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Abstract
In awake mice, sniffing behavior is subject to complex contextual modulation. It has been hypothesized that
variance in inhalation dynamics alters odor concentration profiles in the naris despite a constant environmental
concentration. Using whole-cell recordings in the olfactory bulb of awake mice, we directly demonstrate that rapid
sniffing mimics the effect of odor concentration increase at the level of both mitral and tufted cell (MTC) firing rate
responses and temporal responses. Paradoxically, we find that mice are capable of discriminating fine concen-
tration differences within short timescales despite highly variable sniffing behavior. One way that the olfactory
system could differentiate between a change in sniffing and a change in concentration would be to receive
information about the inhalation parameters in parallel with information about the odor. We find that the
sniff-driven activity of MTCs without odor input is informative of the kind of inhalation that just occurred, allowing
rapid detection of a change in inhalation. Thus, a possible reason for sniff modulation of the early olfactory system
may be to directly inform downstream centers of nasal flow dynamics, so that an inference can be made about
environmental concentration independent of sniff variance.
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Introduction
For optimal perception, an organism must be able to

distinguish between the sensory consequences of its own
actions and externally generated stimuli in the environ-
ment (Crapse and Sommer, 2008). An example of this

comes from controlled eye movements, such as sac-
cades: these act to shift the visual scene on the retina.
Such a pattern of motion across the retina could just as
easily come from the world moving relative to the eye, and
yet we maintain perception of a stable world (von Helm-
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Significance Statement

One of the fundamental tasks of the brain is to represent the features of the environment in a stable way.
In the olfactory system, it has been hypothesized that changing the way you sniff will alter the concentration
of odor coming into the nasal passage, even when the environmental concentration has not changed. Here
we show that indeed, the effect of faster sniffing on olfactory bulb responses is very similar to increasing
odor concentration. Despite this, mice can easily tell the difference between a change in sniffing and a
change in concentration in an olfactory task. To resolve this apparent discrepancy, we suggest and give
evidence for ways in which olfactory bulb information about sniffing parameters may be utilized.
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holtz, 1867). An olfactory problem of this nature is the
stable encoding of odor intensity—the perceptual corre-
late of odor concentration (Wojcik and Sirotin, 2014).
Increasing concentration is known to affect neural activity
in many ways (Mainland et al., 2014). At the level of
glomerular input from olfactory sensory neurons (OSNs),
increasing concentration enhances the activity of already
responsive glomeruli and incorporates new glomeruli into
the activity profile, overall resulting in a broadening of the
spatial map of activity (Rubin and Katz, 1999; Spors and
Grinvald, 2002). Changes in spike rate are also seen at the
level of the olfactory bulb (OB) output cells, mitral and
tufted cells (MTCs), though this can be a more complex
mixture of inhibitory and excitatory effects (Meredith,
1986; Bathellier et al., 2008; Cury and Uchida, 2010;
Fukunaga et al., 2012) and is thought to be constrained
via inhibitory circuits (Kato et al., 2013; Miyamichi et al.,
2013; Fukunaga et al., 2014; Roland et al., 2016). The
perhaps more ubiquitous correlates of concentration in-
crease, however, are temporal response changes, notably
with early excitation undergoing a latency reduction in
OSNs (Rospars et al., 2000; Ghatpande and Reisert,
2011) and MTCs (Cang and Isaacson, 2003; Fukunaga
et al., 2012; Sirotin et al., 2015), as well as in the piriform
cortex (Bolding and Franks, 2017). This is thought to arise
since OSNs will depolarize to threshold more quickly
when the concentration profile in the naris is steeper.

In awake mice, sniffing behavior is in continual flux
(Welker, 1964; Youngentob et al., 1987; Kepecs et al.,
2007; Wesson et al., 2008a, 2009). This might present a
problem for concentration coding: changing nasal flow
will affect the number of odor molecules entering the
nasal passage, altering the concentration profile in the
naris despite a stable environmental concentration
(Teghtsoonian et al., 1978; Mainland and Sobel, 2006;
Shusterman et al., 2018). In other words, altering sniffing
may cause self-generated changes in naris odor concen-
tration. Indeed, previous work has shown that faster sniff-
ing can alter firing rates and temporal features of an odor
response (Wesson et al., 2009; Carey and Wachowiak,
2011; Shusterman et al., 2011; Cenier et al., 2013; Díaz-
Quesada et al., 2018; Jordan et al., 2018). Despite this,
previous work suggests that humans can perceive odor
intensity independent of the inhalation flow rate (Teght-

soonian et al., 1978), and whether response changes
during faster sniffing are similar for a given cell to those
evoked by increased concentration is unknown.

Our aims were two-fold: (1) to test the hypothesis that
response changes evoked by faster sniffing are the same
as those caused by increasing concentration, and (2) to
test whether sniff variance would have a negative impact
on performance of mice in a fine concentration discrimi-
nation task. Using whole-cell patch recordings in awake
mice, we show that faster sniffs can indeed evoke both
firing rate and temporal response changes identical to
those caused by increasing concentration. Surprisingly,
however, we show that variance in sniffing has very little
impact on the performance of mice during fine concen-
tration discrimination. These results are highly congruent
with an accompanying paper using different experimental
techniques (Shusterman et al., 2018). Finally, we discuss
how the olfactory system could make an inference about
whether a response change was caused by concentration
change or sniff change, showing that the olfactory bulb
encodes sniff dynamics to allow rapid detection of a
change in sniffing.

Materials and Methods
All animal experiments were approved by the local

ethics panel of the [Francis Crick Institute]. All mice used
were C57BL/6 Jax males aged between 5 and 12 weeks
and were obtained by in-house breeding. All chemicals
were obtained from Sigma-Aldrich.

Olfactometry
Odorants were delivered to the animal using a custom-

made olfactometer. This consisted of eight different odor
channels connecting two manifolds, a clean air channel,
and a final dilution channel also carrying clean air. Air was
pressure controlled at 1 bar with a pressure regulator (IR
1000, SMC Pneumatics). Flow was computer controlled
via mass flow controllers to each manifold such that the
olfactometer output provided a constant flow of 2 l/min at
all times, meaning that no tactile stimulus accompanied
odor pulses. Odor pulses were calibrated to square
pulses of different concentrations using a mini photo-
ionization detector (miniPID, Aurora Scientific): briefly,
pure odor was presented to the PID from an open bottle,
and the maximum recorded voltage (Vmax) was assumed
to represent 100% saturated vapor pressure. The pulse
amplitudes were then calibrated according to this value,
such that a given concentration C (% saturated vapor
pressure) could be specified by attaining a square pulse of
amplitude equal to C · Vmax/100. Valves and flow control-
lers were controlled using custom-written LabView soft-
ware. Odors applied to animals included 2 different odor
mixtures (for recordings, either mixture A: methyl salicy-
late, eugenol, cinnamaldehyde, creosol, and 1-nonanol;
or mixture B: guaiacol, valeric acid (�)-carvone, 2-phenyl
ethanol, and 4-allylanisol). The components of each mix-
ture were of similar vapor pressure, and proportions were
adjusted according to relative vapor pressure values as in
a previous study (Jordan et al., 2018). For behavior, either
mixture A or pure vanillin odor was applied at various
concentrations (Figs. 3 and 4).
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Surgery
Sterile surgical technique was applied during all surger-

ies. For implantation of the head-plate, mice were anaes-
thetized with isoflurane in 95% oxygen (5% for induction,
1.5%–3% for maintenance). Local (mepivacaine, 0.5%
s.c.) and general analgesics (carprofen 5 mg/kg s.c.) were
applied immediately at the onset of surgery. An incision
was made dorsally above the cranium overlying the cortex
and cerebellum, and periosteal tissue was removed. The
surface of the bone was drilled away across the implan-
tation surface using a dental drill, and cyanoacrylate was
applied to the sutures between the cranial bones to re-
duce movement. A stainless steel custom head-plate was
then glued to the bone surface with cyanoacrylate, and
dental cement was used to reinforce the bond. For mice
going on to whole-cell recording, an additional recording
chamber was constructed on the bone overlying the right
olfactory bulb using dental cement. After surgery, the
mice were allowed to recover for 48 h with access to wet
diet.

