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ABSTRACT The emergence of drug-resistant uropathogenic Escherichia coli (UPEC)
has hampered antibiotic therapy for urinary tract infections. To elucidate the resis-
tance mechanisms of UPEC, we performed whole-genome sequencing of eight UPEC
strains with different fluoroquinolone resistance levels. Here, we report our sequenc-
ing data, providing a valuable resource for understanding such mechanisms.

Escherichia coli is one of the most prevalent pathogens isolated from patients with
urinary tract infections (UTIs) (1–4); in particular, uropathogenic E. coli (UPEC) causes

over 85% of uncomplicated UTI cases (4, 5). Antibiotic therapy is the first-line strategy
for patients with UTIs, and fluoroquinolones (FQs), such as levofloxacin (LVFX), are
widely used for treating acute uncomplicated UTIs (6). However, due to increasing FQ
usage, the prevalence of FQ-resistant E. coli isolates is increasing, complicating UTI
antibiotic treatment. Many studies have attempted to detect mutations in quinolone
resistance-determining regions (QRDRs) (7–10); the remaining genomic regions have
not yet been thoroughly characterized. Therefore, to detect genome-wide mutations
that confer resistance to FQs, we performed whole-genome sequencing of UPEC strains
with various levels of resistance to LVFX.

The eight UPEC strains selected for whole-genome sequencing, with different levels
of resistance to LVFX (Table 1), were developed in a previous study (11). Their LVFX-
susceptible parental strains, GUC9 and GFCS1, were cultured on LB plates containing
0.5 to 64 �g/ml LVFX. After serial passage, we randomly selected colonies from the
LVFX-containing plates and assessed their MICs against LVFX and their mutation
profiles with respect to the QRDRs gyrA, gyrB, parC, and parE (11). Then, we selected
strains with four different LVFX resistance levels (Table 1) from each parental strain.
These strains (from frozen stocks) were streaked onto LB plates (Sigma-Aldrich, St.
Louis, MO, USA) and grown overnight at 37°C. Next, a single colony was inoculated in
brain heart infusion broth (Nissui, Tokyo, Japan) and incubated overnight at 37°C.
Genomic DNA was extracted using extraction buffer (4 M guanidine thiocyanate,
200 mM NaCl, 100 mM Tris-HCl [pH 8.0], 25 mM EDTA, 1% 2-mercaptoethanol) and
detergent buffer (10% [wt/vol] sodium N-lauroylsarcosine, 0.2% SDS, 200 mM NaCl)
with 0.1-mm zirconia beads on a multibead shocker (Yasui Kikai, Osaka, Japan). After
phenol-chloroform-isoamyl alcohol extraction, DNA was quantified using a Qubit 3.0
fluorometer and the Qubit double-stranded DNA (dsDNA) high-sensitivity (HS) buffer
assay kit (Life Technologies, Burlington, Canada). DNA libraries were constructed using
the Nextera XT DNA library preparation kit (Illumina, San Diego, CA, USA) according to
the manufacturer’s instructions and sequenced using an Illumina MiSeq instrument for
600 cycles to produce 250-bp paired-end reads. Quality control checks on the sequence
reads obtained were performed using FastQC v0.10.1 (https://www.bioinformatics
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.babraham.ac.uk/projects/fastqc) with default parameters. After sequence read verifi-
cation using FastQC, trimming of poor-quality reads was deemed unnecessary. Illumina
sequencing data were assembled with SPAdes v3.9.0 (Algorithmic Biology Lab, St.
Petersburg Academic University of the Russian Academy of Sciences) using default
parameters.

All mutations (nucleotide substitutions) in the QRDRs, i.e., gyrA, gyrB, parC, and parE,
that were observed in a previous study (11) were found to be exactly the same in the
sequenced LVFX-resistant strains (Table 1). This precise matching suggests that nucle-
otide variations in regions other than QRDRs confer drug resistance to FQs.

Data availability. This genome project was deposited in DDBJ/ENA/GenBank under

the accession no. PRJDB9275. The sequencing data were deposited in the DDBJ
Sequence Read Archive (DRA) under the accession no. DRA009585.
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TABLE 1 General features of UPEC genomes determined by MiSeq sequencing in this study

Straina

LVFX MIC
(�g/ml)b Mutation(s)

No. of
reads

Coverage
(�)

No. of
contigs

Genome size
(bp) N50 (bp)

GC content
(%)

BioSample
accession no.

SRA accession
no.

GUC9_S 0.5 gyrA, S83L 2,552,058 159 62 5,114,553 337,676 50.6 SAMD00203448 DRR207640
GUC9_L 2 gyrA, S83L 2,439,655 164 75 5,114,309 305,325 50.6 SAMD00203450 DRR207642
GUC9_I 8 gyrA, S83L 2,541,456 146 75 5,109,250 194,392 50.6 SAMD00203452 DRR207644
GUC9_H 128 gyrA, S83L; gyrB, E466D;

parE: V466E
2,353,713 140 110 5,122,098 250,018 50.6 SAMD00203454 DRR207646

GFCS1_S 0.5 gyrA, S83L 2,315,729 136 75 5,110,960 184,144 50.6 SAMD00203449 DRR207641
GFCS1_L 2 gyrA, S83L 3,132,078 182 82 5,082,523 150,381 50.6 SAMD00203451 DRR207643
GFCS1_I 32 gyrA, S83L/D87G 2,139,959 121 110 5,086,017 114,120 50.6 SAMD00203453 DRR207645
GFCS1_H 128 gyrA, S83L/D87G; parC,

S80I
3,630,647 193 78 5,078,104 150,811 50.6 SAMD00203455 DRR207647

a These strains were derived from two parental strains (GUC9 and GFCS1) with different levels of resistance to LVFX. _S, susceptible (�1 �g/ml); _L, low level of
resistance (�2 �g/ml); _I, intermediate level of resistance (�4 to 32 �g/ml); _H, high level of resistance (�128 �g/ml).

b MICs for LVFX were determined in a previous study (11).
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