 29.1 0 20.2 = 0.75 div.

PGLS+T div. div. div. div.

TABLE  1  (continued)
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(Table 2). Overall, only in four cases the slopes of our reference models 
considerably differed from respective literature values (Table 2). In the 
majority of cases, our results matched literature values (20) or differ-
ences were only marginal (12, Table 2). The intermediary exponent 
seen under temperature and phylogenetic correction in all mammals 
matched the results of Sieg et al. (2009) and Clarke et al. (2010).

4.2 | Correlations between coefficients of models L, 
LT, LPGLS, and LT,PGLS

The mathematical interdependence of normalization constants 
and exponents in simple allometric relationships (y = a x b) has not 
been sufficiently appreciated, but makes the biological interpreta-
tion of two allometric regression lines problematic, when their ex-
ponents differ (Gould, 1966; White & Gould, 1965). To the best of 

our knowledge, Sieg et al. (2009) were the only authors who em-
pirically demonstrated this correlation in the last years. As expected 
(Gould, 1966; White & Gould, 1965) and consistent with Sieg et al. 
(2009), our estimated exponents (β1) and normalization constants 
(10^β0) of models L and LPGLS derived for orders correlated strongly 
(Figure 3). This correlation was considerably stronger under PGLS 
than under OLS (Figure 3). PGLS, thus, captures an important source 
of variation that caused a stronger deviation from the mathemati-
cally expected correlation between the exponent and the normali-
zation constant under OLS. This observation corroborates again 
that phylogenetic informed analysis improves scaling relationships 
(White, 2011). When correcting for body temperature (models LT 
and LT,PGLS), the correlation between exponents (β1) and normali-
zation constants (10^β0) disappeared, and also no correlation be-
tween the exponent and the respective temperature coefficients 

F IGURE  3 Relationships between beta 
coefficients of models L, LT, LPGLS, and 
LT,PGLS for orders studied. The correlations 
between coefficients of orders were 
assessed by Spearman rank correlation 
analyses (rs; n.s. p > .05, ***p < .001). Red 
asterisk: all mammals, green triangle: 
Marsupialia, blue square: Eutheria. 
Exact values of regression coefficients 
(normalization constant, exponent, 
temperature coefficient) are found in 
Tables S1 through S20 in the Supporting 
Information.
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(β3) was seen (Figure 3). Thus, the introduction of the temperature 
term removed the mathematically expected correlation between the 
exponent and the normalization constant, and now the normaliza-
tion constant and the temperature coefficient might only capture 
additional sources of variation in BMR besides BM. However, under 
temperature correction a strong correlation between the normaliza-
tion constant (10^β0) and the temperature coefficient (β3) emerged 
(Figure 3). As the exponents and the temperature terms are uncor-
related, the temperature term and the normalization constant could 
reflect other factors besides body mass influencing metabolic scaling 
in mammalian orders. On the one hand, this would suggest that dif-
ferences in body temperature of similar-sized species are the most 
important factor driving differences in BMRs of similar-sized spe-
cies and that the Arrhenius approach used by the MTE (Brown et al., 
2004) is corroborated. In this case, the small proportion of variability 
not explained by the temperature coefficient and captured by the 
normalization constant would reflect differences in other ecological 
characteristics of species (e.g., torpor, diet, habitat; McNab, 2008, 
2012). On the other, the high correlation between the temperature 
coefficient and the normalization constant could indicate that dif-
ferences in the ecology of species are linked to differences in body 
temperature (e.g., carnivores have higher body temperatures than 
herbivores) and that these are the most important factor driving dif-
ferences in BMRs of similar-sized species.

4.3 | Correction for a shared evolutionary 
history and body temperature of species needed?

The majority of best models found for mammalian taxa studied by us 
corrected for a shared phylogeny of species. OLS models clearly worked 
best in terms of AICc only for Didelphimorphia, Afrosoricida, Primates, 
and Pholidota (Table 1), but we think only for Primates the support of 
the OLS over the PGLS model reflects a true pattern. Sample sizes of 
Didelphimorphia, Afrosoricida, and Pholidota were among the smallest 
of all taxa studied (Figure 1) and λ values estimated by the respective 
phylogenetically corrected models were considerable smaller or larger 
than expected from theory (0 ≤ λ ≤ 1, Pagel, 1997, 1999; Freckleton 
et al., 2002; Tables S5, S11, and S18 of the Supporting Information). 
Contrary, for Primates, the phylogenetic signal under PGLS analysis was 
low and λ was within the expected range (Table S14 of the Supporting 
Information). Our study thus corroborates that phylogenetic informed 
analysis improves scaling relationships obtained (White, 2011).