Whole-cell recordings
On the day of recording, mice were again anaesthetized

with isoflurane as above, and carprofen analgesic was
injected (5 mg/kg s.c.). A 1-mm-diameter craniotomy was
made overlying the right olfactory bulb, and the dura was
removed. A layer of 4% low-melting-point agar was then
applied to the surface of the bulb, �0.5–1 mm thick, to
reduce brain movement. Cortex buffer (125 mM NaCl, 5
mM KCl, 10 mM HEPES, 2 mM MgSO4, 2 mM CaCl2, 10
mM glucose) was used to fill the recording chamber. The
animal would then be transferred to the recording rig,
head-fixed above a treadmill, and allowed to wake from
anesthesia for 20 min. Whole-cell recordings were then
made blindly by descending a 5–7-M� borosilicate glass
micropipette (Hilgenberg, pulled on a DMZ Universal
puller, Zeitz Instruments) filled with intracellular solution
(130 mM KMeSO4, 10 mM HEPES, 7 mM KCl, 2 mM
ATP-Na, 2 mM ATP-Mg, 0.5 mM GTP, 0.05 mM EGTA,
and in some cases 10 mM biocytin; pH adjusted to 7.4
with KOH, osmolarity � 280 mOsm) through the agar and
180 �m into the olfactory bulb with high pressure. Here
pressure was reduced, and the micropipette advanced in
steps of 2 �m until a substantial and sudden increase in
resistance was observed, indicating proximity to a cell.
Pressure was then dropped to zero or below, and a
gigaohm seal was attained. Whole-cell configuration was
then achieved, and the membrane voltage recording was
made in current clamp mode. Identification of mitral and
tufted cells was achieved using electrophysiological pa-
rameters: an input resistance �150 M�, a resting mem-
brane potential between –60 and –40 mV, and an
afterhyperpolarization (AHP) waveform conforming to
MTC phenotype in an independent component analysis
performed as detailed in previous studies (Kollo et al.,
2014; Jordan et al., 2018).

Altogether, 14 cells were recorded in passive mice and
presented with 2 different odor concentrations, as well as
puff stimuli to evoke fast sniffing (Figs. 1 and 2). Some
cells were presented with two different odor stimuli (two

different mixtures), resulting in 20 cell-odor pairs in total.
Concentrations were presented in a pseudorandom order,
and puff stimuli occurred on a random subset of trials only
for the low concentration. Puff stimuli were applied simul-
taneously with the odor stimuli with a gentle clean air
stream to the flank. For some analyses, such as Figs.
2A,B, 2-1, 5, 5-1, and 5-2, data were supplemented with
previously recorded cells from the passive mouse pre-
sented with the same odor mixtures at 1% vapor pressure
(n � 6 and n � 38, respectively).

Behavioral task and training
On day 0 (48 h after surgery), mice with head-plates

implanted would begin water restriction. On day 1, mice
were habituated to the experimenter and hand-fed 0.5 ml
of highly diluted sweetened condensed milk with a Pas-
teur pipette. On day 2, mice were habituated to head-
fixation: mice were head-fixed above a treadmill and
allowed access to free reward on licking the reward port
(licks were detected using an IR beam). On day 3, suc-
cessfully habituated mice underwent operant conditioning
with repeated presentations of CS� concentration of the
odor mixture until the mouse learned to lick in the 1 s after
odor offset to receive the reward. On day 5, the CS–
concentration was also presented alongside the CS�
concentration in a pseudorandom order, until the mice
learned to refrain from licking to the CS–. Licking to the
CS– would evoke an addition of 6 s to the intertrial inter-
val. Five mice were trained with high-concentration stimuli
as the CS� (“high go”), and three mice were trained on
the reverse contingency (“low go”). On days 6–8, mice
would be presented with five different concentrations
(three additional concentrations spanning the range be-
tween the previously two learned concentrations), and
contingencies as depicted in Fig. 4A. On day 9, five mice
went on to a final session: after observing criterion per-
formance on the binary odor concentration task with the
mixture as learned previously, the odor would switch to
vanillin with the same contingency between concentra-
tions.

Mice were carefully monitored to maintain their body
weights �80% of their prerestriction weight and were
ensured a minimum of 1 ml water per day regardless of
performance. Any mouse exceeding this weight loss or
showing signs of distress was immediately returned to
water access.

Sniff measurement
Nasal flow was recorded by placing a flow sensor

(FBAM200DU, Sensortechnics) externally in close prox-
imity to the nostril contralateral to the side of whole-cell
recording and sampled at 1 kHz. The position of the
sensor was manually optimized at the start of each ses-
sion such that all sniff cycles were captured with a high
signal-to-noise ratio.

Data analysis
In all cases, 5%–95% confidence intervals were used to

determine significance unless otherwise stated. In all fig-
ures, a single asterisk denotes p � 0.05, a double asterisk
denotes p � 0.01, and a triple asterisk denotes p � 0.001.
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Means and error bars showing a single standard deviation
either side are used in all cases where comparing nor-
mally distributed data of equal variance. Lilliefors tests
were used to determine if a dataset was normally distrib-
uted. In the case of normal distributions, two-sided Stu-
dent’s t tests were used for comparison of means and
Bartlett tests used to compare variances, unless other-
wise stated. If data were not normally distributed, or
where two datasets were not of equal variance, ranksum
tests were used to compare the medians, and Browne–
Forsythe tests used to compare variance, unless other-
wise stated. Boxplots are used to represent such data
(data comparisons of unequal variance, or non–normally
distributed data), where median is plotted as a line within
a box formed from 25th (q1) and 75th (q3) percentile.
Points are drawn as outliers if they are larger than q3 �
1.5 � (q3 – q1) or smaller than q1 – 1.5 � (q3 – q1).
Superscript letters listed with p-values correspond to the
statistical tests shown in Table 1.

Sniff parameters
Using the recording of nasal flow, different sniff param-

eters could be extracted. First, inhalation peaks were
detected using Spike2 algorithms that mark each peak
above a certain threshold voltage manually defined by the
user, such that all inhalations were included and no false
positives were present. Inhalation onset was defined as
the nearest time point before inhalation peak at which the
flow trace reached zero. Inhalation offset was similarly
calculated as the first time point after inhalation peak

where the flow trace reached zero. Inhalation duration
was defined as the difference in time between inhalation
onset and offset. Peak inhalation slopes were calculated
by detecting the peak value of the differentiated flow
waveform 50–0 ms before inhalation peak. Sniff duration
was calculated as the time between subsequent inhala-
tion onsets. Sniff frequency was calculated by taking the
inverse of the mean sniff duration within the odor time
period.

