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Abstract

Background: RNA inverse folding is the problem of finding one or more sequences that fold into a user-specified
target structure s0, i.e. whose minimum free energy secondary structure is identical to the target s0. Here we consider
the ensemble of all RNA sequences that have low free energy with respect to a given target s0.

Results: We introduce the program RNAdualPF, which computes the dual partition function Z∗, defined as the sum
of Boltzmann factors exp(−E(a, s0)/RT) of all RNA nucleotide sequences a compatible with target structure s0. Using
RNAdualPF, we efficiently sample RNA sequences that approximately fold into s0, where additionally the user can
specify IUPAC sequence constraints at certain positions, and whether to include dangles (energy terms for stacked,
single-stranded nucleotides). Moreover, since we also compute the dual partition function Z∗(k) over all sequences
having GC-content k, the user can require that all sampled sequences have a precise, specified GC-content.
Using Z∗, we compute the dual expected energy 〈E∗〉, and use it to show that natural RNAs from the Rfam 12.0
database have higher minimum free energy than expected, thus suggesting that functional RNAs are under
evolutionary pressure to be only marginally thermodynamically stable.
We show that C. elegans precursor microRNA (pre-miRNA) is significantly non-robust with respect to mutations, by
comparing the robustness of each wild type pre-miRNA sequence with 2000 [resp. 500] sequences of the same
GC-content generated by RNAdualPF, which approximately [resp. exactly] fold into the wild type target structure.
We confirm and strengthen earlier findings that precursor microRNAs and bacterial small noncoding RNAs display
plasticity, a measure of structural diversity.

Conclusion: We describe RNAdualPF, which rapidly computes the dual partition function Z∗ and samples
sequences having low energy with respect to a target structure, allowing sequence constraints and specified
GC-content. Using different inverse folding software, another group had earlier shown that pre-miRNA is mutationally
robust, even controlling for compositional bias. Our opposite conclusion suggests a cautionary note that
computationally based insights into molecular evolution may heavily depend on the software used.
C/C++-software for RNAdualPF is available at http://bioinformatics.bc.edu/clotelab/RNAdualPF.
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Background
In [1], Borenstein and Ruppin define neutrality of an RNA
sequence a = a1, . . . , an by η(a) = 1 − 〈d〉

n , where in this
section 〈d〉 denotes the average, taken over all 3n single-
point mutants of a, of the base pair distance dBP between
the minimum free energy (MFE) structure s0 of a and
the MFE structures of single-point mutants of a. An RNA
sequence a is then defined to be robust if η(a) is greater
than the average neutrality of 1000 control sequences gen-
erated by the program RNAinverse [2], which fold into
the same target structure s0. The main finding of [1] is
that precursor microRNAs (pre-miRNA) exhibit a signifi-
cantly higher level of mutational robustness than random
RNA sequences having the same structure. To control
for sequence composition bias in their computational
study, the authors selected sequences from the output
of RNAinverse, whose dinucleotide composition was
similar to that of wild type pre-miRNA (Jensen-Shannon
divergence less than 0.01). Since the filtering step required
enormous run time and computational resources, the
authors restricted their attention to a small set of 211
microRNAs, generating only 100 control sequences per
microRNA. Borenstein and Ruppin conclude that robust-
ness of precursor microRNAs is not the byproduct of a
base composition bias or of thermodynamic stability.
Subsequently Rodrigo et al. [3] undertook a similar anal-

ysis for bacterial small RNAs, also using the program
RNAinverse, albeit using somewhat different defini-
tions – precise definitions are given in “Formal definitions
of robustness” section. The main finding of [3] was that
bacterial sncRNAs are not significantly robust when com-
pared with 1000 sequences having the same structure, as
computed by RNAinverse; however, bacterial sncRNAs
tend to be significantly plastic, in the sense that the
ensemble of low energy structures is structurally diverse.
Unlike the case of precursor microRNAs [1], Rodrigo et al.
did not control for sequence compositional bias.
This raises the question of whether the control

sequences analyzed in [1, 3] are representative or to what
extent features shared by sequences output by the pro-
gram RNAinverse are artifacts of the program used.
Indeed, the number of RNA sequences that fold into a
given target structure can be astronomically large. Over a
few weeks, before we elected to terminate the execution,
our state-of-the-art inverse folding software RNAiFold
[4] generated 273,926,421 many 52-nt sequences that fold
exactly into the MFE secondary structure s0 of HIV-1
ribosomal frameshift stimulating signal from the Gag-Pol
overlap region AF033819.3/1631-1682, and which addi-
tionally code 17-mer peptides in the Gag and Pol reading
frames having amino acids that appear in Gag/Pol pep-
tides found in the Los Alamos HIV-1 database [5]. The
number of 52 nt RNA sequences that fold into target s0
without additionally imposing the constraint of coding

particular peptides in overlapping Gag/Pol reading frames
is certain to dwarf the previous number. Moreover, the
number of sequences that fold into the MFE structure of
an animal precursor microRNA (length 68 to 91 nt [6])
or into the MFE structure of bacterial sncRNA (length
53-436 nt [3]) is certain to be even more daunting.
Different inverse folding algorithms have adopted dif-

ferent strategies to generate sequences that fold into a
user-specified target secondary structure s0. For instance,
RNAinverse [2, 7] performs an adaptive walk, in one
step of which a nucleotide in the current sequence is
mutated and subsequently accepted if the base pair dis-
tance between the minimum free energy (MFE) struc-
ture of the mutated sequence and the target structure
s0 is reduced. NUPACK Design [8] selects a candidate
mutation position with probability proportional to its
contribution to the ensemble defect (Boltzmann-weighted
Hamming distance to the vector representation of s0,
where s0[ i]= j indicates (i, j) ∈ s0 and s0[ i]= i indi-
cates i is unpaired in s0). RNAiFold CP-design [4, 9]
uses constraint programming to systematically explore the
search tree of all inverse folding solutions in an order
determined by certain heuristics. Accordingly, one can-
not claim that the collection of sequences generated by
any particular inverse folding algorithm is representative
of the astronomically large space of all inverse folding
solutions – indeed, each inverse folding algorithm has an
inherent but unknown bias.
In this paper, we describe the algorithm RNAdualPF,

which generates sequences which have low free energy
with respect to a user-specified target structure s0 – i.e.
the inherent bias of RNAdualPF is known, unlike the
situation of other inverse folding algorithms. We show
that RNAdualPF is extremely fast software for generat-
ing sequences that approximately fold into s0; moreover,
in a postprocessing step, one can filter the output of
RNAdualPF to select sequences that exactly fold into
s0. RNAdualPF additionally allows the user to specify
IUPAC codes to constrain certain nucleotide positions
as well as to control the GC-content of all generated
sequences. Sampling is performed in a manner distinct
but somewhat analogous to that by which Sfold [10]
and RNAsubopt -p [2] sample representative secondary
structures from the Boltzmann ensemble of all structures
of a given sequence. Using RNAdualPF, we perform a
pilot study that is similar, though not identical, to that
of [1, 3] for two classes of RNA: 250 C. elegans precur-
sor microRNA from miRBase [11] and the bacterial small
noncoding RNAs previously analyzed in [3].
Finally, it should be noted that, although RNAdualPF

was developed entirely independently of the work of
Reinharz et al. [12], one can view our C-program as an
extension of Python program IncaRNAtion [12] to the
full Turner energy model, where additionally GC-content
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is rigorously handled. This point will be discussed further
in the Conclusion.

Formal definitions of robustness
Let a = a1, . . . , an denote an arbitrary RNA sequence,
where ai ∈ N = {A,U,G, C}, a secondary structure s
of a is a set of base pairs (i, j) satisfying the following
conditions: (1) If (i, j) ∈ s then ai, aj constitute a Watson-
Crick or GU wobble pair, i.e. ij ∈ B which is the set
{AU,UA,GC,CG,GU,UG}. (2) If (i, j) ∈ s then i + θ < j,
where θ = 3 (a minimum assumed for steric hindrance).
(3) If (i, j) ∈ s and (k, �) ∈ s, then either i < k < � < j
or k < i < j < � or i < j < k < � or k < � <

i < j. The collection of all secondary structures of the
RNA sequence a is denoted SS(a), and the free energy
[13] of s is denoted by E(a, s), or simply by E(s) provided
that the sequence a is clear from context. The Boltzmann
probability p(s) = pa(s) for structure s of a is defined
by exp(−E(a, s)/RT)/Z, where the partition function Z =
Z(a) = ∑

s∈SS(a) exp(−E(a, s)/RT). Given two secondary
structures s, t of a, the base pair distance dBP(s, t) between
s and t is defined to be the size of the symmetric difference
of s, t, i.e. |s − t| + |t − s|.
In [3], Rodrigo et al. define intrinsic distance

d0(a) =
∑

s,t
p(s) · p(t) · dBP(s, t) (1)

i.e. intrinsic distance is another name for ensemble diver-
sity earlier defined in [14], and computed by Vienna
RNA Package [2]. Plasticity is defined in [3] to be nor-
malized ensemble diversity; i.e.

P(a) = d0(a)
n/2

(2)

obtained by dividing ensemble diversity by (essentially)
the maximum possible number n/2 of base pairs in a
structure of a. Given two RNA sequences a = a1, . . . , an
and b = b1, . . . , bn of the same length n, Rodrigo et
al. define d1(a,b) to be the expected base pair distance
between structures of a and structures of b minus the
ensemble diversity of a, i.e.

d1(a,b) =
∑

s∈SS(a)

∑

t∈SS(b)

pa(s) · pb(t) · dBP(s, t) − d0(a)

(3)

Since d1 is not symmetric, this measure is not a metric. In
contrast, ensemble distance as described in [14] is a valid
metric, defined by the following:

DV(a,b) =
√
√
√
√
∑

s∈SS(a)

∑

t∈SS(b)

pa(s) · pb(t) · dBP(s, t) − d0(a) + d0(b)

2

=
√∑

i<j
(pi,j(a) − pi,j(b))2

(4)

In [3], Rodrigo et al. define themutational robustness

Rm(a) = 1 − 〈d1(a, a’)〉
n/2

(5)

where 〈d1(a, a’)〉 denotes the average value of d1(a, a’)
taken over all single point mutants a’ of a. Since d1(a, a’)
is not a true metric, we replace it by the metric DV(a,b) in
our computation of mutational robustness. Clearly both
notions are closely related.

Implementation
In [15], McCaskill described a cubic time algorithm to
compute the partition function

Z = Z(a) =
∑

s∈SS(a)
exp(−E(a, s)/RT) (6)

for an RNA sequence a = a1, . . . , an, where the sum
is taken over all secondary structures SS(a) of a, E(a, s)
denotes the free energy for the structure s of a with
respect to the Turner energy parameters [13], R denotes
the universal gas constant and T is absolute temperature.
Subsequently Ding and Lawrence [16] described how to
use the partition function together with a simple back-
tracking strategy to sample secondary structures of a from
the Boltzmann ensemble of low energy structures.
If s0 is a given secondary structure of length n, we define

the dual partition function

Z∗ = Z∗(s0) =
∑

a∈AA(s0)
exp(−E(a, s0)/RT) (7)

where the sum is taken over all RNA sequences a =
a1, . . . , an of length n that are compatible with structure
s0, i.e. ai, aj constitute a Watson-Crick or wobble pair for
each base pair (i, j) ∈ s0. The set of all RNA sequences that
are compatible with s0 is denoted by AA(s0). Note that if
a sequence a is not compatible with the target structure
s0, then the energy E(a, s0) is infinite, so the correspond-
ing Boltzmann factor exp(−E(a, s0)/RT) is zero and the
sum in Eq. (7) could have been written over all sequences
of the same length as s0. Here we describe the efficient
software RNAdualPF to compute the dual partition func-
tion Z∗ and to sample from the low energy ensemble
of sequences that are compatible with a given secondary
structure s0.
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Dual partition function
If s is a secondary structure on sequence a = a1, . . . , an,
then the length of s, denoted by �(s), is equal to n, while the
size of s, denoted by |s|, is the number of base pairs belong-
ing to s. Similarly, if secondary structure s is restricted to
the interval [ i, j], where 1 ≤ i ≤ j ≤ n, then the length of
the restriction of s to [ i, j], denoted by �(s[ i, j] ), is equal
to j − i + 1, while the size of the restriction of s to [ i, j],
denoted by |s[ i, j] |, is the number of base pairs (x, y) of s
that satisfy i ≤ x < y ≤ j.
Given an RNA sequence a = a1, . . . , an, the McCaskill

algorithm [15] computes the partition function Z(a)
defined in Eq. (6). When a is clear from context, Z(a) is
usually denoted by Z.
Given a target secondary structure s0, we describe

below an algorithm to compute the dual partition func-
tion Z∗(s0), defined as the sum of all Boltzmann fac-
tors exp(−E(a, s0)), where the sum is taken over all
RNA sequences a ∈ AA(s0). Unlike the McCaskill algo-
rithm, which requires time that is cubic in the length
of a, the algorithm presented below requires time that
is (essentially) linear1 in the length of s0. Our algo-
rithm is motivated by the initialization step of the algo-
rithm INFO-RNA [17], in which a sequence is deter-
mined, for which the free energy with respect to target
structure s0 is a minimum – i.e. INFO-RNA determines
argminaE(a, s0).
The algorithm specification requires the notation