For ten of the 20 mammalian taxa studied, the best model in 
terms of AICc did not correct for differences in species’ body tempera-
ture (Table 1). For Didelphimorphia, Peramelemorphia, Afrosoricida, 
Primates, Lagomorpha, Pilosa, Cingulata, Carnivora, and Artiodactyla, 
this observation is corroborated by the absence of a correlation be-
tween BMR and T (Table 3), whereas for marsupials, not only BMR 
and T, but also BM and T correlated (Table 3). Thus, in marsupials the 

TABLE  3 Results of Spearman rank correlation analysis on BM, BMR, and T for different mammalian taxa. rs (BMR vs. T) assesses whether 
body temperatures of species affect their basal metabolic rate; that is, T could potentially account for differences in BMR of species in scaling 
models correcting for T, rs (BM vs. T) whether T increases or decreases with species body mass or BM has no effect on T, and rs (BM vs. BMR) 
whether BM influences BMR. Significant rs values (p ≤ .05) are marked in bold

Taxon N rs (BMR vs. T) p rs (BM vs. T) p
rs (BM vs. 
BMR) p

All mammals 519 0.231 <10−7 0.129 0.003 0.962 <10−15

Marsupialia 63 0.461 <10−4 0.432 <10−3 0.955 <10−15

Eutheria 456 0.346 <10−13 0.252 <10−7 0.955 <10−15

Dasyuromorphia 21 0.533 0.013 0.582 0.006 0.952 <10−5

Didelphimorphia 11 0.532 0.092 0.532 0.092 1.000 <10−15

Peramelemorphia 8 0.398 0.329 0.096 0.820 0.833 0.015

Diprotodontia 23 0.239 0.273 0.144 0.513 0.979 <10−5

Soricomorpha 23 0.414 0.049 −0.141 0.521 0.681 <10−4

Chiroptera 73 0.373 0.001 0.288 0.013 0.935 <10−15

Macroscelidea 8 0.096 0.820 0.428 0.291 0.867 0.005

Afrosoricida 9 0.091 0.802 0.018 0.960 0.939 <10−15

Rodentia 236 0.074 0.253 −0.027 0.673 0.902 <10−15

Erinaceomorpha 7 −0.180 0.699 −0.234 0.613 0.750 0.067

Primates 18 0.322 0.179 0.230 0.345 0.946 <10−5

Lagomorpha 11 0.009 0.989 −0.164 0.634 0.818 0.004

Pilosa 6 0.232 0.658 −0.203 0.700 0.600 0.242

Cingulata 9 −0.126 0.748 −0.159 0.683 0.917 0.001

Pholidota 5 0.205 0.741 0.205 0.741 1.000 0.017

Carnivora 43 −0.226 0.145 −0.386 0.011 0.930 <10−15

Artiodactyla 8 0.323 0.435 0.323 0.435 1.000 <10−5
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effect of T on BMR, which is not taken into consideration by the best 
model, could have been captured by BM. Contrary, in all mammals, 
eutherians, Dasyuromorphia, and Chiroptera, in which BMR and T as 
well as BM and T correlate (Table 3) the best model still corrected for T 
(Table 1). In these taxa, the correlation between BMR and T is consid-
erable stronger than between BM and T, except for Dasyuromorphia 
(Table 3). In Dasyuromorphia, both correlations are similarly strong, 
which is consistent with the observation that the best model cor-
recting for species’ body temperatures is only moderately supported 
over the model ignoring body temperature differences of species 
(Table 1). In Soricomorpha, the presence of the temperature term in 
the best scaling model (Table 2) is corroborated by the strong correla-
tion between BMR and T (Table 3). In Diprotodontia, Macroscelidea, 
Erinaceomorpha, and Pholidota, the best model also corrected for T 
(Table 2), but the correlation analysis indicated that BMR and T are 
uncorrelated (Table 3). The latter could be due to the small sample 
sizes of orders which hampers the statistical detection of weaker sig-
nificant correlations (Table 3), but also due to model overfitting. For 
Erinaceomorpha, even the correlation between BM and BMR was not 
significant. For Rodentia, the best model corrected for temperature, 
but the second best (∆AICc = 1.2) not, which is consistent with the 
absence of a correlation between BMR and T (Table 3).