Spike rate responses and onsets
Note that when comparing response changes due to

concentration and response changes due to sniff change,
the same number of trials was used in both conditions.

Long timescale (Fig. 1): For each cell, mean spike count
was calculated in 250-ms time bins for the full 2-s odor
stimulus. These were then averaged across trials to gen-
erate PSTHs for low concentration and fast sniffing (five
trials of lowest mean inhalation duration), low concentra-
tion and slow sniffing (five trials with highest mean inha-
lation duration), and high concentration and slow sniffing
(five trials of highest mean inhalation duration). Values
were quadrupled to estimate fining rate (FR) in Hz.

Short timescale (Fig. 2): For each cell, spike counts
were calculated in 10-ms time bins for only the first 250
ms from odor onset (aligned to first inhalation after odor
onset). These spike counts were then averaged across
trials for low concentration and fast inhalation (�70th

percentile peak inhalation slopes), low concentration and
slow inhalation (�30th percentile inhalation slopes), and

Table 1. Statistical analysis
Location Data structure Statistical test 95% confidence intervals

a Paired response onset latencies (fast vs slow sniffs), n � 13 cells Paired t test –25 to –7 ms
b Paired response onset latencies (fast vs slow sniffs), n � 5 pMCs Paired t test –39 to –22 ms

c Paired response onset latencies (fast vs slow sniffs), n � 8 pTCs Paired t test –16 to 1 ms

d Normal distributions of equal variance Unpaired Student’s t test, 2-tailed 11 � 23 � 34 ms

e Paired response onset latencies (high vs low concentration, n � 4) Paired t test 2.3 to 33 ms

f SD in inhalation duration for passive (n � 23) and concentration
go/no go mice (n � 7), calculated for each block (1 block �

10 trials)

Two-way ANOVA on SD in inhalation duration [factors: block #, behavior
(passive vs concentration go/no go)]

Multiple comparison test:
–10 � 5 � –2 ms

g Go rate for fast and slow sniff trials for each concentration (5),
for n � 3 mice trained on low Go contingency

Three-way ANOVA on go rates [factors: mouse, concentration, sniffing
(fast vs slow)]

Multiple comparison test:
–20 � –10 � –1%

h Go rate for fast and slow sniff trials for each concentration (5),
for n � 4 mice trained on high Go contingency

Three-way ANOVA on go rates (factors: mouse, concentration, sniffing
(fast vs slow))

Multiple comparison test:
–22 � –15 � –7%

i Difference in go rate between fast and slow sniff trials for each
concentration (5), for mice trained on two different
contingencies: “low go (n � 3 mice)” and “high go
(n � 2 mice)”

Two-way ANOVA on differences in go rate (factors: contingency,
concentration)

Multiple comparison test:
–16 � –4 � 7%

j Normal distributions of equal variance Paired t-test –15 to 4%

k Go rate for probe trials and control trials for each concentration
(5), for n � 3 mice trained on low Go contingency

Three-way ANOVA on go rates [factors: mouse, concentration, trial type
(probe vs control)]

Multiple comparison test:
–16 � –7 � 3%

l Go rate for probe trials and control trials for each concentration
(5), for n � 4 mice trained on high Go contingency

Three-way ANOVA on go rates [factors: mouse, concentration, trial type
(probe vs control)]

multiple comparison test:
–19 � –8 � 3%

m Difference in go rate between probe and control trials for each
concentration (5), for mice trained on two different
contingencies: “low go (n � 3 mice)” and “high Go (n � 2
mice)”

Two-way ANOVA on differences in go rate (factors: contingency,
concentration)

Multiple comparison test:
13 � 1 � 16 %

n Paired reaction time data (fast vs slow sniffing, n � 5 mice) Paired t test 0.0 to 70 ms

o Paired reaction time data (puff vs control, n � 5 mice) Paired t test –61 to 50 ms

p Contingency table (significant vs non-significant R2, actual data
vs shuffle controls)

Fisher’s exact test 3.4 to 18.3

q Contingency table (significant vs non-significant R2, actual data
vs shuffle controls)

Fisher’s exact test 3.5 to 23.3

r Contingency table (significant vs non-significant R2, actual data
vs shuffle controls)

Fisher’s exact test 5.9 to 33.3
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high concentration and slow inhalation (�30th percentil
peak inhalation slopes). Onset for excitatory responses
was defined at the point at which the mean spike count
exceeded the mean �2 standard deviations (SDs) of the
baseline spike rate in the 250 ms before odor onset, and
remained there for at least 2 consecutive points.

Vm responses
To analyze subthreshold responses in absence of spik-

ing activity, spikes and their AHPs were subtracted from
the trace. This was done by first using the “wavemark”
tool in Spike2 to detect spikes by thresholding and
matching them to a generated spike waveform template.
The length of this spike waveform template was manually
adjusted for each cell according to its AHP length, but
was usually around –4 ms to 20–30 ms relative to spike
peak. A trace was then generated containing all detected
spike waveforms connected by zero values, and this was
subtracted from the original voltage trace.

Correlations between response changes due to
sniffing and concentration change

For both long- and short-timescale mean FR re-
sponses, changes in FR response were calculated for
sniff change (	S, fast minus slow sniffing, low-concen-
tration odor) and concentration change (	C, high minus
low concentration, slow sniffing). For all cell-odor pairs
across the sample, a single regression was made be-
tween FR changes for sniff change and FR changes for
concentration change in the corresponding time bins,
generating an actual R2 and p value (Figs. 1F and 2E). For
shuffle controls, low-concentration trials were shuffled
with respect to the sniff behavior on each trial, and the
same analysis was repeated 100 times. To compare how
strong the correlations were in a relevant way, the high-
concentration trials were randomly separated into two
halves, and a linear regression was made between the
changes in FR for each half (relative to low-concentration
trials) as above. This allowed us to compare R2 values for
correlations between FR changes due to concentration
increase versus concentration increase (	C1 versus 	C2,
different trial subsets) and FR changes due to concentra-
tion increase versus faster sniffing (	C versus 	S).

Euclidean distance analysis of concentration
discriminability

In reference to Fig. 2G, Euclidean distance was taken
across the population between mean spike counts for
high concentration and low concentration (slow inhala-
tion). This generated a measure of discriminability be-
tween concentrations when the inhalation was slow for
both concentrations. To test how much of the discrim-
inability was due to latency shift of excitation between low
and high concentrations, responses that underwent a de-
tectable latency shift had their spike count response to low
concentration manually shifted earlier according to the la-
tency shift occurring between high and low concentration.
Euclidean distance was then recalculated between spike
counts for high concentration and the latency-shifted spike
counts at low concentration. Finally, Euclidean distances
were calculated between spike counts for high concentra-

tion (slow inhalation) and low concentration (fast inhalation).
Time for discrimination was calculated, if possible, as the
point at which the Euclidean distance exceeded the mean �
2 SDs of the baseline Euclidean distance (250 ms before
odor onset) for at least 2 consecutive 10-ms time bins.