Z∗(i, j; x, y), which denotes the sum

Z∗(i, j; x, y) =
∑

a[i,j],ai=x,aj=y
exp

(−E
(
a[ i, j] , s0[ i, j]

)
/RT

)

(8)

of Boltzmann factors for sequences a[ i, j]= ai, . . . , aj for
which ai = x, aj = y, and for the restriction s0[ i, j],
defined by

s0[ i, j]=
{
(x, y) ∈ s0 : i ≤ x < y ≤ j

}
. (9)

The function Z∗(i, j; x, y) is defined for all base pairs (i, j) ∈
s0; these values will be stored in an array, whose rows
index base pairs of s0, and whose columns are indexed by
the six canonical base pairs GC, CG, AU, UA, GU, UG (see
example in Table 1). Once Z∗(i, j; x, y) has been computed
for all base pairs that are visible, i.e. for which there is no
base pair (x, y) for which x < i < j < y, we can compute
the full partition function Z∗(s0).
Following [17], we define a total ordering on base pairs

(i, j) belonging to the target structure s0 that satisfy the fol-
lowing precedence rule for any two base pairs (i, j), (x, y).

(i, j) ≺ (x, y) ⇔ x < i < j < y or i < j < x < y (10)

From this ordering, we assign a base pair index to each
base pair (i, j), which is defined to be the rank of (i, j) in
the total ordering.
The following definitions correspond to the Turner

nearest neighbor energy model [13], which is an additive
loop model where a loop closed by external base pair (i, j)
is designated as a k-loop, if the loop contains k base pairs
interior to (i, j). Therefore, hairpin loops are 0-loops; base
pair stacks, bulge loops and internal loops are 1-loops; and
multiloops are k-loops for k ≥ 2 (also called (k + 1)-way
junctions), where the additional count is due to the outer
component adjacent to (i, j) [18].
Since AU-base pairs that close a loop are energetically

unfavorable, in the Turner energy model, there is an AU-
penalty we now define:

Table 1 Base pair dual partition function table. Given the target structure with sequence constraints depicted in Fig. 2, RNAdualPF
computes and stores all the partial dual partition function values for the substructures enclosed by each base pair

Index i j Type AU CG GC UA GU UG Z∗(i, j)

1 18 23 Tetraloop 0.000 0.000 0.364 0.000 0.000 0.000 0.364

2 17 24 Stack 10.977 17.859 76.923 10.977 10.977 3.525 131.238

3 16 26 R. bulge 11.690 70.834 184.603 12.771 13.347 3.915 297.160

4 6 10 Triloop 0.004 0.010 0.010 0.004 0.004 0.004 0.038

5 5 11 Stack 0.750 3.022 5.234 0.899 0.960 0.256 11.120

6 3 13 Int. loop 109.842 256.875 424.976 108.653 117.851 108.132 1126.330

7 2 14 Stack 10853.104 86208.448 170643.321 12575.544 13285.398 3647.077 297212.891

8 1 27 Multiloop 1558.575 7895.583 7895.583 1558.575 1558.575 1558.575 22025.464

9 1 28 S0 – – – – – – 88101.856

The first column indicates the base pair index which dictates the order in which the dual partition function is computed for different loops closed by the base pair (i,j), where
we the index of base pair (i, j) is defined to be the rank of (i, j) in the total ordering defined in Eq. (10). Columns i and j indicate the opening and closing positions of each base
pair. Type indicates the type of element in the secondary structure closed by each base pair, where R. bulge stands for right bulge, Stack for stacking base pair, and Int. loop
for interior loop. The dual partition function Z∗(i, j) of the substructure closed by base pair (i, j) appears in the rightmost column, while the partition function Z∗(i, j, X , Y) for
each of the six canonical base pairs is given in columns 5-10. Note that for base pair 1, sequence constraints depicted in Fig. 2 force i and j to be instantiated respectively to G
and C, hence the dual partition function Z∗(i, j; X , Y) is zero for any base pair different than GC. The last column of the last row of the table shows the total dual partition
function Z∗(s0) for the target structure s0
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eAU(i, j,X,Y ) =
{
0.5 if (i, j) is the outermost pair in a stem of s0, having AU,UA,GU,UG
0 otherwise. (11)

This AU-penalty is applied only if (i, j) is a base pair
adjacent to a triloop, a bulge, an internal loop or a multi-
loop, or if it is the outermost base pair of an external loop
in target structure s0, and (i, j) is instantiated by one of the
pairs AU, UA, GU, UG.When base-paired positions i, j are
clear from the context, we write eAU(X,Y ).
Here, we assume that in parsing the input target struc-

ture, a list BPcloseELorML has been created of those
base pairs (i, j), which close either an external loop or
a multiloop. Let I be the indicator function, it follows
that if (i, j) closes an external loop or multiloop, then
exp

(
− I[(i,j)∈BPcloseELorML]·eAU (X,Y )

RT

)
is the Boltzmann fac-

tor for a special AU-penalty, otherwise this factor equals
1. For clarity in the notation, this factor is denoted by

e(−
eIAU (X,Y )

RT ). Note that this term is distinct from the factor
exp(− eAU (X,Y )

RT ) applied to base pairs adjacent to a triloop,
a bulge or an internal loop, which does not depend on the
indicator function.

Hairpins
Let (i, j) close a hairpin in s0. The hairpin free energy term
H(j− i−1), arising solely from entropic considerations, is
defined by

H(j − i − 1)

=
{
hairpinE(j − i − 1) if j − i − 1 ≤ 30
hairpinE(30) + 1.75RT ln

(
j−i−1
30

)
otherwise

(12)

where hairpinE(j−i−1) designates the hairpin free energy
obtained from table look-up, when j − i − 1 ≤ 30.

Triloop Let TriLoopx,y denote the collection of special
triloops, xabcy, having an energy bonus triloopE(xabcy).

Z∗(i, j; x, y) = e

(

− eIAU (x,y)
RT

)

· exp
(

−H(j − i − 1) + eAU(xy)
RT

)

×
⎛

⎝
(
43 − |TriLoopx,y|

)+
∑

abc∈TriLoopx,y

exp
(

− triloopE(xabcy)
RT

)
⎞

⎠

(13)

Tetraloop Let TetraLoopx,y denote the collection of
special tetraloops, xabcdy, having an energy bonus
tetraloopE(xabcdy). Similarly, given nucleotides n1, n2 ∈

N , TetraLoopx,y(n1, n2) denotes the collection of special
tetraloops of the form xn1abn2y. Define Z∗(i, j; x, y) by

Z∗(i, j; x, y) = e

(

− eIAU (x,y)
RT

)

· exp
(

−H(j − i − 1)
RT

)

×
∑

n1,n2∈N

⎛

⎝ exp
(

−mismatch(x, y, n1, n2)
RT

)

×
⎧
⎨

⎩

(
42 − |TetraLoopx,y(n1, n2)|

)+
∑

ab∈TetraLoopx,y(n1,n2)

exp
(

− tetraloopE(xn1abn2y)
RT

)
⎫
⎬

⎭

⎞

⎠

(14)

Hexaloop Let HexaLoopx,y denote the collection of
special hexaloops, xabcdefy, having an energy bonus
hexaloopE(xabcdefy). Similarly, given nucleotides n1, n2,
HexaLoopx,y(n1, n2) denotes the collection of special hex-
aloops of the form xn1abcdn2y. Define Z∗(i, j; x, y) by

Z∗(i, j; x, y) = e

(

− eIAU (x,y)
RT

)

· exp
(

−H(j − i − 1)
RT

)

×
∑

n1,n2∈N

⎛

⎝ exp
(

−mismatch (x, y, n1, n2)
RT

)

×
⎧
⎨

⎩

(
44 − |HexaLoopx,y (n1, n2) |)+

∑

ab∈HexaLoopx,y(n1,n2)

exp

⎛

⎝−HexaloopE (xn1abcdn2y)
RT

⎞

⎠

⎫
⎬

⎭

⎞

⎠

(15)

Hairpin size exceeds four and is different than six
Define Z∗(i, j; x, y) by

Z∗(i, j; x, y) = e

(

− eIAU (x,y)
RT

)

· exp
(

−H(j − i − 1)
RT

)

×
⎛

⎝
∑

n1,n2∈N
exp

(

−mismatch (x, y, n1, n2)
RT

)

· 4j−i−3

⎞

⎠

(16)

Stacked base pairs, bulges and internal loops
Here, we consider the case of a 1-loop, which comprises
the case of stacked base pairs, bulges and internal loops.
The following cases correspond to each possibility.

Stacked base pair In this case, (i, j) stacks on the base
pair (i + 1, j − 1), and the partition function Z∗(i + 1, j −



Garcia-Martin et al. BMC Bioinformatics  (2016) 17:424 Page 6 of 24

1;U ,V ) has been computed. Let stack(X,Y ,U ,V ) denote

the free energy of base stack 5′ − XU − 3′
3′ − YV − 5′ obtained by

table look-up.

Z∗(i, j;X,Y ) = e

(

− eIAU (X,Y )

RT

)

·
∑

UV∈B
exp

(

− stack(X,Y ,U ,V )

RT

)

× Z∗ (i + 1, j − 1,U ,V
)

(17)

Bulge loop In this case, (i, j) closes a bulge in s0. Since
bulge size may exceed the values in table look-up, we
define the free energy for a bulge of size r by

bulge(r) =
{
bulgeE(r) if r ≤ 30
bulgeE(30) + 1.75RT ln

( r
30
)
otherwise.

(18)

If (i, j) closes a left bulge of size r in s0, then the bulge is
closed by base pair (i + r + 1, j − 1) involving nucleotide
pair U ,V , and

Z∗(i, j;X,Y ) = e

(

− eIAU (X,Y )

RT

)

·
∑

UV∈B
exp

(

− eAU
(
i, j,X,Y

)

RT

)

× exp
(

−bulge(r)
RT

)

· 4r · Z∗ (i + r + 1, j − 1,U ,V
)

(19)

while if (i, j) closes a right bulge in s0, then the bulge is
closed by base pair (i + 1, j − r − 1) involving nucleotide
pair U ,V , and

Z∗(i, j;X,Y ) = e

(

− eIAU (X,Y )

RT

)

·
∑

UV∈B
exp

(

− eAU (i, j,X,Y )

RT

)

× exp
(

−bulge(r)
RT

)

· 4r · Z∗ (i + 1, j − r − 1,U ,V
)

(20)

Internal loop In this case, (i, j) closes an internal loop in
s0, whose left [resp. right] portion is of size r1 [resp. r2].
Since internal loop size r = r1 + r2 may exceed the values
in table look-up, we define the free energy for an internal
loop of size r by

internal(r) =
{
internalE(r) if r ≤ 30
internalE(30) + 1.75RT ln

( r
30
)
otherwise.