5  | CONCLUSIONS

Our analyses corroborate previous studies that reject a single scal-
ing exponent in mammalian taxa (Capellini et al., 2010; Clarke et al., 
2010; Duncan et al., 2007; Isaac & Carbone, 2010; McNab, 2008; 
Müller et al., 2012; Sieg et al., 2009; White & Seymour, 2004). They 
corroborate that phylogenetic informed analysis improves scaling 
relationships obtained (White, 2011). Correcting for differences in 
species’ body temperatures removed the mathematically built-in cor-
relation between the scaling exponent and the normalization constant 
of standard scaling relationships (y = a x b; White & Gould, 1965; 
Gould, 1966), but the biological interpretation of the normalization 
constant and the temperature coefficient is still problematic as both 
strongly correlate at least in the studied mammalian taxa. In 14 of 20 
taxa studied BMR and T did not correlate, which questions the need of 
a temperature correction for these taxa. In six taxa, T correlated with 
BM positively or negatively. This hampers a disentangling of the effect 
of BM and T on BMR, and an interpretation of how T and other factors 
besides BM influence the scaling of BMR in any mammalian taxon.

ACKNOWLEDGMENTS

JW was partially financed by the German Research Foundation (grant 
GR 2625/2-2). We are grateful to two anonymous reviewers who sig-
nificantly improved this paper.

CONFLICT OF INTEREST

None declared.

DATA ACCESSIBILITY

The dataset used in this study is published by Sieg et al. (2009) and 
available in Dryad (http://hdl.handle.net/10255/dryad.713).

All other data used in this manuscript are present in the manu-
script and its Supporting Information.

REFERENCES

Bininda-Edmonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., 
Beck, R. M. D., Grenyer, R., … Purvis, A. (2007). The delayed rise of 
present-day mammals. Nature, 446, 507–512.

Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & West, G. B. (2004). 
Toward a metabolic theory of ecology. Ecology, 85, 1771–1789.

Bueno, J., & López-Urrutia, A. (2014). Scaling up the curvature of mam-
malian metabolism. Frontiers in Ecology and Evolution, 2, 1–13. 
doi:10.3389/fevo.2014.00061

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel 
inference: A practical information-theoretic approach, 2nd edn. New York, 
NY: Springer Verlag.

Capellini, I., Venditti, C., & Barton, R. A. (2010). Phylogeny and metabolic 
scaling in mammals. Ecology, 91, 2783–2793.

Clarke, A., & Rothery, P. (2007). Scaling of body temperature in mammals 
and birds. Functional Ecology, 22, 58–67.

Clarke, A., Rothery, P., & Isaac, N. J. B. (2010). Scaling of basal metabolic 
rate with body mass and temperature in mammals. Journal of Animal 
Ecology, 79, 610–619.

Duncan, R. P., Forsyth, D. M., & Hone, J. (2007). Testing the metabolic the-
ory of ecology: Allometric scaling exponents in mammals. Ecology, 88, 
324–333.

Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis 
and comparative data: A test and review of evidence. The American 
Naturalist, 160, 712–726.

Glazier, D. S. (2005). Beyond the ‘3/4-power law’: Variation in the intra-and 
interspecific scaling of metabolic rates in animals. Biological Reviews, 
80, 611–662.

Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny. Biological 
Reviews, 41, 587–640.

Griebeler, E. M. (2013). Body temperatures in dinosaurs: what can 
growth curves tell us? PLoS ONE, 8, 1–16. doi:10.1371/journal.
pone.0074317

Hayssen, V., & Lacy, R. C. (1985). Basal metabolic rates in mammals: 
Taxonomic differences in the allometry of BMR and body mass. 
Comparative Biochemistry and Physiology, Part A, Molecular & Integrative 
Physiology, 81, 741–754.

Heusner, A. A. (1991). Energy metabolism and body size. I. Is the 0.75 
mass exponent of Kleiber’s equation a statistical artifact? Respiration 
Physiology, 48, 1–12.

Hudson, L. N., Isaac, N. J. B., & Reuman, D. C. (2013). The relationship be-
tween body mass and field metabolic rate among individual birds and 
mammals. Journal of Animal Ecology, 82, 1009–1020.

Hulbert, A. J. (2014). A sceptics view: “Kleiber’s law” or the “3/4 rule” is 
neither a law nor a rule but rather an empirical approximation. Systems, 
2, 186–202.

Isaac, N. J. B., & Carbone, C. (2010). Why are metabolic scaling exponents 
so controversial? Quantifying variance and testing hypotheses. Ecology 
Letters, 13, 728–735.