Baseline activity correlations with inhalation duration
For each cell (n � 45), 1000–2000 sniffs were analyzed

in absence of odor. Sniffs were categorized according to
their inhalation duration, 35–45, 45–55, 55–65 ms and so
forth. For each individual sniff, different parameters were
calculated from the corresponding neural activity. Mean
membrane potential was calculated from the subthresh-
old membrane potential occurring from 0 to 250 ms from
inhalation onset. Peak membrane potential was desig-
nated as the maximum membrane potential within 30–
250 ms after inhalation onset, and time of the peak
membrane potential was determined as the time of this
maximum membrane potential relative to inhalation onset.
Spike counts were calculated by summing all action po-
tentials occurring within the same time frame. To calculate
the correlations for each parameter, each was averaged
across all sniffs within the category, and regression anal-
ysis was used to generate an R and p value between the
resulting average parameters and the corresponding in-
halation duration (minimum of the category). For each cell,
inhalation duration categories were excluded from the
correlation if they contained �25 sniffs, and cells that had
�5 valid categories were additionally excluded. For shuf-
fle controls, inhalation duration was shuffled throughout
the data, and the regression analysis was repeated 10
times per cell.

Euclidean distance analysis of detectability of sniff
change

For this analysis, only cells with �50 sniffs during base-
line in each category, 55–65, 75–85, and 95–105 ms
inhalation duration, were included. A random subset of 25
sniffs in each group were selected, and spike activity
within these samples were used to construct PSTHs.
Each PSTH was normalized such that the first 30 ms
started at zero Hz on average. PSTHs were put in se-
quence, either 3 consecutive 95-ms inhalation duration
sniffs (control sequence), or the same sequence but with
the final sniff of a different inhalation duration, either 75 or
55 ms. Euclidean distance across the population of these
sequences were then calculated between the control se-
quence and sequences ending in 55- or 75-ms inhalation
duration sniffs. Detection time for the change in inhalation
duration was calculated where the Euclidean distance in
the last sniff exceeded the mean � 2 SDs of the baseline
Euclidean distance from the first 2 sniffs.

Phase preference and putative mitral and tufted cell
boundaries

The sniff-Vm modulation properties of each cell were
calculated from the intertrial intervals (i.e., in absence of
odor) as in previous studies (Fukunaga et al., 2012; Jor-
dan et al., 2018). Due to the high variability of sniff behav-
ior in awake mice, analysis was restricted to sniff cycles
between 0.25 and 0.3 s in duration, where the preceding
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sniff cycle was also within this range. Mean Vm from the
spike-subtracted Vm trace was taken as a function of sniff
cycle phase for at least 150 sniffs, and this was plotted as
Cartesian coordinates. The angle of the mean vector cal-
culated by averaging these Cartesian coordinates was
taken as the phase preference of the cell. To determine
putative mitral cell (MC) or tufted cell (TC) type based on
phase preference, we used the phase boundaries deter-
mined previously (Jordan et al., 2018): pMCs were defined
as cells with phase preferences within the phase bound-
aries 0.39–4.11 radians (inhalation), and pTCs were
defined as those with phase preferences within the re-
maining boundaries (exhalation).

Prediction of inhalation duration with peak spike
rates with simple linear model

Sniff cycles occurring in absence of odor (during the
intertrial intervals) from 25 whole-cell recorded neurons
(19 pMC, 6 pTC) were divided into 10-ms bins according
to inhalation duration (e.g., 30–40, 40–50 ms, and so
forth) and used to construct pseudo-population activity
for individual sniff cycles of a given inhalation duration.
Only cells with at least 20 sniff cycles for each inhalation
duration bin were included. From each cell, the peak spike
rate (smallest interspike interval) within 400 ms of sniff
onset was calculated for each sniff cycle. The peak spike
rates across the pseudo-population for 13 random sniff
cycles within each inhalation duration category were used
to generate a simple linear model to predict the inhalation
duration. The resulting model was then tested on the
remaining 7 sniff cycles, and the relationship between
predicted and true inhalation duration was compared (Fig.
5E).

Modulation of sniff-activity relationships across
phase preference

In reference to extended data Fig. 5-1, to determine if
the sign of relationship between inhalation duration and
the various activity parameters was related to the sniff
phase preference of the cell, R values for the various
correlations were plotted as a function of phase prefer-
ence. Only correlations with a significant p value (�0.05)
and an R2 � 0.6 were included. A sliding window of 2
radians was then used to calculate the mean R value for
all cells with phase preference within the window, result-
ing in a mean R value as a function of phase preference.
The modulation strength of mean R value as a function of
phase was then calculated: the plot of mean R value was
normalized to the minimum value across all phases, and
the result was plotted as Cartesian coordinates. The
length of the mean vector calculated by averaging these
Cartesian coordinates was taken as the modulation
strength of the R value across phase space. To determine
the significance of this modulation, R values were shuffled
with respect to phase preference 10,000 times, and the
resulting distribution of shuffled modulation strength was
compared to the value for the unshuffled data.

Learning time and reaction time
For the generation of learning curves as in Fig. 3, a

moving window was used across five consecutive CS�

and five consecutive CS– trials and advanced by one trial
on each step, and a percentage correct was calculated.
The trial at which this reached at least 80% correct for five
consecutive points was deemed the learning time.

Reaction time calculations were based on 10 or more
trials of at least 80% correct performance. From lick
behavior, for each trial, lick probability was calculated in a
moving time window of 100 ms, aligned to the first inha-
lation onset after final valve opening. The difference be-
tween the probability of licking for CS� and CS– stimuli
for each time window was calculated, and the leading
edge of the first window at which this calculated differ-
ence significantly deviated (�2 SD) from the values cal-
culated in the 2-s window before odor onset was
considered the reaction time. From sniff behavior, inhala-
tion and exhalation duration values were calculated for
each trial as a function of sniff number from odor onset.
These values were compared between those calculated
for CS� and CS– using a t test, and the reaction time was
calculated based on the first inhalation or exhalation
within the series to show a significant difference (p �
0.05).

Results
Changes in sniffing can mimic the effect of
increased concentration on firing rate response

We first wanted to determine if the effect of sniff
changes on MTC odor response could qualitatively mimic
concentration changes at the level of FR change. To do
this, we used whole-cell recordings from identified MTCs
in awake passive mice, as this allows unbiased sampling
from the MTC population in terms of baseline FR, and
reliable identification of cell type based on electrophysi-
ology (Margrie et al., 2002; Kollo et al., 2014). On each
trial, mice were presented randomly with 2-s-long odor
stimuli calibrated to either 1% (low concentration) or 2.5%
(high concentration) square pulses. On a small percent-
age of low-concentration trials, mice also received a gen-
tle air puff to the flank, evoking fast sniffing behavior
characterized by high-frequency sniffs and short inhala-
tion durations (Figs. 1A and 1-1). For all analyses in the
manuscript, “odor onset” (t � 0) is defined as the first
inhalation onset during the odor stimulus. Note that sev-
eral parameters of sniffing covary with inhalation duration,
including the sniff duration, the previous sniff duration,
and the slope of the inhalation (Fig. 1-2). Thus wherever
we refer to fast or slow sniffing, this will necessarily refer
to differences in these multiple parameters.