(21)

The closing base pair (i+ r1 + 1, j− r2 − 1) of the inter-
nal loop of size r = r1 + r2 may involve the nucleotides
UV ∈ B, while the unpaired (mismatch) nucleotides in
positions i+1, j−1, i+r1, j−r2 may involveA,B,C,D ∈ N .
In addition, there is an energy penalty for non symmetric
internal loops,min(asym · |r1 − r2|,maxAsym), where the

value of the constants asym andmaxAsym are given in the
Turner energy model. Thus

Z∗(i, j;X,Y ) = e

(

− eIAU (X,Y )

RT

)

· exp
(

−min (asym · |r1 − r2|,maxAsym)

RT

)

×
∑

UV∈B

∑

A,B,C,D∈N
exp

(

− eAU
(
i, j,X,Y

)

RT

)

× exp
(

− internal (r1 + r2)
RT

)

· 4r1+r2−4

× exp
(

−mismatch(X,Y ,A,B) + mismatch(V ,U ,D,C)

RT

)

×Z∗ (i + r1 + 1, j − r2 − 1,U ,V
) (22)

External loop
Despite the fact that, by following the total order on base
pairs defined in Eq. (10), the dual partition function of
multiloops is always computed before the dual partition
function of the external loop, the computation of the dual
partition function of multiloops will be easier to under-
stand if the dual partition function of the external loop is
defined in advance.
In order to improve speed, some implementations of

RNA thermodynamics-based algorithms ignore the con-
tribution of dangling positions, which corresponds to
Vienna RNA Package -d0 flag. RNAdualPF also
includes this option, which dramatically increases the
speed of the algorithm. The reason behind this difference
of performance is clear from the following definitions.
Suppose that H =[ (i1, j1), . . . , (ik , jk)] constitutes the

list of k external base pairs of s0, where i1 < j1 < i2 < j2
< · · ·< ik < jk . For each (ir , jr), with 1 ≤ r ≤ k, and for each
choice of base pair GC, CG, AU, UA, GU, UG, the value
Z∗(ir , jr ;Xr ,Yr) has been previously computed and stored
by dynamic programming, as well as the sum Z∗(ir , jr).
When the contribution of dangles is ignored, the dual
partition function of an external loop with � nucleotide
positions external to every base pair is defined by

Z∗(s0) = 4� ·
k∏

r=1
Z∗(ir , jr) (23)

where � = n − ∑

r=1,...,k
(jr − ir + 1) and n is the length of

the target structure s0.
The default treatment of dangles in RNAdualPF

described below corresponds to Vienna RNA
Package -d2 flag, where both flanking positions of
each external base pair contribute to the free energy.
Let D =[ a1, b1, . . . , ak , bk]⊆[ i1 − 1, j1 + 1, · · · , ik , jk] be
a list of those nucleotide positions that are adjacent to
the k external base pairs (i1, j1), . . . , (ik , jk). The ordered
multiset [ a1, b1, . . . , ak , bk] can be considered as a collec-
tion of constraints, so that (for instance) if a2 = i2 − 1,
and a2 = j1 + 1, then a2 = b1 and any nucleotide value
that is assigned to b1 must simultaneously be assigned
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to a2. Moreover, there can also be an overlap between
the list of base paired positions in H [ i1, j1, . . . , ik , jk]
and the multiset D =[ a1, b1, . . . , ak , bk]. If (for instance)
j1 = i2 − 1, then b1 = i2 and a2 = j1. Therefore, in the
computation we have to account for these constraints.
Let m denote the number of unpaired positions in D,
without repetitions, and define Ar ,Br as the nucleotides
instantiated respectively at ar , br . The energy term for
a 5′-dangle [resp. 3′-dangle] on base pair (x, y) with
nucleotides U ,V is denoted by Ed5(x, y, x − 1;U ,V ,W )

[resp Ed3(x, y, y + 1;U ,V ,W )] where the dangle position
x − 1 [resp. y + 1] is assigned nucleotide W. With the
notation just described, we have

Z∗(s0) =
∑

〈(U1,V1),...,(Uk ,Vk )〉∈Bk

∑

{A1,B1,...,Ak ,Bk∈N 2k}
4�−m

×
k∏

r=1

(
Z∗ (ir , jr ;Ur ,Vr

)

× exp
(

−Ed5
(
ir , jr , ar ;Ur ,Vr ,Ar

)+ Ed3
(
ir , jr , br ;Ur ,Vr ,Br

)

RT

)

(24)

Depending on the target structure s0, it can happen that
the second sum of Eq. (24) must be restricted to range
over strictly less than 42k many RNA sequences. This is
explained as follows. If i1 = 1 [resp. jr = n] then there
is no position for a 5′ [resp. 3′] dangle, and hence the
nucleotide sequences considered in the second summa-
tion would have length strictly less than 2k. Moreover,
certain 5′ dangled positions could be identical to 3′ dangle
positions, which arises for instance when jk + 2 = ik+1;
alternatively, certain dangled positions could be identical
with base-paired positions, which arises for instance when
jk + 1 = ik+1. In such situations, instantiations of the 3′-
dangle on (ik , jk) and the 5′-dangle on (ik+1, jk+1) are not
independent, thus leading to a restriction of the range of
the second summation in Eq. (24). A similar restriction is
implicitly assumed in the treatment of external loops in
this section and of multiloops in the next section.
The algorithm performance can be improved by divid-

ing the external loop into groups of components having
interdependently constrained dangling positions, as just
explained. Define two base pairs (x, y), (x′, y′) as adjacent
if x < y < x′ < y′ and x′−y ≤ 2 – i.e. dangling positions of
the base pairs (x, y), (x′, y′) are constrained. Let G denote
a maximal collection of adjacent base pairs belonging to
H =[ (i1, j1), . . . , (ik , jk)], together with their associated
dangle positions inD =[ i1−1, j1+1, . . . , ik−1, jk+1]. It is
important to note thatH∪D is thus partitioned into a col-
lection of g disjoint groups G =[G1, . . . ,Gg]. Therefore,
we can divide an external loop of k helices into a collection
groups G of size g ≤ k, and p unpaired positions that are
external to every base pair of s0 and not adjacent to any
base pair.

For a group G with h base pairs, let H(G) =
[ (κ1, λ1), . . . , (κk , λk)] denote the list of base pairs in
G, and let D(G) =[α1,β1, . . . ,αh,βh]⊆[ κ1 − 1, λ1 +
1, · · · , κh − 1, λh + 1] denote their associated dangle posi-
tions. If Ur ,Vr ,Ar ,Br denote the nucleotides instantiated
at the base pair r = (κr , λr) and its respective dan-
gling positions αr ,βr respectively, then the dual partition
function of G is the following.

Z∗(G) =
∑

〈(U1,V1),...,(Uh ,Vh)〉∈Bh

∑

{A1,B1,...,Ah ,Bh∈N 2h}

×
h∏

r=1

(
Z∗ (κr , λr ;Ur ,Vr)

× exp
(

−Ed5 (κr , λr ,αr ;Ur ,Vr ,Ar) + Ed3 (κr , λr ,βr ;Ur ,VrBr)

RT

)

(25)

where the range of the second summation can be con-
strained by the overlap among positions in D(G) and
between positions in D(G) and H(G), as explained for
Eq. (24).
Finally, since there are no shared dangling positions

between groups, the dual partition function of an external
loop is defined by

Z∗(s0) = 4p ·
g∏

r=1
Z∗(Gr). (26)

Multiloop
Suppose that (i, j) closes a multiloop in s0, which is a k-
loop, or (k + 1)-way junction, for k > 1, where there
are � unpaired bases in the multiloop. Suppose that the k
components of the multiloop are closed by the base pairs
(i1, j1), . . . , (ik , jk) with the property that i < i1 < j1 <

i2 < j2 < · · · < ik < jk < j. Assume that for all
nucleotide choices in B for each of the k base pairs of the
multiloop (ir , jr), for 1 ≤ r ≤ k, the value Z∗(ir , jr ;Xr ,Yr)
has previously been computed and stored by dynamic pro-
gramming, as well as the sum Z∗(ir , jr). The computation
of the dual partition function is similar to that of the
external loop. However, in this case we have to add the
contribution of the base pair closing the multiloop (i, j),
the AU-penalties applied to this base pair, and the ener-
getic penalty of a multiloop a + b · (k + 1) + c · �, where
the values of the constants a, b and c are given in the
Turner energy model. Then, the dual partition function of
a multiloop without accounting for dangling positions is

Z∗(i, j;X,Y ) = e

(

− eIAU (X,Y )

RT

)

· exp
(

−a + b · (k + 1) + c�
RT

)

· 4�

× exp
(

− eAU (i, j,X,Y )

RT

)

·
∑

〈(U1,V1),...,(Uk ,Vk )〉∈Bk

×
k∏

r=1
Z∗ (ir , jr ;Ur ,Vr

)

(27)
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The notation we use to define the dual partition func-
tion of multiloops with dangling positions is similar to
that described for external loops. However, some modi-
fications are required in the previously given definitions,
since we have to take into account the flanking positions
of the base pair (i, j) closing the multiloop. Let H =
[ (i1, j1), . . . , (ik , jk), (i, j)] be the collection of k base pairs
closing one of the k components of the multiloop, and the
base pair (i, j) closing the multiloop, and define the mul-
tiset D =[ a1, b1, . . . , ak+1, bk+1]⊆[ i1 − 1, j1 + 1, · · · , ik −
1, jk + 1, i + 1, j − 1] of nucleotide positions adjacent to
the base pairs in H. Due to the possible overlap with the
base pair closing the multiloop and its flanking positions,
there are additional constraints in the ordered multiset
[ a1, b1, . . . , ak+1, bk+1], so that (for instance) if a1 = i1−1,
and i1 = i + 1, then a1 = ak+1 and any nucleotide value
that is assigned to a1 must simultaneously be assigned to
ak+1. Moreover, there can also be an overlap between the
list of base paired positions [ i1, j1, . . . , ik , jk , i, j] and the
multiset [ a1, b1, . . . , ak+1, bk+1]. If (for instance) i = i1−1,
then ak+1 = i1 and a1 = i.
Let m denote the number of unpaired positions in D,

without repetitions. Then, the dual partition function of a
multiloop with dangling positions is defined as follows.

Z∗(i, j;X,Y ) = e

(

− eIAU (X,Y )

RT

)

·
∑

〈(U1 ,V1),...,(Uk ,Vk )〉∈Bk

∑

{A1 ,B1 ,...,Ak+1 ,Bk+1∈N 2(k+1)}

exp
(

− a + b · (k + 1) + c�
RT

)

· 4�−m · exp
(

− eAU
(
i, j,X,Y

)

RT

)

×
k∏

r=1

(

Z∗ (ir , jr ;Ur ,Vr
)

× exp(− Ed5
(
ir , jr , ar ;Ur ,Vr ,Ar

)+ Ed3(ir , jr , br ;Ur ,Vr ,Br)

RT

)

× exp
(

− Ed3
(
j, i, ak+1;Y ,X,Ak+1

)+ Ed5
(
j, i, bk+1;Y ,X,Bk+1

)

RT

)

(28)

As explained for Eq. (24), it can happen that the second
summation must be restricted to range over strictly less
than 42k many RNA sequences.
A decomposition similar that for external loops can

be performed to improve the performance in the
computation of the dual partition function of a multiloop.
In a multiloop, in addition to the adjacency definition
given for external loops, we consider the base pair (i, j)
that closes the multiloop as adjacent to a base pair (x, y)
that closes a component of the multiloop, where i < x <

y < j, if either x ≤ i + 2 or y ≥ j − 2. Then, let G denote
a maximal collection of adjacent base pairs belonging to
H =[ (i1, j1), . . . , (ik , jk), (i, j)], together with their associ-
ated dangle positions in D =[ i1 − 1, j1 + 1, . . . , ik − 1, jk +
1, i + 1, j − 1]. This decomposition produces a collection
G of g disjoint groups G1, . . . ,Gg , one of which, desig-
nated the closing group Gc contains the closing base pair

(i, j) of the multiloop, and g − 1 of which, designated as
non-closing groups Gnc, do not contain the base pair (i, j).
Non-closing groups have the same composition as those

defined for external loops – i.e. a collection of h base
pairs H(Gnc) =[ (κ1, λ1), . . . , (κh, λh)] and a set of dan-
gling positionsD(Gnc) =[α1,β1, . . . ,αh,βh]⊆[ κ1−1, λ1+
1, · · · , κh − 1, λh + 1]. Therefore, we can compute the
dual partition function Z(Ggc) of a non-closing group as
described in Eq. (25). In addition, the collection of non-
closing groups of size g−1 of a multiloop of k components
is denoted by Gnc, where 0 ≤ (g − 1) ≤ k.
Therefore, a multiloop of k components and � unpaired

positions can be decomposed into one closing group Gc,
a collection of non-closing groups Gnc, and p unpaired
positions that are not adjacent to any base pair, with
0 ≤ p ≤ �.
In a non-closing group, the collection of base pairs of size

h + 1 is denoted by H(Gc) =[ (κ1, λ1), . . . , (κh, λh), (i, j)],
where the base pair (i, j) closing the multiloop is at the
last position. The ordered multiset of adjacent positions is
denoted byD(Gc) =[α1,β1, . . . ,αh+1,βh+1]⊆[ κ1−1, λ1+
1, · · · , κh −1, λh +1, i+1, j−1], where the positions adja-
cent to i and j are at the last positions are respectively
denoted by αh+1,βh+1. A graphical example of a closing
group and a non-closing group is shown in Fig. 1e, where
the positions of a non-closing group with 1 base pair are
highlighted in green and the positions of the closing group
are highlighted in red and blue, and where the base pair
(i, j) that closes the multiloop is depicted in red.
For a closing group Gc with h + 1 base pairs in H(Gc) =