Kleiber, M. (1932). Body size and metabolism. Hilgardia, 6, 315–351.
Kolokotrones, T., Savage, V., Deeds, E. J., & Fontana, W. (2010). Curvature 

in metabolic scaling. Nature, 464, 753–756.
MacKay, N. J. (2011). Mass scale and curvature in metabolic scaling. Journal 

of Theoretical Biology, 1, 194–196.
McNab, B. K. (2006). The evolution of energetics in eutherian “insectiv-

orans”: An alternative approach. Acta Theriologica, 51, 113–128.

http://hdl.handle.net/10255/dryad.713
https://doi.org/10.3389/fevo.2014.00061
https://doi.org/10.1371/journal.pone.0074317
https://doi.org/10.1371/journal.pone.0074317


     |  8365GRIEBELER and WERNER

McNab, B. K. (2008). An analysis of the factors that influence the level and 
scaling of mammalian BMR. Comparative Biochemistry and Physiology. 
Part. A, Molecular & Integrative Physiology, 151, 5–28.

McNab, B. K. (2009). Ecological factors affect the level and scaling of avian 
BMR. Comparative Biochemistry and Physiology. Part. A, Molecular & 
Integrative Physiology, 152, 22–45.

McNab, B. K. (2012). Extreme measures: The ecology of energetics of birds and 
mammals. Chicago, IL: University of Chicago Press.

Müller, D., Codron, D., Werner, J., Fritz, J., Hummel, J., Griebeler, E. M., & 
Clauss, M. (2012). Dichotomy of eutherian reproduction and metabo-
lism. Oikos, 121, 102–115.

Packard, G. C. (2015). Quantifying the curvilinear metabolic scaling in 
mammals. Journal of Experimental Zoology, 323A, 540–546.

Pagel, M. (1997). Inferring evolutionary processes from phylogenies. 
Zoologica Scripta, 26, 331–348.

Pagel, M. (1999). Inferring the historical patterns of biological evolution. 
Nature, 401, 877–884.

Quinn, G. P., & Keough, M. J. (2002). Experimental design and data analysis 
for biologists. Cambridge: Cambridge University Press.

Rubner, M. (1883). Über den Einfluß der Körpergröße auf Stoff- und 
Kraftwechsel. Zeitschrift für Biologie, 19, 536–562.

Savage, V. M., Gilloly, J. F., Woodruff, W. H., West, G. B., Allen, A. P., Enquist, 
B. J., & Brown, J. H. (2004). The predominance of quarter-power scaling 
in biology. Functional Ecology, 18, 257–282.

Sieg, A. E., O’Connor, M. P., McNair, J. N., Grant, B. W., Agosta, S. J., & 
Dunham, A. E. (2009). Mammalian metabolic allometry: Do intraspe-
cific variation, phylogeny, and regression models matter? The American 
Naturalist, 174, 720–733.

West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model 
for the origin of allometric scaling laws in biology. Science, 276,  
122–126.

White, C. R. (2010). There is no single p. Nature, 464, 691–692.

White, C. R. (2011). Allometric estimation of metabolic rates in animals. 
Comparative Biochemistry and Physiology. Part. A, Molecular & Integrative 
Physiology, 158, 346–357.

White, C. R., Blackburn, T. M., & Seymour, R. S. (2009). Phylogenetically informed 
analysis of the allometry of mammalian basal metabolic rate supports nei-
ther geometric nor quarter-power scaling. Evolution, 63, 2658–2667.

White, J. F., & Gould, S. J. (1965). Interpretation of the coefficient in the 
allometric equation. The American Naturalist, 99, 5–18.

White, C. R., Phillips, N., & Seymour, R. (2006). The scaling and temperature 
dependence of vertebrate metabolism. Biology Letters, 2, 125–127.

White, C. R., & Seymour, R. (2003). Mammalian basal metabolic rate is 
proportional to body mass2/3. Proceedings of the National Academy of 
Sciences of the United States of America, 100, 4046–4049.

White, C. R., & Seymour, R. S. (2004). Does basal metabolic rate contain a 
useful signal? Mammalian BMR allometry and correlations with a selec-
tion of physiological, ecological, and life-history variables. Physiological 
and Biochemical Zoology, 77, 929–941.

Wilson, D. E., & Reader, D. M. (2005). Mammal species of the world: A taxonomic 
and geographic reference, 3rd edn. Baltimore: Johns Hopkin University Press.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the support-
ing information tab for this article.

How to cite this article: Griebeler, E. M. and Werner, J. (2016), Mass, 
phylogeny, and temperature are sufficient to explain differences in 
metabolic scaling across mammalian orders? Ecology and Evolution, 
6: 8352–8365. doi: 10.1002/ece3.2555

https://doi.org/10.1002/ece3.2555