During recordings, it was apparent that some cells
displayed overt changes in FR with the increase in con-
centration, and the most salient of these were increases in
excitatory FR response, which could come even from
cells that did not respond to the lower concentration (Fig.
1B, cell a and cell b). To compare changes in response for
higher concentration to those for faster sniffing, we took
trials from each stimulus concentration based on inhala-
tion duration: slow sniffing trials (for both high and low
concentrations) were taken as the five trials with highest
mean inhalation duration (MID), and fast sniffing trials
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were the five trials with the lowest MID. When comparing
changes in FR evoked by concentration increase to those
taking place as a result of increased sniff frequency, it was
apparent that very similar changes took place (Fig. 1B).
Altogether we recorded from 20 mitral/tufted cell-odor
pairs in such a manner, with a range of FR responses to
the low concentration odorant (Fig. 1D). When taking a
broad measure of the change in firing rate across the first
second of the stimulus (normalized by baseline SD),
changes in FR were significantly correlated between
those resulting from concentration increase and those
resulting from faster sniffing (R2 � 0.70, p � 5 � 10
6, n
� 20; Fig. 1C). Furthermore, comparing heat maps of the
changes in FR due to increased concentration and due to
increased sniff frequency revealed a very similar set of
changes that were significantly correlated compared to

shuffle controls (R � 0.71, p � 5 � 10
27; n � 160 time
bins; Fig. 1E,F; see Methods). This level of correlation was
very similar to that for the FR changes due to concentra-
tion increase when compared between two random
halves of high-concentration trials (R � 0.73, p � 6 �
10
28). Overall, this indicates that the pattern of FR
changes across time bins was highly similar for concen-
tration increase and for fast sniffing.

While in the output of MTCs the effects of sniffing and
concentration increase were very similar, differences were
seen in the subthreshold response changes, suggesting
that changes in input in the two cases were (perhaps
unsurprisingly) not identical: increases in inhibition were
generally larger for the concentration increase than for
faster sniffing (Fig. 1-3). We suggest this could be the
result of inhibitory networks that act to normalize olfactory

Figure 1. Sniff change and concentration change have very similar effects on FR responses of MTCs. A, Stimulation paradigm during
whole-cell recordings. PID traces show response of photoionization detector (magnitude proportional to odor concentration), while
nasal flow traces show example sniffing behavior recorded using external flow sensor for the three types of trial. See Figs. 1-1 and
1-2 for details about sniff parameters. Black bar and gray box shows where odor is applied. B, Example odor responses recorded
in each stimulus condition. Vm traces show example responses for cell a, while PSTHs below show averaged FR responses in 250
ms time bins for five trials in each case. Bottom-most PSTHs are calculated for a different example, cell b. Error bars show standard
deviation (SD). All are aligned to first inhalation onset after odor onset. C, Scatter plot comparing mean FR response change for
concentration change and sniff frequency change (normalized by the SD of baseline FR changes in the 2 s before odor stimulus for
each cell-odor pair) across first second of odor stimulus. n � 20 cell-odor pairs. D, Heatmap of average FR responses for all cell odor
pairs in the low concentration, slow sniff frequency condition, ordered by mean FR response. E, Heatmap of FR response differences
(difference between PSTHs) normalized by the SD of baseline FR differences in the 2 s before odor stimulus for each cell-odor pair.
Concentration increase � high concentration, slow sniffing, minus low concentration, slow sniffing. Faster sniffing � low concen-
tration, fast sniffing, minus low concentration, slow sniffing. Asterisks indicate cell a and cell b examples. F, Top: R2 values for
correlations across all odor time bins as shown in E, between FR changes due to concentration change and those due to sniff
frequency change. Histogram shows R2 values for shuffle controls, “actual” shows R2 value for real data. Red dotted line indicates
value for correlation between FR changes due to concentration increase for two separate sets of high concentration trials. Bottom:
as for above, but histogram showing p-values for the correlations (–log10). See Fig. 1-3 for analysis of membrane potential responses.
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Figure 2. Faster inhalation causes temporal shifts similar to those caused by concentration increase. A, From top to bottom: example
Vm traces, spike rasters, and mean spike counts for early excitatory responses for slow inhalation (black) and fast inhalation (pink),
for two different cell-odor pairs. The left example is from a putative mitral cell (pMC) and the right example is from a putative tufted
cell (pTC). Rasters are ordered (top to bottom) from slowest to fastest inhalation. Black bar and dotted line indicate odor onset aligned
to the first inhalation onset. B, Comparison of response onset latencies for excitatory responses evoked by fast and slow sniffs for
pMCs and pTCs. See also Fig. 2-1. C, Example Vm traces (above, for one cell) and mean spike counts (below, for two different cells)
for early excitatory responses. Black shows response at low concentration evoked by slow inhalation, pink shows response at low
concentration evoked by fast inhalation, and green shows response for high concentration evoked by slow inhalation. D, Left:
heatmap to show spike counts of all 20 cell-odor pairs in response to low concentration odor stimulus and slow inhalation, for the
first 250 ms of stimulation. Cell-odor pairs are sorted by the mean spike count during odor. Middle: heatmap to show difference in
spike counts between high concentration and low concentration (evoked by slow inhalation). Left: heatmap to show difference in spike
counts between fast inhalation and slow inhalation (low concentration stimulus). E, Top: R2 values for correlations across all odor time
bins as shown in D, between spike count changes due to concentration increase and due to faster inhalation. Histogram shows values
for shuffle controls (see Methods), black bars show value for actual data. Red dotted line indicates value for correlation between spike
count changes due to concentration increase for two separate sets of high-concentration trials. Bottom: as for above, but histogram
showing p-values for the correlations (–log10). F, Histogram to show excitatory response onset latency changes due to concentration
increase. Error bar in green shows mean and SD of this data, and in pink shows the distribution due to sniff changes (from dataset
in panel B) for comparison. G, Euclidean distance between population spike count response vectors for high- versus low-
concentration stimuli (where data for both came from slow inhalation trials; “slow sniff,” solid cyan), for high concentration and
time-shifted low concentration (“slow sniff adv.,” where excitatory latency changes due to concentration change were undone via time
shifting of the data; dotted cyan), and for high concentration and low concentration where low concentration data came from fast
inhalation trials (“fast sniff,” solid purple).
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bulb output (within limits) in the face of increased global
input (Kato et al., 2013; Miyamichi et al., 2013; Roland
et al., 2016).

Thus, while increased concentration causes greater in-
creases in subthreshold inhibition than increased sniff
frequency, the latter results in changes in olfactory bulb
output that apparently mimic those resulting from in-
creases in concentration.

Faster inhalation mimics effect of concentration
increase on latency response in the timescale of a
single sniff

It has been reported that increased concentration
causes changes in response on finer temporal timescales,
in particular the temporal advance of excitatory bursts
(Cang and Isaacson, 2003; Fukunaga et al., 2012;
Schaefer and Margrie, 2012; Sirotin et al., 2015). MCs
undergo robust reductions in latency of excitation for
concentration increase, while TCs—which already re-

spond earlier—do not (Fukunaga et al., 2012). We wanted
to know whether faster sniffing could cause the same
temporal effects as concentration increase on a cell-by-
cell basis.