[ (κ1, λ1), . . . , (κh, λh), (i, j)] and their flanking positions
D(Gc) =[α1,β1, . . . ,αh+1,βh+1]⊆[ κ1−1, λ1+1, · · · , κh−
1, λh + 1, i + 1, j − 1], let X,Y denote the nucleotides
assigned to the closing base pair of the multiloop (i, j), and
let Ur ,Vr ,Ar ,Br denote the nucleotides assigned respec-
tively to the base pair r = (κr , λr , ) and its flanking
positions αr ,βr . Then, the the dual partition function
Z∗(Gc;X,Y ) of the closing group is defined by

e

(

− eIAU (X,Y )

RT

)

·
∑

〈(U1,V1),...,(Uk ,Vh)〉∈Bh

∑

{A1,B1,...,Ah+1,Bh+1∈N 2(h+1)}

× exp
(

− eAU
(
i, j,X,Y

)

RT

)

·
h∏

r=1

(
Z∗ (κr , λr ;Ur ,Vr)

× exp
(

−Ed5 (κr , λr ,αr ;Ur ,Vr ,Ar) + Ed3 (κr , λr ,βr ;Ur ,Vr ,Br)

RT

)

× exp
(

−Ed3
(
j, i,αh+1;Y ,X,Ah+1

)+ Ed5
(
j, i,βh+1;Y ,X,Bh+1

)

RT

)

(29)

In the same way as in Eq. (24), the values of the second
summation are constrained to the possible choices among
overlapping positions.
Then, the dual partition function Z∗(i, j;X,Y ) of the

multiloop with k components and � unpaired positions,
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Fig. 1 Sampling dependency examples in RNAdualPF for different structural elements: (a) stacked base pair, (b) hairpin, (c) 1 × 3 internal loop, (d)
3 × 3 internal loop and (e) multiloop. Base pair (i, j) to be sampled is highlighted in red, positions whose energy contribution is dependent on the
instantiation of (i, j) are highlighted in blue, and positions that are mutually dependent, but independent of the instantiation of (i, j), are highlighted
in green. Unpaired positions where the nucleotide choice has no effect in the free energy of the structure are indicated in black

where p of which are not adjacent to any base pair, is
defined by

Z∗(i, j;X,Y ) = exp
(

−a + b · (k + 1) + c�
RT

)

· 4p (30)

× Z∗ (Gc;X,Y ) ·
∏

Gnc∈Gnc

Z∗ (Gnc)

Sampling
Once the dual partition function Z∗(i, j) and its subcases
Z∗(i, j;X,Y ) for each base pair (i, j) have been computed,
it is possible to perform a Boltzmann weighted sam-
pling of positions i and j. For example, given the target
structure with sequence constraints depicted in Fig. 2,
RNAdualPF computes the dual partition function table
shown in Table 1. The dual partition function of the sub-
structure enclosed by the base pair (i, j) is Z∗(i, j), and
the dual partition function of the substructure enclosed
by the base pair (i, j) where i, j are currently instanti-
ated by the nucleotides X,Y is denoted by is Z∗(i, j;X,Y ).
Therefore, the Boltzmann probability of X,Y at positions
i, j in the substructure enclosed by the base pair (i, j) is

Fig. 2 Target structure with sequence constraints used as input of
RNAdualPF to compute the dual partition function values shown in
Table 1. Sequence constraints are highlighted in red

Z∗(i, j;X,Y )/Z∗(i, j) and can be sampled using the roulette
wheel method.
Due to the Turner energy model, it is necessary to deter-

mine nucleotide positions whose instantiation influences
the energy (hence Boltzmann probability) of other posi-
tions, and subsequently all mutually dependent positions
must be instantiated simultaneously. Figure 1 illustrates
the mutual dependencies that must be considered when
sampling different types of elements, where the base pair
(i, j) to be sampled is highlighted in red, positions whose
sampling probability is dependent on the instantiation of
(i, j) are highlighted in blue, and positions that are mutu-
ally dependent, but independent of the instantiation of
(i, j), are highlighted in green.
Since the dynamic programming algorithm for the dual

partition function proceeds from inner to outer base pairs,
using the total ordering ≺ in Eq. (10), the sampling order
of base pairs proceeds from outer to inner positions,
i.e. from largest base pair index to smallest. In order to
account for mutual dependencies in the sampling step,
we define the function sample(k,T , i, j,X,Y ) for each base
pair (i, j) in S0, where k indicates the base pair index
defined from Eq. (10), T indicates the type of struc-
tural element closed by base pair (i, j) in the target RNA
secondary structure, as shown in Table 1, and X,Y are
the instantiated nucleotides at positions (i, j). Due to the
mutual dependencies, sampling a base pair with base pair
index k closing an m-loop, for m > 0, forces the instanti-
ation of all inner closing base pairs of them-loop, and the
base pair index of each such inner base pair is strictly less
than k. For this reason, except in the case of external loops,
the outermost base pair (i, j) has been always instantiated
before sample(k,T , i, j,X,Y ) is called, and therefore the
instantiation X,Y is given as a parameter of the sampling
function.
The Boltzmann probability of each possible instan-

tiation of mutually dependent positions can be com-
puted on the fly in the backward step. However,
in order to improve the speed of the algorithm, in
the forward step RNAdualPF stores (for each base
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pair) the conditional dual partition function values of
instantiations of interdependent positions. These tables
are used by the sampling function, since each value cor-
responds to the dual partition function conditional on
a specific instantiation of the positions to be sampled
by sample(k,T , i, j,X,Y ). Since the sampling procedure
depends on the type T of element, we describe the func-
tion sample(k,T , i, j,X,Y ) for each type of element –
hairpin, stacked base pair, internal loop (which also com-
prises left and right bulge), multiloop and external loop
as depicted in Fig. 1. For each of these cases, the values
are stored in the conditional dual partition function table
associated with the closing base pair (i, j).

Hairpins
When hairpin size exceeds three (Fig. 1a), since the base
pair (i, j) has been previously instantiated, flanking posi-
tions i + 1, j − 1 are sampled first. Given the current
assignment X,Y , the Boltzmann probability of sampling
respectively the nucleotidesU ,V at the flanking positions
i + 1, j − 1 is

P
(
i + 1 = U , j − 1 = V |i = X, j = Y

)

= Z∗ (i, j, i + 1, j − 1;X,Y ,U ,V
)

Z∗ (i, j;X,Y
) (31)

Therefore, in the forward step RNAdualPF stores in a
table the conditional dual partition function of each pos-
sible instantiation {X,Y ,U ,V } of the base pair (i, j) and its
flanking positions i + 1, j − 1 respectively, defined by

Z∗ (i, j, i + 1, j − 1;X,Y ,U ,V
)

= e

(

− eIAU (X,Y )

RT

)

· exp
(

−H(j − i − 1)
RT

)

·

exp
(

−mismatch(X,Y ,U ,V )

RT

)

· 4j−i−3 (32)

Then, remaining unpaired positions are uniformly sam-
pled, since the nucleotide choice does not change the
final free energy. Triloops, tetraloops and hexaloops are
exceptions to this rule, since there are special loops that
contribute to or penalize the free energy. In those cases,
we have to account for the special loops, as defined in
“Hairpins” section.
Although it could seem to be a waste of space to store

a different conditional dual partition function table for
each base pair (i, j), even for two different hairpins of
the same size in the target structure, one should note
that RNAdualPF allows sequence constraints, and thus
Z∗(i, j) could possibly differ from Z∗(i′, j′) when (i, j) and
(i′, j′) close hairpins of the same size.

Stacking base pairs
As depicted in Fig. 1b, sampling probability of a base pair
with base pair index k − 1 is dependent on the value
sampled at the adjacent stacking base pair with base pair
index k. Therefore, sample(k, Stack, i, j,X,Y ) samples the
base pair (i + 1, j − 1) using the conditional probability
given the instantiation of base pair (i, j) by X,Y , defined as
follows:

P
(
i + 1 = U , j − 1 = V |i = X, j = Y

)

= Z∗ (i, j, i + 1, j − 1;X,Y ,U ,V
)

Z∗ (i, j;X,Y
) (33)

The conditional dual partition function values stored
in the forward step correspond to each instantiation
{X,Y ,U ,V } of the base pairs (i, j), (i+1, j−1), denoted by

Z∗ (i, j, i + 1, j − 1;X,Y ,U ,V
)

= e

(

− eIAU (X,Y )

RT

)

· exp
(

− stack(X,Y ,U ,V )

RT

)

× Z∗ (i + 1, j − 1,U ,V
)

(34)

Internal loops
The energy contribution of internal loops in the Turner
energy model depends on the flanking unpaired positions
of both the inner and outer closing base pairs, hence the
sampling probability of the inner base pair cannot be sepa-
rated from the adjacent unpaired positions. Moreover, for
specific sizes of internal loop (1 × 1, 1 × 2, 2 × 1, 1 × N
and N × 1), the inner and outer closing base pairs share
flanking positions. In these cases, all the unpaired posi-
tions and the outer base pair must be sampled at the same
time, since the energy contribution of each combination of
base pairs and flanking positions is different. In the 1 × 3
internal loop depicted in Fig. 1c, if the outer base pair (i, j)
is instantiated by X,Y , then let P(k = U , l = V , n1 =
A, n2 = B, n3 = C|i = X, j = Y ) denote the probabil-
ity of sampling the nucleotides U ,V ,A,B,C respectively
at positions k, l, n1, n2, n3, where (k, l) is the inner closing
base pair, n1 is the flanking position at i + 1 shared by the
base paired positions i and k, and n2 and n3. In the fol-
lowing equation, let P(U ,V ,A,B,C|X,Y ) abbreviate the
conditional probability just defined. Then

P (U ,V ,A,B,C|X,Y )

= Z∗ (i, j, k, l, n1, n2, n3;X,Y ,U ,V ,A,B,C
)

Z∗ (i, j;X,Y
) (35)

RNAdualPF computes and stores the condi-
tional dual partition function of each possible
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instantiation {X,Y ,U ,V ,A,B,C} respectively at positions
i, j, k, l, n1, n2, n3, where the value Z∗(i, j, k, l, n1, n2, n3;
X,Y ,U ,V ,A,B,C) is defined by

e

(

− eIAU (X,Y )

RT

)

· exp
(

−min(asym · |(k − i) − (j − l)|,maxAsym)

RT

)

× 4j−l−3 · exp
(

− eAU (i, j,X,Y )

RT

)

× exp
(

− internal
(
k − i + j − l − 2

)

RT

)

× exp
(

−mismatch(X,Y ,A,B) + mismatch(V ,U ,C,A)

RT

)

× Z∗(k, l,U ,V )

(36)

For internal loops of sizes (1 × 1, 1 × 2, 2 × 1, 1 ×
N and N × 1) similar conditional dual partition func-
tion tables are computed following the definitions in
“Internal loop” section.

Other internal loops: When there are no shared flanking
positions between the two base pairs that close an inter-
nal loop, as depicted in Fig. 1d, the energy contribution of
innermost base pair and its respective flanking positions
is independent of those of the outermost base pair.
In this case, RNAdualPF samples first the flanking posi-

tions i + 1, j − 1 of the outermost base pair (i, j), whose
sampling probability is solely dependent on the instanti-
ated nucleotides X,Y at positions i, j. Is not necessary to
store any conditional dual partition function for sampling
these positions, since the probability of sampling the val-
ues A,B at the flanking positions i + 1, j − 1, given the
assignment X,Y is defined by

P
(
i + 1 = A, j − 1 = B|i = X, j = Y

)

=
exp

(
−mismatch(X,Y ,A,B)

RT

)

∑
C,D∈N exp

(
−mismatch(X,Y ,C,D)

RT

) (37)

where mismatch penalties are obtained from table look-
up. Finally, the innermost base pair (k, l) and its flanking
positions k− 1, l+ 1 are sampled together. In this case, we
need to store an additional value Z∗(k − 1, l+ 1), which is
given by

Z∗ (k − 1, l + 1) =
∑

UV∈B

∑

C,D∈N

exp
(

−mismatch(V ,U ,D,C)

RT

)

· Z∗(k, l,U ,V )

(38)

Then, following the same notation, the probability of sam-
pling the nucleotides V ,U ,D,C respectively at positions
k, l, k − 1, l + 1 is

P (k = V , l = U , k − 1 = D, l + 1 = C)

= Z∗ (k, l, k − 1, l + 1;V ,U ,D,C)

Z∗ (k − 1, l + 1)
(39)

Therefore, the conditional dual partition function of
each possible instantiation {V ,U ,D,C} stored in the cor-
responding table is defined as

Z∗ (k, l, k − 1, l + 1;V ,U ,D,C) (40)

= exp
(

−mismatch(V ,U ,D,C)

RT

)

· Z∗(k, l,U ,V )

Finally, since the remaining unpaired position does not
contribute to the free energy, it is uniformly sampled.