To determine this, we first analyzed 13 cell-odor pairs
with early excitatory responses (within 250 ms of odor
onset) recorded in passive awake mice where only a
single concentration stimulus (1% saturated vapor pres-
sure) was presented to the animal across trials. Compar-
ing the FR response over the first 250 ms for fast sniff
trials (�70th percentile peak inhalation slopes) and slow
sniff trials (�30th percentile), it was apparent that faster
inhalation could cause a latency advance of the excitatory
burst (Figs. 2A and 2-1F). Consistent with previous results
(Carey and Wachowiak, 2011; Shusterman et al., 2011),
faster inhalation caused a significant latency reduction in
mean response onset across the dataset (latency change,
fast-slow � –16 � 14 ms, p � 0.002,a n � 13, paired t test

Figure 3. Mice rapidly learn to discriminate concentrations on fast timescales. A, Diagram of head-fixed behavior setup. B, Average
PID traces for concentration go/no-go stimuli. Shaded area shows SD. See Fig. 3-1A for odor outlet flow traces. C, Concentration
go/no-go task sequence. See Fig. 3-1B for training protocol. D, Left: average learning curve for eight mice. Percentage correct is
calculated as a moving average over 5 CS� and 5 CS– trials. Shaded area indicates SD. Mice are initially trained on two
concentrations of an odor mixture, and subsequently tested on the same two concentrations of vanillin. Right: distribution of learning
times to criterion (four successive learning curve points at or above 80% correct), for the odor mixture and vanillin. E, Left: distribution
of reaction times (RTs) calculated from licking behavior for the odor mixture and vanillin. Right: as for left, but for RTs calculated from
sniffing behavior (see Methods). F, Left: example sniff traces for the 1st, 3rd, and 8th presentation of the CS� and CS– concentrations
for the initial concentration discrimination learning session. Note that in this session, the CS� concentration is first presented 10 times
to ensure retention of the lick pattern learned the day before, and then the CS– is interleaved in a pseudorandom order. Right: plot
to show median sniff frequency across 8 mice (regardless of concentration-reward contingency) for presentations 1–10 of the CS�
and CS– concentration in the first 2 concentration discrimination sessions. Boxes show upper and lower quartiles.
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between onsets for slow and fast inhalations; Fig. 2-1A,B).
Onset latencies displayed a significant relationship with
the peak firing rate during the response (Fig. 2-1D), sug-
gesting that the most strongly activated cells respond
earlier. The extent of the latency reduction correlated with
the onset time during slow inhalation: if the response was
of longer latency during slow sniffing, the latency reduc-
tion was greater (Fig. 2-1C), indicating that cell-odor pairs
showing a stable latency are likely already activated at the
earliest possible timescale. We next used sniff cycle
phase preference (calculated from Vm during baseline
breathing in air) to determine putative MC and TC (pMC
and pTC) phenotype using subthreshold activity as previ-
ously described (Fukunaga et al., 2012; Jordan et al.,
2018). Examples could be found where both pMCs and
pTCs underwent reductions in latency of excitation when
the sniff was fast (Fig. 2A); however, in general, reductions
for pMCs were greater than reductions for pTCs (pMCs:
latency change � –30 � 7 ms, p � 7 � 10
4, paired t
test,b n � 5 cell-odor pairs; pTCs: latency change � –8 �
10 ms, p � 0.08,c paired t test, n � 8 cell-odor pairs;
pMCs versus pTCs: p � 0.001,d unpaired t test; Figs. 2B
and 2-1E), and this was potentially because pTCs already
tended to respond with shorter latency during slow sniffs
than pMCs (Fig. 2B). Thus, the effect of fast sniffing,
including cell-type specificity, is similar to that previously
reported for increasing concentration (Fukunaga et al.,
2012).

We next asked whether the effect of sniffing on latency
directly mimics the effect of concentration change within
a single cell. When comparing high- and low-concen-
tration stimuli over the first 250 ms in MTC recordings
from passive mice (dataset as in Fig. 1), the only salient
changes in response to increased concentration were
latency advances of excitatory burst stimuli (Fig. 2C,D).
When correlating the pattern of changes in spike count as
before (Fig. 1F) between those occurring for sniff change
and those occurring for concentration change, there was
a significant positive correlation between the two (R �
0.71, p � 4 � 10
72, n � 525 time bins; Fig. 2E). This level
of correlation was only marginally smaller than that when
correlating spike count changes due to concentration
increase between two random halves of high-concen-
tration trials (R � 0.78, p � 4 � 10
111). Latency reduc-
tions for concentration increase were similar in magnitude
to those seen due to sniff change (Fig. 2F, mean onset
advance � –18 � 10 ms, p � 0.04,e n � 4; paired t test
between onsets for low and high concentration), and
similar to those previously reported (Sirotin et al., 2015).
To determine the effects of sniffing on ability to distinguish
the two concentrations from our dataset, we calculated
the Euclidean distance between FR responses to the two
different stimuli. This revealed that latency changes con-
tributed to the entirety of the difference between the two
different concentrations on this timescale, with the Euclid-
ean distance between the two dropping to baseline if the
excitatory bursts were manually shifted forward for the
low concentration (Fig. 2G, slow sniff vs slow sniff adv.;
see Methods). Faster inhalations during low-concen-
tration trials mimicked the latency shifts caused by con-

centration increase, also causing the Euclidean distance
between high and low concentration stimuli to drop to
baseline (Fig. 2G, slow sniff vs fast sniff).

Thus, even on short timescales, a more rapid inhalation
mimics concentration increases at the level of the single-
cell output from the OB, making it very difficult to distin-
guish the effect of increased concentration at this
timescale.

Variance in sniffing has no overt impact on
performance in a fine concentration discrimination
task

Rodents have previously demonstrated the ability to
discriminate odor concentrations (Slotnick and Ptak,
1977; Abraham et al., 2004; Parthasarathy and Bhalla,
2013; Wojcik and Sirotin, 2014); however, it is not known
how sniff variance affects this ability. Given the physiology
(Figs. 1 and 2; accompanying paper, Shusterman et al.,
2018), we next sought to determine the capabilities of
mice when distinguishing odor concentrations in a simple
head-fixed go/no-go paradigm (Fig. 3A–C), despite vari-
ance in sniffing.

First, mice were trained to distinguish high-concen-
tration (3%) versus low-concentration (1%) stimuli. Three
mice were trained with the low-concentration stimulus as
the CS� (Low go), and five mice were trained with high
concentration as the CS� (High go). To ensure mice
could not use flow changes to perform the task, our
olfactometer design kept flow from odor outlet constant
(Fig. 3-1A). After pretraining (Fig. 3-1B), all mice learned
this task within a single training session (Fig. 3D) and
could make rapid decisions within the timescale of a
single sniff cycle (160–200 ms; Fig. 3E). To test whether
mice were using trigeminal rather than olfactory input,
after the task was learned, the odor would subsequently
be switched to vanillin (a chemical that is thought not to
stimulate trigeminal afferents; Frasnelli et al., 2011), pre-
sented at the same two concentrations. Mice learned to
perform this discrimination within a significantly shorter
time frame than the original odor mixture, and with the
same short reaction times (Fig. 3D,E). This suggests the
mice may have learned the task rule for odor concentra-
tion and applied it rapidly to the new, non–trigeminal-
activating odorant. Learning in the task was likely the
result of acquiring the response to the stimulus rather than
learning how to perceive the difference in concentrations,
since on the very first presentation of the CS– concentra-
tion after pretraining on the CS� concentration, mice
typically displayed a rapid sniffing response (Fig. 3F) clas-
sically associated with stimulus novelty (Verhagen et al.,
2007; Wesson et al., 2008b; Roland et al., 2016). Thus, in
this task mice can very rapidly make decisions based on
relatively modest concentration differences within the
timescale of a single sniff, comparing very well to their
abilities in odor identity tasks (Uchida and Mainen, 2003;
Wesson et al., 2009; Resulaj and Rinberg, 2015).

To determine if sniff variation impacted the concentra-
tion decisions of mice, seven trained mice were advanced
on to a five-concentration task. Here, three new interme-
diate concentrations between the two previously learned
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concentrations were also presented (Fig. 4A). The con-
centration most similar to the learned CS� was rewarded
as a CS�, while the other two concentrations, including
one exactly halfway between the previously learned con-
centrations, were treated as CS– (Fig. 4A). Two to three
sessions of 200 trials were performed on this task, over
which mice generally performed at a relatively high level of
accuracy (Fig. 4B,C, mean percentage correct across
session � 75 � 6%, n � 7 mice).

Was there any evidence that mice were learning a
stable sniffing strategy to perform the task? This seems
unlikely, as variance in inhalation duration of the first sniff
did not decrease across the session (if anything, a mild
increase in variance was observed: R2 � 0.5, p � 0.0001,
regression between block number and mean variance,
n � 20 blocks; Fig. 4D,E), and variance was significantly
larger across blocks compared to passively exposed mice
(concentration go/no-go: standard deviation of 1st inhala-
tion duration � 19 � 4 ms across 7 mice and 20 blocks;
passive: SD � 13 � 1 ms across 23 mice and 6 blocks; p
� 0.004,f F � 12.5, df � 1; two-way ANOVA; Fig. 4D,E).
Thus, while mice are capable of more stable sniffing as
seen during passive exposure, they do not use this as a
strategy in the concentration task.

Mice displayed a graded percentage of go trials across
concentrations, indicating that the discrimination task
was not trivial (Fig. 4B). Thus, if sniff changes cause shifts
in perceived concentration, this should be overtly seen in
the performance curves, and importantly, these shifts
should have opposite polarity depending on which con-
tingency the mouse was trained on (i.e., fast sniffing for
Low go trained mice should decrease go responses, while
it should increase go responses in High go trained mice).
To test this, we first separated trials according to whether
the first sniff was fast (�30th percentile inhalation dura-
tion) or slow (�70th percentile; Fig. 4F). This resulted in a
comparison of trials between which the difference in the
inhalation duration exceeded that used in the whole-cell
recordings when comparing fast and slow sniff trials (Fig.
3-1C). Calculating performance curves separately for fast
and slow sniff trials for each mouse revealed that there
was a significant tendency for higher go rates in fast sniff
trials for both Low go and High go trained animals across
concentrations (Low go: p � 0.04,g F � 4.8; High go: p �
0.001,h F � 14.1; three-way ANOVA). However, this ten-
dency did not differ across concentrations or training
contingency (two-way ANOVA performed on difference in
go rate between fast and low sniff trials across mice:
contingency versus go rate difference: p � 0.41i; n � 7
mice � 5 concentrations; Fig. 4G). This makes it more
likely that a fast sniff indicates higher motivation to do the
task (consistent with previous findings; Wesson et al.,
2009; Jordan et al., 2018), resulting in higher go rates
across the board.

Thus, we wanted to more directly probe the effect of
sniff variance on performance. On a small selection of
trials for five of the mice, the puff stimulus (as used during
the physiologic recordings) was used to evoke fast sniffs,
including the first inhalation (Fig. 4J). The mean changes
in first inhalation duration evoked by this puff were again

highly comparable to that used for analysis of fast and
slow sniffs in the physiologic data (Fig. 3-1C). The puff
was associated with an increased error rate likely owing to
distraction, but this did not reach significance (percentage
correct: control trials � 83 � 8%, probe trials � 77 � 9%,
p � 0.16,j paired t test, n � 5 mice). There was a small and
insignificant tendency for increased go rates during the
puff stimulus relative to control trials for mice trained on
either contingency (Low go: p � 0.17,k F � 2.0, df � 1;
High go: p � 0.14,l F � 2.3, df � 1; three-way ANOVA
performed on go rate; Fig. 4K), and this tendency was not
significantly different between mice trained on the two
contingencies (p � 0.84,m F � 0.04, df � 1; two-way
ANOVA performed on difference in go rate between fast
and low sniff trials across mice).

Could mice be compensating for ambiguity by taking
more inhalations to make the correct response? If so, this
would be reflected in longer reaction times for fast com-
pared to slow first sniff trials. On the contrary, comparing
trials with fast and slow inhalations as above (Fig. 4F),
reaction times (calculated between the highest and lowest
concentration) were slightly though significantly shorter
for fast sniff trials (	reaction time, fast-slow � –35 � 38
ms, p � 0.048,n paired t test, n � 7, Fig. 4H), again
consistent with the idea that faster sniffing indicates a
higher motivation level (Wesson et al., 2009; Jordan et al.,
2018). Reaction times were unaffected by the puff stimu-
lus compared to control trials (	reaction time, probe-
control � –5 � 45 ms, p � 0.80,o paired t test, n � 5, Fig.
4L). This was also the case for finer concentration dis-
crimination (Fig. 3-1D,E).

Reductions of inhalation duration of 10–20 ms rendered
1% and 2.5% concentrations hard to distinguish within
our sample of MTC cells (Fig. 2G). Here we are comparing
similar and even larger reductions in inhalation duration,
yet behaviorally the ability to discriminate concentration
on an even finer scale shows no overt differences, con-
gruent with findings in rats for a different task in an
accompanying paper (Shusterman et al., 2018). Thus,
mice can easily discriminate fine concentration differ-
ences even in the face of large changes in sniffing.

Mitral and tufted cells respond to inhalation changes
in absence of applied odor

We have so far shown that it is difficult to distinguish the
effect of a change in inhalation or a change in concentra-
tion via their effects on MTC responses (Figs. 1 and 2), yet
mice are perfectly capable of fine concentration discrim-
ination in the face of fluctuating inhalations (Fig. 4). One
explanation for this apparent conundrum could be that the
olfactory system obtains information about the kind of
inhalation that just occurred to infer whether concentra-
tion or sniffing evoked the response change. Congruent
with the latter idea, OSNs have been demonstrated to
respond to pressure changes (Grosmaitre et al., 2007),
giving rise to sniff coupling in the olfactory bulb (Adrian,
1950; Macrides and Chorover, 1972; Cang and Isaacson,
2003; Margrie and Schaefer, 2003; Fukunaga et al., 2012),
which disappears with naris occlusion (Margrie and
Schaefer, 2003), and bouts of rapid sniffing are known to

New Research 11 of 18

September/October 2018, 5(5) e0148-18.2018 eNeuro.org

https://doi.org/10.1523/ENEURO.0148-18.2018.f3-1
https://doi.org/10.1523/ENEURO.0148-18.2018.f3-1
https://doi.org/10.1523/ENEURO.0148-18.2018.f3-1
https://doi.org/10.1523/ENEURO.0148-18.2018.f3-1