Multiloops and external loops
As explained in “External loop” section, if dangling posi-
tions are not included in the computation, sampling an
external base pair or the closing base pair (i, j) of a
multiloop from Z∗(i, j) is trivial. On the other hand, by
including dangling positions in the sampling, there is a
dramatic increase in the space complexity of RNAdualPF,
albeit the space used is only a constant factor larger.
However, the decompositions into groups described in
“External loop” and “External loop” sections allow to sam-
ple the positions of each group independently.
The example shown in Fig. 1e depicts a multiloop with

two groups: a non-closing group Gnc highlighted in green,
and a closing group Gc highlighted in red and blue, where
the closing base pair of the multiloop (i, j) is marked in
red.
In a non-closing group Gnc all base pairs in H(Gnc) and

dangling positions in D(Gnc) must be sampled together.
Therefore, the conditional dual partition function of each
possible instantiation of nucleotides at the h closing pairs
inH(Gnc) and their adjacent positions inD(Gnc) is stored.
Let U = {U1,V1, . . . ,Uh,Vh} denote an instantiation of
the h base pairs in H(Gnc) =[ κ1, λ1, . . . , κh, λh], and let
W = {A1,B2, . . . ,Ah,Bh} denote an instantiation of the h
flanking positions in D(Gnc) =[α1,β1, . . . ,αh,βh] in the
non-closing group Gnc. Then, the probability of sampling
U ,W is

P(H(Gnc) = U ,D(Gnc) = W)

= Z∗ (G,H (Gnc) ,D (Gnc) ;U ,W)

Z∗(G)
(41)
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Therefore, the conditional dual partition function of each
instantiation U ,W at H(Gnc),D(Gnc), stored in the table
of the group, is defined by

Z∗ (G,H (Gnc) ,D (Gnc) ;U ,W)

=
h∏

r=1

(

Z∗ (κr , λr ;Ur ,Vr)

× exp
(

−Ed5 (κr,λr ,αr;Ur,Vr ,Ar) +Ed3 (κr,λr,βr;Ur ,Vr,Br)
RT

))

(42)

Recall that the base pairs in H(Gnc) are adjacent.
Therefore, due the constraints given by the overlap-
ping positions within D(Gnc), and between D(Gnc) and
H(Gnc), explained in “External loop” section, the num-
ber of possible instantiations U ,W of H(Gnc),D(Gnc) is
≤ (6h · 4h+1).
In a similar way, sampling from the closing group

Gc closed by the base pair (i, j), with h + 1 base
pairs in H(Gc) and their corresponding flanking posi-
tions in D(Gc) requires us to store the conditional dual
partition function of each instantiation of nucleotides
{X,Y ,U ,W} respectively at i, j,H(Gc),D(Gc), where
U = {U1,V1, . . . ,Uh,Vh} denotes an instantiation of
the h first base pairs [ (κ1, λ1), . . . , (κh, λh)] in H(Gc),
W = {A1,B2, . . . ,Ah+1,Bh+1} denotes an instantia-
tion of the 2 · (h + 1) flanking positions in D(Gc) =
[α1,β1, . . . ,αh+1,βh+1], and X,Y denotes an instantiation
of (i, j). The probability of the instantiation U ,W , given
the nucleotides X,Y is

P
(
H(Gc) = U ,D(Gc) = W|i = X, j = Y

)

= Z∗ (Gc, i, j,H(Gc),D(Gc);X,Y ,U ,W
)

Z∗ (Gc;X,Y )
(43)

Then, the values stored in the table of the closing
group correspond to the conditional dual partition func-
tion of each instantiation {X,Y ,U ,W} are given by
Z∗(Gc, i, j,H(Gc),D(Gc);X,Y ,U ,W), which is defined by
the following expression:

e

(

− eIAU (X,Y )

RT

)

· exp
(

− eAU (i, j,X,Y )

RT

)

·
h∏

r=1

((
Z∗ (κr , λr ;Ur ,Vr)

· exp
(

−Ed5 (κr , λr ,αr ;Ur ,Vr ,Ar) + Ed3 (κr , λr ,βr ;Ur ,Vr ,Br)

RT

))

· exp
(

−Ed3
(
j, i,αh+1;Y ,X,Ah+1

)+ Ed5
(
j, i,βh+1;Y ,X,Bh+1

)

RT

)

(44)

As a final remark, we would like to recall that all the
conditional dual partition function values are computed
and stored in the forward step at the same time as the
dual partition function. Therefore, despite the consequent

increase of space complexity in the algorithm, the compu-
tation of the values required for correct sampling does not
involve a greater time complexity.

Scaling
The sequence partition function Z∗(s0) growsmuch faster
than the usual structure partition function Z(a), and so
scaling must be used in the implementation. Let C > 2
be a user-defined constant. By a slight modification of the
previous recursions, we actually compute Z†(i, j;X,Y ) =
Z∗(i,j;X,Y )

Cj−i+1 , and hence Z†(s0) = Z∗(s0)
Cn , where n is the length

of s0. For instance, the analogue of Eq. (16) is

Z† = Z∗ (i, j; x, y
)

Cj−i+1

= e

(

− eIAU (x,y)
RT

)

·
exp

(
−H(j−i−1)

RT

)

Cj−i+1

×
⎛

⎝
∑

n1,n2∈N
exp

(

−mismatch(x, y, n1, n2)
RT

)

· 4j−i−3

⎞

⎠

(45)

and the analogue of Eq. (17) is

Z† = Z∗(i, j;X,Y )

Cj−i+1

= e

(

− eIAU (X,Y )

RT

)

· 1
2

·
∑

UV∈B
exp

(

− stack(X,Y ,U ,V )

RT

)

× Z† (i + 1, j − 1,U ,V
)

(46)

This modification does not affect properties of sequences
sampled from the low energy ensemble, since the same
scaling factor appears in both the numerator and denom-
inator of all conditional probabilities. For instance, the
analogue of Eq. (31) is

P
(
i + 1 = U , j − 1 = V |i = X, j = Y

)

= Z∗ (i, j, i + 1, j − 1;X,Y ,U ,V
)

Z∗ (i, j;X,Y
) (47)

= Z†
(
i, j, i + 1, j − 1;X,Y ,U ,V

)

Z†(i, j;X,Y )

Controlling GC-content
The GC-content of an RNA sequence a = s1, . . . , sn is
the number of nucleotides that are either G or C. Instead
of computing Z∗(i, j;X,Y ) and Z∗(s0), we can compute
Z∗(i, j;X,Y ;α) and Z∗(s0,α), defined to be the corre-
sponding partition dual partition functions, restricted to
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sequences having GC-content of α. Note well that GC-
content α includes the closing nucleotidesX and Y respec-
tively located at positions i and j; i.e.

Z∗ (i, j;X,Y ;α
) =

∑

ai,...,aj ,GC(ai,...,aj)=α

ai=X,aj=Y ,ai+1,...,aj−1∈N
exp

(−E
(
ai, . . . , aj; s0[ i, j]

)
/RT

)
(48)

where s0[ i, j] denotes the restriction of target structure
s0 to the interval [ i, j]. We describe two particular sub-
cases, to provide the idea of how modifications need to be
undertaken.

Triloop
Note that the number of RNA sequences of length m hav-
ing GC-content of α is

(m
α

) · 2α · 2m−α = (m
α

) · 2m ≤ 4m,
since α selected positions must be either G or C, yielding
the term 2α , while the remaining m − α positions must
be either A or U, yielding the term 2m−α . Assume that
γ (XY ) = |{X,Y } ∩ {G,C}| = β . Then

Z∗ (i, j;X,Y ;α
) = e

(

− eIAU (X,Y )

RT

)

· exp
(

−H(j − i − 1) + eAU(xy)
RT

)

×

⎛

⎜
⎜
⎜
⎝

(
j − i − 1
(α − β)

)

· 2j−i−1 − |TriLoopx,y|

+
∑

abc∈TriLoopx,y
γ (abc)=α−β

exp
(

− triloopE(xabcy)
RT

)

⎞

⎟
⎟
⎟
⎠

(49)

Multiloop and external loop
Assume that (i, j) closes a multiloop, which is a (k +
1)-way junction with � unpaired nucleotides. Assume
that the ordered multiset of potential dangle positions
is D =[ a1, b1, . . . , ak+1, bk+1], where ar = ir − 1
and br = jr + 1 for r = 1, . . . , k, and ak+1 = i
and bk+1 = j, and assume that there are m unpaired
positions that are not adjacent to a base pair in the
multiloop. If r denotes an RNA sequence of arbitrary
length, then let the function γ (r) denote the GC-count
in r. Given an assignment of nucleotide base pairs
U1V1, . . . ,UkVk to (i1, j1), . . . , (ik , jk), where UrVr ∈
{GC,CG,AU ,UA,GU ,UG}, and given an assignment
A1,B1, . . . ,Ak ,Bk of dangle nucleotides, where Ar ,Br ∈
N , for r = 1, . . . , k, we let

γ (AB) = γ (A1, . . . ,Ak ,B1, . . . ,Bk) . (50)

Then the dual partition function of amultiloop with a GC-
content of α is defined by setting Z∗(i, j;X,Y ;α) equal to
the following:

e

(

− eIAU (X,Y )

RT

)

·
∑

α1+···+αk≤α

∑

{Ur ,Vr∈B:r=1,...,k}

∑

{A1,B1,...,Ak ,Bk∈N 2k }

exp
(

−a + b · (k + 1) + c�
RT

)

·
(

(� − m)
(
α −∑k

r=1 αr − γ (AB)
)
)

· 2�

× exp
(

− eAU (i, j,X,Y )

RT

)

·
k∏

r=1

(

Z∗ (ir , jr ;Ur ,Vr ;αr
)

× exp
(

−Ed5
(
ir , jr , ar ;Ur ,Vr ,Ar

)+ Ed3
(
ir , jr , br ;Ur ,Vr ,Br

)

RT

)

× exp
(

−Ed3
(
j, i, ak+1;Y ,X,Ak+1

)+ Ed5
(
j, i, bk+1;Y ,X,Bk+1

)

RT

(51)

Since the modification required in the remaining cases
follows similar reasoning as in the treatment of the hair-
pin and external loop just described, the details for these
remaining cases are not given.
An additional challenge of computing the dual partition

function with GC-content control is the combinatorial
problem of efficiently counting the number N of instan-
tiations of the external loop, consisting of all positions
external to every base pair, with GC-content k, where the
user can stipulate that certain positions are constrained to
contain nucleotides consistent with IUPAC codes. To this
end, we implemented the combinatorial algorithm defined
in Supplementary Information.

Sampling with GC-content
The implementation of sampling with GC-content
is performed in a similar manner as described in
“Sampling” section, with some notable differences.
First, the sampling function is redefined by

sample(k,T , i, j,X,Y ,α), where k indicates the base pair
index in the ordering defined by Eq. (10) for the base pair
(i, j) that is already instantiated by nucleotide pair XY,
and T designates the type of structural element closed by
base pair (i, j) in the target RNA secondary structure, as
shown in Table 1. The function sample(k,T , i, j,X,Y ,α)

instantiates all positions of the loop having outer closing
base pair (i, j), including its inner closing base pair(s)
and which returns the GC-content of the sampled
loop. Moreover, the GC-content of the subsequence
a[ i + 1, j − 1]= (ai+1, . . . , aj−1) will be α once the entire
sequence a1, . . . , an is sampled.
Second, RNAdualPF stores a conditional dual partition

function table for each base pair (i, j) and GC-content 0 to
j-i-1. The function sample(k,T , i, j,X,Y ,α) samples from
the conditional dual partition function of those sequences
which have exactly α Gs and Cs strictly between the posi-
tions i and j, thus guaranteeing a GC-content of α for
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the subsequence a[ i + 1, j − 1] once the entire sequence
a1, . . . , an is sampled. Note that sample(k,T , i, j,X,Y ,α)

samples only the loop closed by the already instantiated
outer base pair (i, j), and that α is the GC-content of the
entire subsequence a[ i + 1, j + 1]= ai+1, . . . , aj−1 once
the algorithm terminates. Only in the case that base pair
(i, j) closes a hairpin loop will it generally happen that the
GC-content of the loop closed by (i, j) is equal to α.
Let α be the user-designated GC-content of sequences

a = a1, . . . , an to be sampled from a target secondary
structure having � base pairs. The following pseudocode
describes how to sample sequences a = a1, . . . , an, whose
GC-content exactly equals α. Here, an external loop with
m components means that there arem exterior base pairs
(i1, j1), . . . , (im, jm) such that all positions exterior to these
base pairs are unpaired; i.e. each position r ∈ {1, . . . , n} −
∪m
c=1{ic, . . . , jc} is unpaired in the target structure.

Algorithm 1 Sampling with user-specified GC-content α

1. if external loop has m components

2. sample α1, . . . ,αm,β with the following

properties

3. (a) α1 + . . . + αm + β = α

4. (b) for c=1 to m, component c has

GC-content αc
5. (c) GC-content of the external loop is β

6. (d) sample the external loop

7. for k = � down to 0

8. let (i, j) denote base pair with index k
and type T

9. if (i, j) is an exterior base pair

closing the cth component

10. //sample base pair with nucleotide

pair XY using roulette wheel

11. α = αc //α now denotes GC-content of

cth component

12. z = random(0,1); cumProb = 0

13. for XY in {AU ,UA,GC,CG,GU ,UG}
14. p = Z∗(i,j;X,Y ;α)

Z∗(i,j;α)

15. cumProb += p
16. if z < cumProb

17. instantiate base pair (i, j) by XY
18. α = α−GCcontent(XY)

19. sample(k,T , i, j,X,Y ,α)

20. α = α−sampledGC //subtract GC-

content of sampled loop

21. break //exit the innermost for-loop

22. else // base pair (i, j) with index k is

not exterior, hence is instantiated

23. let XY denote the nucleotides that

instantiate (i, j)
24. //sample loop and inner closing base

pairs

25. sample(k,T , i, j,X,Y ,α)

To clarify how the GC-content is sampled in a statisti-
cally rigorous manner, suppose that the user has specified
the GC-content to be α, and that L is the external loop
of the target structure s0 having m components, where
the cth component has external closing base pair (ic, jc).
In computing the dual partition function, for all possible
choices of non-negative integers α1, . . . ,αm,β that sum
to α and all 6m possible assignments of Watson-Crick
or wobble nucleotide pairs X1,Y1, . . . ,Xm,Ym to the base
pairs (i1, j1), . . . , (im, jm), the software RNAdualPF has
computed the sum of

∑m
c=1 Z∗

c (ic, jc;Xc,Yc;αc) plus the
Boltzmann factor of the external loop with GC-content
β . Since the dual partition function Z∗(s0;α) is the sum,
taken over all values of α1, . . . ,αm,β and all Watson-Crick
and wobble pair assignments to the external base pairs,
RNAdualPF can then use the roulette wheel method to
sample values α1, . . . ,αm,β and X1,Y1, . . . ,Xm,Ym in a
statistically rigorous manner. Multiloops, and other struc-
tural elements, which contain unpaired regions whose
sequence does not contribute to the free energy of the
structure, are handled in a analogous manner.

Results
Robustness and plasticity of C. elegansmiRNAs and E. coli
sncRNAs
In [1] Borenstein and Ruppin used version 1.4 of
the Vienna RNA Package [7] to generate 1000 RNA
sequences per wild type precursor microRNA (pre-
miRNA) extracted from the database Rfam 1.0 [19], with
the property that each of the 1000 control sequences
folded into the wild type pre-miRNA structure – i.e. the
minimum free energy (MFE) structure of each of the 1000
control sequences was identical to the MFE structure
of the wild type pre-miRNA. Based on these computa-
tional experiments, Borenstein and Ruppin asserted that
the “structure of miRNA precursor stem–loops exhibits a
significantly high level of mutational robustness in com-
parison with random RNA sequences with similar stem–
loop structures”. Noting that the Vienna RNA Package
inverse folding program RNAinverse does not control
for GC-content or other sequence compositional bias, the
authors performed a second computational experiment,
in which control sequences not only folded into the tar-
get wild type structure, but also had similar dinucleotide
composition to that of wild type pre-miRNA (Jensen-
Shannon divergence less than 0.01). Since the filtering
step required enormous run time and computational
resources, the authors restricted their attention to a small
set of 211 microRNAs, and generated only 100 control
sequences per microRNA – note here that RNAinverse
cannot control for GC-content. Borenstein and Ruppin
concluded that robustness of precursor microRNAs was
not the byproduct of a base composition bias or of ther-
modynamic stability.
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Subsequently Rodrigo et al. [3] undertook a similar
analysis for bacterial small noncoding RNAs (sncRNA),
also using the program RNAinverse, albeit using some-
what different definitions – see precise definitions in
“Formal definitions of robustness” section. The main find-
ing of [3] was that bacterial sncRNAs are not significantly
robust when compared with 1000 sequences having the
same structure, as computed by RNAinverse; however,
the authors found that bacterial sncRNAs tend to be sig-
nificantly plastic, in the sense that the ensemble of low
energy structures are structurally diverse. Unlike the case
of precursor microRNAs [1], Rodrigo et al. did not control
for sequence compositional bias.
Using RNAdualPF, we performed similar computa-

tional experiments on 250 precursor microRNAs of C.
elegans from miRBase 20 [11] and for the bacterial small
noncoding RNAs of [3]. Below, we discuss each case
separately.
For each C. elegans pre-miRNA, we used RNAdualPF

to sample 2000 sequences with no control over GC-
content and 2000 sequences whose GC-content was
identical with that of the wild type pre-miRNA. More-
over, each control sequence approximately folded into
the MFE wild type pre-miRNA structure as computed
by Vienna RNA Package 2.1.9 [2]. Table 2 shows that

length-normalized base pair distance between the MFE
structure of the control sequence and that of the pre-
miRNA is on average 0.09 ± 0.04 for default use of
RNAdualPF with control over GC-content, and 0.06 ±
0.03 when GC-content of each control sequence is iden-
tical to that of the corresponding wild type pre-miRNA.
Additional measures in Table 2 show that sequences
sampled from RNAdualPF (1) are only modestly more
stable thermodynamically, (2) the ensemble of low energy
structures of control sequences deviate slightly more from
the target pre-miRNA structure, as is the case for wild
type pre-miRNA sequences, as mesured by ensemble
defect [20], expected base pair distance to target [9],
expected proportion of native contacts (called ensem-
ble neutrality in [21]), average positional entropy [22],
Morgan-Higgs structural diversity [23], and Vienna struc-
tural diversity (called ensemble diversity in [14]).
Tables 3 and 4 display a similar analysis of the col-

lection of bacterial small noncoding RNAs of [3] and
of Rfam 12.0 database [24]. For the Rfam database, we
selected one sequence from each of the ≈ 2500 Rfam
families, with the property that the MFE structure of the
sequence most resembled the Rfam consensus structure –
i.e. whoseMFE structure has smallest base pair distance to
the consensus structure. These tables show similar trends

Table 2 Analysis of C. elegans precursor microRNA from the database miRBase 20 [11]

MEASURE Def. Exact GC Def. No GC MFE Exact GC MFE No GC WT

BP DIST TARGET 0.06±0.03 0.09±0.04 0±0 0±0 0±0

ENERGY MFE –0.53±0.11 –0.85±0.12 –0.48±0.12 –0.79±0.14 –0.38±0.11

ENERGY TARGET –0.46±0.12 –0.78±0.14 –0.48±0.12 –0.79±0.14 –0.38±0.11

ENSEMBLE DEFECT 0.12±0.04 0.14±0.06 0.05±0.02 0.05±0.02 0.08±0.05

EXP BP DIST 0.07±0.03 0.1±0.04 0.03±0.01 0.03±0.01 0.05±0.03

PROP NAT CONTACT 0.93±0.04 0.9±0.06 0.96±0.02 0.96±0.02 0.92±0.05

POS ENTROPY 0.14±0.05 0.14±0.05 0.13±0.05 0.12±0.05 0.2±0.11

GC CONTENT 42.88±9.14 82.07±3.5 42.9±9.15 80.92±4.09 42.88±9.14

LN DUAL PROB –95.4±21.03 –51.43±11.98 –102.73±22.81 –59.52±14.64 –117.11±25.94

LN PROB -10.81±4.05 –10.95±4.68 –1.38±0.55 –0.96±0.45 –2.02±0.97

MH STR DIV 0.08±0.03 0.08±0.03 0.07±0.03 0.06±0.03 0.11±0.06

VIENNA STR DIV 0.05±0.02 0.05±0.02 0.04±0.02 0.04±0.02 0.07±0.04

For each of the 500 wild type (WT) pre-miRNA sequences, RNAdualPF sampled sequences, either having exactly the same GC-content as the WT sequence (‘Exact GC’) or
with no control over GC-content (‘No GC’). The designation ‘MFE’ indicates that the sampled sequences were subsequently filtered to retain only those, whose minimum free
energy structure is identical to the MFE structure of the corresponding WT pre-miRNA; otherwise, the designation ‘Def’ is used to indicate the default output of RNAdualPF,
without the subsequent filtering step. For each WT pre-miRNA sequence, RNAdualPF generated 2000 sequences for the default case Def (no subsequent filtering), and 500
sequences for the non-default caseMFE, such that sample MFE structure is identical to WT MFE structure. Various measures were used to compare the properties of
RNAdualPF sampled sequences to those of wild type sequences: BP DIST TARGET : length-normalized average base pair distance dBP(s0, s∗) between the MFE structure s0 of
sequences sampled by RNAdualPF and the target structure s∗ . ENERGYMFE: length-normalized average free energy E(s0) of MFE structure s0. ENERGY TARGET :
length-normalized average free energy E(s∗) of target s∗ for the respective sequences. ENSEMBLE DEFECT : length-normalized expected Hamming distance to target s∗ [20].
EXP BP DIST : length-normalized expected base pair distance to target s∗ [9]. PROP NAT CONTACT : expected proportion of base pairs of target s∗ that occur in the MFE
structure, i.e. 〈 |s0∩s∗|

|s∗| 〉. POS ENTROPY : average positional entropy [22]. GC CONTENT : average proportion of positions occupied by G or C. LN DUAL PROB: average natural
logarithm of the dual probability exp(−E(a, s)/RT)/Z ∗ (s) that sequence a adopts the structure s. LN PROB:average natural logarithm of the probability exp(−E(a, s)/RT)/Z(a)
that sequence a adopts the structure s.MH STR DIV : length-normalized Morgan-Higgs structural diversity [23]. VIENNA STR DIV : length-normalized Vienna structural diversity,
called ensemble diversity in [14]. Values of all measures for default sampled sequences having GC-content within 5 % of wild type GC-content (not shown) are essential
identical to those of exact GC-content control
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Table 3 Analysis of bacterial RNAs [3]

MEASURE GC 5 % Exact GC No GC WT

BP DIST TARGET 0.08±0.04 0.08±0.04 0.14±0.06 0±0

ENERGY MFE –0.44±0.1 –0.44±0.1 –0.63±0.14 –0.29±0.1

ENERGY TARGET –0.39±0.12 –0.39±0.12 –0.54±0.16 –0.29±0.1

ENSEMBLE DEFECT 0.16±0.08 0.16±0.08 0.23±0.1 0.14±0.09

EXP BP DIST 0.09±0.04 0.09±0.04 0.15±0.06 0.09±0.06

PROP NAT CONTACT 0.89±0.09 0.89±0.09 0.8±0.12 0.83±0.15

POS ENTROPY 0.19±0.08 0.19±0.08 0.23±0.09 0.35±0.18

GC CONTENT 48.33±7.02 48.34±7.02 74.75±5.55 48.34±7.02

LN DUAL PROB –94.59±27.22 –94.54±27.19 –66.37±16.96 –117.22±33.37

LN PROB –10.12±4.04 –10.09±4.03 –13.71±5.16 –2.34±0.95

MH STR DIV 0.1±0.04 0.1±0.04 0.13±0.05 0.18±0.09

VIENNA STR DIV 0.06±0.03 0.06±0.03 0.09±0.03 0.11±0.06

See Table 2 for an explanation of column headers and various measures. Since bacterial noncoding RNA is generally much longer than precursor microRNA, no subsequent
filtering step was undertaken to ensure that sample sequence MFE structure is identical to that of wild type pre-miRNA. However an additional column is given for sequences
required by RNAdualPF to have GC-content is within 5 % of WT value. (column header GC 5 %)

as those displayed in Table 2, although values are larger
due to increased sequence length of bacterial sncRNA and
sequences from Rfam.
In agreement with [1], the left panel of Fig. 3 shows

that C. elegans miRNA is significantly robust (Z-score
of 0.61 ± 1.55, 2-tailed T-test p-value 2.2 × 10−9), pro-
vided that GC-content is not controlled. However, in
contrast to [1], when GC-content is controlled, we find
that C. elegans miRNA is significantly non-robust (Z-
score of −1.3 ± 2.9, 2-tailed T-test p-value 1.5 × 10−11).
To corroborate our findings, for each wild type C. ele-
gans pre-miRNA, we performed a second computational
experiment, to generate 500 sequences with no control
over GC-content and 500 sequences whose GC-content

was identical with that of the wild type pre-miRNA. In
contrast to the first experiment, we used RNAdualPF
to generate sufficiently many sequences to subsequently
select 500 sequences (no GC-control) and 500 sequences
(GC-content equal to wild type pre-miRNA), each of
whose MFE structure was identical to that of wild type
pre-miRNA. The left panel of Fig. 4 shows that when GC-
content is not controlled, C. elegans precursor microR-
NAs are statistically robust (Z-score 0.51 ± 1.44, p-value
7.3 × 10−8), in agreement with the main result of Boren-
stein and Ruppin [1]. However, when GC-content of con-
trol sequences is identical to that of wild type precursor
microRNA, we confirm that C. elegans pre-miRNA is
statistically non-robust (Z-score −1.23 ± 2.78, p-value

Table 4 Analysis of the Rfam 12.0 database

MEASURE GC 5 % Exact GC No GC WT

BP DIST TARGET 0.1±0.05 0.1±0.05 0.16±0.07 0±0

ENERGY MFE –0.43±0.13 –0.43±0.13 –0.64±0.16 –0.28±0.13

ENERGY TARGET –0.36±0.14 –0.36±0.14 –0.54±0.19 –0.28±0.13

ENSEMBLE DEFECT 0.18±0.07 0.18±0.07 0.25±0.11 0.16±0.12

EXP BP DIST 0.11±0.05 0.11±0.05 0.17±0.07 0.1±0.08

PROP NAT CONTACT 0.87±0.09 0.87±0.09 0.78±0.14 0.81±0.17

POS ENTROPY 0.22±0.09 0.21±0.09 0.25±0.1 0.4±0.25

GC CONTENT 46.27±10.91 46.27±10.91 75.12±5.89 46.27±10.91

LN DUAL PROB –110.35±54.12 –110.34±54.12 –73.5±33.32 –136.7±65.62

LN PROB –13.94±7.74 –13.9±7.71 –18.11±10.59 –2.83±1.71

MH STR DIV 0.12±0.05 0.12±0.05 0.13±0.05 0.2±0.12

VIENNA STR DIV 0.07±0.03 0.07±0.03 0.09±0.04 0.13±0.08

For each RNA family from Rfam 12.0, we selected that sequence whose MFE structure had smallest base pair distance to the Rfam consensus structure for the family. These
sequences constituted the collection WT. See Table 3 for an explanation of column headers and various measures
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Fig. 3 Z-scores ofmutational robustness (a) and of plasticity (b) are
presented for the bacterial small noncoding RNA (sncRNA) collection
from [3] and for C. elegans precursor microRNA (pre-miRNA) from
miRBase 20. For each wild type pre-miRNA [resp. sncRNA] wild type
sequence, RNAdualPF sampled 2000 [resp. 1000] sequences using
the minimum free energy structure of the wild type sequence as
target structure. The GC-content of the sampled sequences was
either required to be exactly that of the wild type sequence, or not
(default mode of RNAdualPF), as indicated in the legend. Sampled
sequences were used to compute the mutational robustness and
plasticity, as explained in the main text. Note that C. elegansmiRNA is
significantly robust if GC-content is not controlled, but significantly
non-robust if GC-content of RNAdualPF samples is identical to that
of wild type pre-miRNA. Similarly, bacterial sncRNAs are not
significantly robust if GC-content is not controlled, but significantly
non-robust when GC-content is identical to that of wild type sncRNA.
For this figure, mutational robustness of RNA sequence
a = a1, . . . , an is defined by 1 − 〈DBP〉

n , where ensemble distance
Dbp(a,b) between two length n sequences a and b is defined in [14],
and the average ensemble distance from all single-point mutants of a
is defined by 〈DBP〉 =∑b

DBP(a,b)
3n where the sum is taken over all

single-point mutants b of a. We use this notation of mutational
robustness, rather than the notion defined in [3], since the latter
notion is not a true metric, as explained in “Formal definitions of

robustness” section. The plasticity P = 〈DV〉
n/2 =∑i<j

pi,j(1−pi,j)
n is

defined in [3] as normalized ensemble diversity, where ensemble
diversity [14] (Vienna structural diversity) DV is defined by Eq. (4)
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Fig. 4 Z-scores ofmutational robustness (a) and of plasticity (b) are
presented for C. elegansmicroRNA from Rfam 12.0. Robustness and
plasticity were measured as explained in Fig. 3. For each wild type
(WT) sequence, 2000 sequences were sampled from RNAdualPF
both with and without control over GC-content (default sample),
while 500 sequences were generated by RNAdualPF, both with and
without control over GC-content, to exactly fold into the target
structure (MFE str. sample). This was achieved by repeatedly sampling
sequences in order to obtain a sequence, whose MFE structure was
identical to the target structure. The number of sequences necessary
to sample in order to obtain one sequence that folds into the target
structure was variable, depending on the target structure and
GC-content – in many cases, only 10 samples were necessary per
selected sequence, in some cases 200 samples were necessary. and in
one specific case 5000 samples were required. By control over
GC-content, we mean that all sampled sequences have identical
GC-content to the wild type sequence
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3 × 10−11). Note that our finding, which is in opposition
to results of Borenstein and Ruppin [1], is based on a
larger data set of precursor microRNAs, each of
which has a larger control set, than in the analysis
of [1].
Turning now to the analysis of bacterial small noncod-

ing RNAs, we find that sncRNAs are not significantly
robust (Z-score 0.0 ± 1.4, p-value 0.98) when GC-content
is not controlled, confirming a result from Rodrigo et al.
[3]. However, when GC-content of the sequences sampled
from RNAdualPF is required to be identical to that of
wild type sncRNA, bacterial sncRNAs are see to be signif-
icantly non-robust (Z-score −2.58± 3.87, p-value of 4.4×
10−7). Note here that Rodrigo et al. used RNAinverse
in their computational experiments, hence could not con-
sider the case with control over GC-content. The left
panels of Figs. 3a and 4 summarize our findings that
precursor microRNAs [resp. bacterial sncRNAs] are sig-
nificantly non-robust [resp. not significantly robust] with
respect to a control set of 2000 [resp. 1000] sequences gen-
erated by RNAdualPF with identical GC-content to that
of the wild type sequence.
Finally, in our analysis of plasticity, the right panels of

Figs. 3 and 4 show that both C. elegans and bacterial small
noncoding RNAs exhibit more plasticity when compared
with control sequences for which GC-content is not con-
trolled, as well as when compared with control sequences
for which GC-content is identical to that of wild type
sequences.

Structural RNA has higher free energy than expected
In Figure 4 of [9], we showed that the free energy E0 of
the minimum free energy (MFE) structure s0 of E. coli val-
tRNA (accession RV1600 from Sprinzl database [25]
tdbR00000454 from tRNAdb [26]), is much higher (less
favorable) than the average free energy 〈E〉 of over four
million RNAs having the same MFE structure s0 as that
of E. coli val-tRNA. Here, E. coli val-tRNA RV1600 was
selected, because its MFE structure s0 is identical to the
Rfam consensus structure for tRNA family RF00005. This
preliminary result suggests that naturally occurring trans-
fer RNAs may be under selective pressure to be only
marginally thermodynamically stable. Since it took a num-
ber of days for RNAiFold [4, 9] to return over four
million solutions of the inverse folding problem for the
tRNA target structure, we now describe how RNAdualPF
can be used to compute the Boltzmann expected free
energy of literally all sequences a1, . . . , an with respect
to an arbitrary target structure s0. In this manner, we
confirm our preliminary finding concerning E. coli val-
tRNA, and show that the folding energy of structural RNA
from the Rfam database is much higher (less favorable)
than expected. Before presenting results, we need some
definitions.

For the Turner nearest neighbor energy model [13], the
free energy of a secondary structure s of an RNA sequence
a = a1, . . . , an depends on the (absolute) temperature T0.
To indicate this dependence, we write E(a, s,T0), where
in the sequel, T0 will be designated as table temperature,
i.e. the temperature for which parameters from the Turner
energy tables are applied. For an arbitrary, but fixed sec-
ondary structure s0 of length n, the dual partition function
at temperature T0 is defined by

Z(s0,T0,T) =
∑

a
exp (−E (a, s0,T0) /RT) (52)

where the sum is taken over all RNA sequences a =
a1, . . . , an of length n. Note that T0 indicates the (table)
temperature at which the energy of a structure s0 and
nucleotide sequence a is evaluated using the Turner
parameters, while all other occurrences of the tempera-
ture variable are designated by T, which we call formal
temperature. The distinction between formal and table
temperature is made to allow us to use finite difference
approximations to derivatives with respect to the for-
mal temperature when when we compute dual expected
energy and dual conformational entropy below (see [27]
for more explanation). When table temperature T0 equals
formal temperature T, and the temperature is clear from
the context, we write Z∗(s0); if the target structure s0 is
also clear from the context, then we write Z∗. A simi-
lar remark applies to the other thermodynamic functions
p∗,G∗, 〈E∗〉, S∗, which we now define.
The dual Boltzmann probability p∗(a) is defined by

p∗ (a, s0,T0,T) = exp (−E (a, s0,T0))

Z∗ (s0,T0,T)
(53)

The dual ensemble free energy G∗(s0) is defined by

G∗ = G∗(s0) = G (s0,T0,T) = −RT lnZ∗ (s0,T0,T)

(54)

where R ≈ 1.987 cal/(mol K) is the universal gas constant.
The dual expected (free) energy 〈E∗(s0)〉 is defined by

〈E∗ (s0,T0,T)〉 =
∑

a
E (a, s0,T0) · p (a, s0,T0,T) (55)

Straightforward derivations analogous to those in [27]
yield the following expressions for dual expected energy
〈E∗〉 and dual entropy S∗:

〈E∗ (s0,T0,T)〉 = RT2 · ∂

∂T
(
lnZ∗(s0,T0,T)

)
T=T0

(56)

S∗ (s0,T0,T) = 〈E (a, s0,T0,T)〉 − G∗ (s0,T0,T)

T
(57)

Programs to compute dual expected energy 〈E∗〉, dual con-
formational entropy S∗, and dual heat capacity C∗

p are
provided at our web site. We do not elaborate further on



Garcia-Martin et al. BMC Bioinformatics  (2016) 17:424 Page 19 of 24

dual entropy or dual heat capacity, since at the present
time we have found no compelling applications.
Figure 5 shows that structural RNAs have higher free

energy with respect to their native structure, hence are
thermodynamically less stable, than expected, – even
when expectations are taken over all sequences having
the same GC-content as that of wild type sequences. We
believe that this insight could be important when design-
ing functional synthetic RNAs. To generate Fig. 5, we
proceeded as follows. For each family from the Rfam
12.0 database [24], we took the family consensus struc-
ture sc, and computed 〈E(sc)〉. Additionally, for each Rfam
family, we selected that sequence a0, whose minimum
free energy (MFE) structure s0 has smallest base pair
distance to the consensus structure sc. We computed
the expected energy 〈E(s0)〉, as well as the free energies
E(a, sc) and E(a, s0). Figure 5 displays box-and-whiskers
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Fig. 5 Analysis of expected free energy 〈E〉 for structures in Rfam 12.0
[24]. Given a secondary structure s, the expected free energy of all
sequences awithrespecttos isdefinedby〈E(s)〉 =∑a E(a, s)· exp(−E(a,s)/RT)

Z∗(a,s) ,
where Z∗ is the dual partition function defined in equation (7). For
each Rfam family, we took the family consensus structure sc , and
computed 〈E(sc)〉. Additionally, for each Rfam family, we selected that
sequence a0, whose minimum free energy (MFE) structure s0 has
smallest base pair distance to the consensus structure sc . The
expected energy 〈E(s0)〉 was computed, as well as the free energies
E(a, sc) and E(a, s0). The fold change 〈E(sc)〉

E(a0,sc)
for the consensus

structure and the fold change 〈E(s0)〉
E(a0,s0)

for the minimum free energy
structure were computed. The box-and-whiskers plots show the
mean, 25th and 75th percentile, minimum and maximum values. As
indicated in the legend, these computations were performed either
with respect to all sequences or with respect to all sequences having
the same (exact) GC-content. These data clearly indicate that natural
RNA sequences, whose MFE structures most closely resemble the
Rfam consensus structures, have higher free energy than expected

plots for the fold change 〈E(sc)〉
E(a0,sc) for the consensus struc-

ture and the fold change 〈E(s0)〉
E(a0,s0) for the minimum free

energy structure. Since the dual Boltzmann probability
p∗(a, s0) is generally larger for sequences a having higher
GC-content (as stacked base pairs involving GC,CG have
lower free energy than those involving AU,UA,GU,UG),
RNAdualPF computes as well the dual partition function
for GC-content k, defined by

Z∗(s0, k) =
∑

a such that
GC-content=k

exp(−E(a, s0)/RT) (58)

In this fashion, we can exactly compute the dual expected
energy 〈E∗(s0, k)〉 of all sequences having GC-content k
which approximately fold into target structure s0. Tables 2,
3 and 4 analyze what we mean by approximately folding
into the target structure – i.e. sequences a are prefer-
entially sampled when free energy E(a, s0) is low, hence
have large dual Boltzmann probability. RNAdualPF,
even when exact GC-content is controlled, is faster
than inverse folding programs by orders of magnitude,
hence providing an effective alternative manner of solving
inverse folding.

Conclusion
In this paper we describe the algorithm and soft-
ware RNAdualPF, which computes the dual partition
function Z∗, defined as the sum of Boltzmann fac-
tors exp(−E(a, s0)/RT) of all sequences a with respect
to the target structure s0. Using RNAdualPF, we effi-
ciently sample RNA sequences that (approximately) fold
into s0, where additionally the user can specify IUPAC
sequence constraints at certain positions, and whether to
include dangles (energy terms for stacked, single-stranded
nucleotides). Moreover, the user can require that all sam-
pled sequences have a precisely specified GC-content,
since, optionally, we compute the dual partition func-
tion Z∗(k) simultaneously for all values k = G + C.
This sampling strategy is complementary to the use of
RNAiFold [4], since it allows the study of the prop-
erties of long RNA structures whose number of solu-
tions for the inverse folding problem is astronomically
large.
We use RNAdualPF to corroborate previous stud-

ies [1] using RNAinverse [2], by confirming that pre-
cursor microRNAs are significantly mutationally robust
when GC-content is not controlled. However, in contrast
to [1], we find that precursor microRNAs are signifi-
cantly non-robust when GC-content is controlled. We
confirm and extend previous findings [3] that bacterial
small noncoding RNAs display plasticity (structural diver-
sity) and are not statistically robust, when GC-content
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is not controlled. Additionally, we obtain the new find-
ing that when when GC-content is controlled, bacterial
small noncoding RNAs are significantly non-robust, as
in the case of precursor microRNAs. One possible rea-
son for the discrepancy between our results and those
of [1] could be related with the fact that the energy
parameters of Vienna RNA Package 1.4 (Turner 1999
parameters used in the computational experiments of
[1]) differ from those of Vienna RNA Package 2.1.9
(Turner 2004 parameters used in the current study with
RNAdualPF). Another possible reason is that the inverse
folding solutions returned by the program RNAinverse
used in [1] show a different bias than sequences returned
by RNAdualPF (in this context, we mean the inverse
folding solutions filtered from the sequences returned
by RNAdualPF).
As mentioned in the Introduction, there is a relation

between our C program RNAdualPF and the Python

program IncaRNAtion [12], although our work is inde-
pendent of that of Reinharz et al. [12]. IncaRNAtion is a
weighted sampling algorithm that computes the dual par-
tition function for a simple energy model, which only con-
siders base stacking free energies – unlike RNAdualPF,
the program IncaRNAtion includes no energy contri-
butions for hairpins, bulges, internal loops, multiloops,
dangles, or mismatches. If the user specifies a desired
GC-content α, then IncaRNAtion does not compute
the dual partition function for GC-content, but rather
applies an adjustable heuristic so that after a suitable
burn-in period, sequences tend to approximately have
GC-content α. See Table 6.2 of [28] for benchmarking
results on RNAdualPF and IncaRNAtion, which show
conclusively that RNAdualPF is not only faster, but its
sequences have a higher probability of folding into the tar-
get structure, its sequences have a smaller GC-content in
default mode, where GC-content is not controlled, etc.
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Fig. 6 For each of the 250 C. elegans precursor microRNAs from miRBase 20 and for each of the following cases (a), indicated in black, and (b),
indicated in red, RNAdualPF sampled 2000 sequences without any subsequent filtering step. Case (a) - black lines: All RNAdualPF sequences
have GC-content exactly equal to that of the Rfam sequence (Exact GC). Case (b) - red lines: RNAdualPF was used in default mode, without
controlling GC-content (No GC). Case (c) - blue lines: wild type (WT) C. elegans data. Density plots are shown for (1) the expected base pair distance
to target structure s0 [9], (2) the ensemble defect to target structure s0 [20], (3) the positional entropy [22], (4) Vienna structural diversity (called
ensemble diversity in [14]), (5) Morgan-Higgs diversity [23], (6) expected proportion of native contacts (called ensemble neutrality in [21]). All
measures were normalized by sequence length
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Our original motivation in designing RNAdualPF was
to generate an unbiased sample of near-solutions (or by
subsequent selection of solutions) to the inverse folding
problem. At present, it seems clear that no program can
claim to generate an unbiased sample of inverse folding
solutions, since (1) the solution space so large that this
hypothesis cannot be tested by brute force methods, and
(2) different inverse folding algorithms return solution
sequences having different properties, as shown in Table 2
of [4]. Nevertheless, in the same manner that structures
sampled by the algorithm of Ding and Lawrence [16]
constitute an unbiased, representative set of low energy
secondary structures for a given RNA sequence, as imple-
mented in Sfold [10] and RNAsubopt -p [2], the
collection of RNA sequences sampled by the algorithm
RNAdualPF constitute an unbiased, representative set
of sequences having low energy with respect to a given
target structure s0. Although the minimum free energy
structure of such sequences may indeed be distinct from

s0, it is likely that the MFE structure and the target s0
be similar, as shown in Tables 2, 3 and 4. Moreover,
Fig. 6 presents relative frequency plots that suggest that
when GC-content is controlled, the sequences returned
by RNAdualPF have similar properties to those of wild
type sequences: (1) similar expected base pair distance
to the wild type target structure [9], (2) similar ensemble
defect to the target wild type structure [20], (3) simi-
lar positional entropy [22], (4) similar Vienna structural
diversity (called ensemble diversity in [14]), (5) similar
Morgan-Higgs diversity [23], (6) similar expected pro-
portion of native contacts (called ensemble neutrality in
[21]). These graphs were produced by using RNAdualPF
to sample 2,000 sequences for each of the 250 C. ele-
gans precursor microRNAs from themiRBase 20 database
[11], in each of the following cases: (a) GC-content iden-
tical to that of the Rfam sequence, (b) no control for
the GC-content. Figure 7 presents additional data, com-
puted in the same manner for C. elegans pre-miRNA from
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Fig. 7 Additional measures for the data described in the previous Fig. 6. Density plots are shown for (1) the base pair distance between the
minimum free energy (MFE) structure and the target structure, (2) the GC-content, (3) the free energy E(a, s0) of the RNA sequences a with respect
to the target structure s0, (4) the free energy E(a, sa) of each sequence with respect to its own minimum free energy (MFE) structure, (5) the log dual

probability p∗(s0) =
∑

x exp(−E(x,s0)/RT)
Z∗(s0)

, and (6) the log probability p(a) =
∑

s exp(−E(a,s)/RT)
Z(a)
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miRBase 20, showing that when GC-content is controlled,
sequences sampled by RNAdualPF satisfy the follow-
ing: (1) the average length-normalized base pair distance
between the minimum free energy and target structures is
≈ 0.05, (2) wild type and RNAdualPF sampled sequences
have similar free energy with respect to the wild type tar-
get structure, (3) as well as similar minimum free energy,
(4) similar dual probability, and (5) similar probability
to wild type RNA sequences. Taken together, this data
shows that if GC-content is controlled, then RNAdualPF
returns sequences whose low energy structures tend to
resemble the target structure. Figures 8 and 9 are similar
to Figs. 6 and 7, except that for each C. elegans pre-
miRNA, 500 sequences were generated by RNAdualPF,
each of whose MFE structure is identical to the wild type
target structure (this was done by repeatedly sampling

sequences from RNAdualPF until 500 sequences were
found, that fold exactly into the target pre-miRNA struc-
ture). Taken together, Figs. 6, 7, 8 and 9 present convinc-
ing evidence that RNAdualPF generates sequences that
(approximately) fold into the user-specified target struc-
ture, hence supporting our finding that C. elegans precur-
sor microRNAs are statistically non-robust, contrary to
the finding of [1].
Additionally, we have shown that natural RNAs from

the Rfam 12.0 database have higher minimum free energy
than expected, thus supporting our results in [9] which
suggest that functional RNAs are under evolutionary pres-
sure to be only marginally thermodynamically stable. The
applications described in this paper demonstrate that
RNAdualPF is a useful and extremely fast software tool
for evolutionary and synthetic biology.

0.00 0.05 0.10 0.15 0.20

0.
00

0.
10

0.
20

Expected base pair distance to target structure

Values

R
el

at
iv

e 
fr

eq
ue

nc
y Exact_GC

No_GC
WT

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
10

0.
20

Ensemble defect to target structure

Values

R
el

at
iv

e 
fr

eq
ue

nc
y Exact_GC

No_GC
WT

0.0 0.2 0.4 0.6 0.8

0.
00

0.
10

0.
20

0.
30

Pos Entropy

Values

R
el

at
iv

e 
fr

eq
ue

nc
y Exact_GC

No_GC
WT

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.
00

0.
10

0.
20

0.
30

Structural Diversity (Vienna)

Values

R
el

at
iv

e 
fr

eq
ue

nc
y Exact_GC

No_GC
WT

0.0 0.1 0.2 0.3 0.4

0.
00

0.
10

0.
20

Structural Diversity (MH)

Values

R
el

at
iv

e 
fr

eq
ue

nc
y Exact_GC

No_GC
WT

0.6 0.7 0.8 0.9 1.0

0.
00

0.
10

0.
20

0.
30

Expected number of native contacts

Values

R
el

at
iv

e 
fr

eq
ue

nc
y Exact_GC

No_GC
WT

Fig. 8 For each of the 250 C. elegans precursor microRNAs from miRBase 20 and for each of the following cases (a), indicated in black, and (b),
indicated in red, RNAdualPF generated 500 sequences, whose minimum free energy structure was identical to that of the corresponding wild type
pre-miRNA (obtained by repeatedly generating samples with RNAdualPF until 500 sequences were found that folded exactly into the target
structure). Case (a) - black lines: All RNAdualPF sequences have GC-content exactly equal to that of the Rfam sequence (Exact GC). Case (b) - red
lines: RNAdualPF was used in default mode, without controlling GC-content (No GC). Case (c) - blue lines: wild type (WT) C. elegans data. Density
plots are shown for (1) the expected base pair distance to target structure s0 [9], (2) the ensemble defect to target structure s0 [20], (3) the positional
entropy [22], (4) Vienna structural diversity (called ensemble diversity in [14]), (5) Morgan-Higgs diversity [23], (6) expected proportion of native
contacts (called ensemble neutrality in [21]). All measures were normalized by sequence length
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Fig. 9 Additional measures for the data described in the previous Fig. 8. Density plots are shown for (1) the base pair distance between the
minimum free energy (MFE) structure and the target structure, (2) the GC-content, (3) the free energy E(a, s0) of the RNA sequences a with respect
to the target structure s0, (4) the free energy E(a, sa) of each sequence with respect to its own minimum free energy (MFE) structure, (5) the log dual

probability p∗(s0) =
∑

x exp(−E(x,s0)/RT)
Z∗(s0)

, and (6) the log probability p(a) =
∑

s exp(−E(a,s)/RT)
Z(a)

Endnote
1When dangling positions are not included in the com-

putation (-d0), the algorithm clearly requires linear time.
When dangling positions are included (-d2), run time
is exponential in the number of components of the
largest multilooop; however, in practice the algorithm is
extremely fast, and it is possible to modify the algorithm
to always run in linear time.
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