Figure 4. Variance in inhalation has no overt impact on concentration discrimination performance. A, Diagram to show average PID
traces for the five different concentrations and contingency schemes. Shaded area shows SD. To the left the contingencies are shown
for “high-go” and “low-go” trained mice, with black crosses indicating CS– stimuli. B, Average go rate (percentage of trials with a go
response) across mice for all five concentrations. C, Mean lick counts averaged across mice for the five different concentrations
(darkest � strongest) for both “high go” and “low go” training contingencies. Black bar indicates odor stimulus, and blue bar indicates
response period. D, Plot to show inhalation duration for first inhalation of the odor stimulus across trials, for the first session of one
example mouse performing the five-concentration go/no-go task (“concentration GNG”), and for a passively exposed mouse
(“passive”). Error bars show SD for each 10-trial block. Example representative nasal flow waveforms for single sniffs are shown to
the left. E, Mean SD for the first inhalation duration (ms) during the odor stimulus, for seven mice performing five-concentration
go/no-go in their first session, and for passively exposed mice (n � 23). SD is calculated for each 10-trial block of a session for each
mouse. Error bars show standard error. F, Example histogram of inhalation durations of the first sniff during an odor stimulus across
trials for one mouse. Data for each mouse is partitioned into fast inhalations (�30th percentile, red), slow inhalations (�70th percentile,
cyan), and other (gray). Example representative nasal flow waveforms for a single sniff of each subset are shown. G, Go rate as a
function of concentration when splitting trials according to duration of first inhalation as in F. Dotted line shows mean go rate for sniffs
with inhalation between 30th and 70th percentile. H, Top: average difference in lick-histograms between CS� and CS– (highest versus
lowest concentration) averaged across all seven mice for slow sniff trials (cyan data) and fast sniff trials (red data) partitioned as in
F. Shaded area indicates SD. Dashed line indicates odor stimulus onset aligned to the first inhalation. Bottom plot shows difference
in reaction times as measured by licking for fast and slow sniff trials for all seven mice. See also Fig. 3-1D. J, Example sniff traces
for one animal for a puff trial (a trial in which an air puff to the flank was used to evoke fast sniffing) and an adjacent control trial of
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cause activity changes in MTCs in absence of applied
odor (Jordan et al., 2018; Kato et al., 2013). We wanted to
determine if the olfactory bulb reports graded changes in
inhalation parameters on the timescale of a single sniff.

We took baseline activity in absence of odor as a proxy
for the large portion of mitral and tufted cells that will not
be responsive to an odor, whose activity could instead be
used to directly determine the kind of sniff that took place.
To do this, we analyzed the cellular activity of 45 MTCs
recorded in passive mice across over 1000–2000 sniffs
occurring in absence of the odor. Sniffs were categorized
according to inhalation duration, and for each category
peristimulus time histograms and average membrane po-
tential waveforms were calculated over 250 ms triggered
by inhalation onset (Fig. 5A–C). We found that individual
MTCs would show linear transformations in their activity
according to the duration of the inhalation just occurring.
For example, some cells showed increased spike count
(Fig. 5A1,B1) and depolarizing membrane potential (Fig.
5C1) as inhalations became faster, while others showed
decreasing spike count (Fig. 5A2,B2) and more hyperpo-
larizing membrane potential (Fig. 5C2). 24% of cells
showed significant relationships between spike count and
inhalation duration (p � 0.01, linear regression; Fig. 5D)
compared to only 3% in shuffle controls (odds ratio � 7.8,
p � 1 � 10
5,p Fisher’s exact test). Similarly, 22%
showed significant correlations with mean membrane po-
tential compared to 2% of shuffle controls (odds ratio � 9,
p � 3 � 10
5,q Fisher’s exact test; Fig. 5D). Timing of
activity was also often linearly correlated with inhalation
duration, generally with the peak of the membrane poten-
tial shifting to earlier times as inhalation duration reduced
(significant R values in 32% of cells versus 2% in shuffle
controls, odds ratio � 14, p � 1 � 10
8,r Fisher’s exact
test; Fig. 5D). Altogether 51% of cells showed a significant
relationship between inhalation duration and at least one
or more of these activity parameters (Fig. 5D). Interest-
ingly, the directionality of the relationships (i.e., whether a
cell hyperpolarizes or depolarizes with a faster sniff),
could be attributed to putative mitral or tufted cell type, as
defined by sniff phase preferences (Fig. 5-1).

We next sought to determine if we could detect
changes in inhalation from the spiking activity of cells in
absence of odor. For all cells with enough sniff variation
(�50 sniffs in each inhalation duration category: 95–105,
55–65, and 75–85 ms), we calculated sequences of spike
histograms for sniffs of different inhalation durations using
random subsets of sniffs within each category. We con-
structed either a sequence with PSTHs calculated from
three consecutive sniffs of 95-ms inhalation duration or a
sequence with PSTHs calculated from 2 consecutive
sniffs of 95 ms, with the last PSTH instead constructed
from 55-ms inhalation duration sniffs (Fig. 5-2A). Using
these, it was possible to determine a change in inhalation
duration (95–55-ms inhalation duration) within only 70 �

12 ms by calculating Euclidean distances between con-
structed population vectors of the two different se-
quences (Fig. 5-2A). Smaller changes in inhalation
duration (95–75 ms) could also be detected on similarly
rapid timescales (Fig. 5-2B).

We next wanted to assess the overall predictive power
of MTC firing activity for inhalation duration. Using 25
whole-cell MTC recordings, we generated a simple linear
model to classify inhalation durations within 10-ms bins
using the peak spike rates within each sniff cycle. The
linear model was generated using constructed “popula-
tion” activity of the 25 cells across 13 sniff cycles from
each inhalation duration category and was tested subse-
quently on 7 sniff cycles from each category. Considering
the limited number of cells and trials used, this classifier
performed very well (Pearson’s r � 0.79; Fig. 5E). Com-
paring the model’s weights (regression coefficients) for
different cells, we found that the large majority of cells
were involved in the classification, but weights for pMCs
tended to be stronger than for pTCs and showed signifi-
cantly larger variance (p � 0.01, Bartlett test; Fig. 5-2C).

Thus MTC activity—in the absence of applied odor
input—is informative of the inhalation that just occurred,
such that the large population of non–odor-responsive
cells could be utilized by the olfactory system to distin-
guish sniff changes versus concentration changes.

Discussion
For stable perception, sensory systems must find ways

of encoding of stimulus features independent of fluctuat-
ing sampling behaviors, such as eye movements or sniff-
ing. Here we show that faster sniffs can evoke response
changes in the olfactory bulb that appear indistinguish-
able from those caused by increasing concentration (Figs.
1 and 2), yet mice are highly capable of perceiving con-
centration on fast timescales, regardless of sniffing pa-
rameters (Fig. 4). We reason that a way the olfactory
system could distinguish these two occurrences directly
is via information about the kind of sniff that just occurred.
While this could conceivably happen downstream via ef-
ference copy of sniff motor commands, we find that MTC
activity already allows inference about the kind of sniff
that just occurred on a rapid timescale (Fig. 5). Thus, the
olfactory bulb itself does not appear to be the site where
the sniff-invariant percept of intensity is generated, but
does appear to already contain information that could be
used to generate the percept elsewhere.

Given the timescale of decision-making for concentra-
tion (Figs. 3 and 4), it seems likely that the information
used by the mouse is the fast-timescale temporal shifts in
excitation that have been previously described (Cang and
Isaacson, 2003; Fukunaga et al., 2012; Sirotin et al.,
2015). Congruently, this temporal information contributes
to the entirety of the difference in response to the two
concentration stimuli in our dataset (Fig. 2G). It has been

continued
the same concentration. Blue ticks indicate licks. K, Mean go rate as a function of concentration across mice for puff trials (orange)
versus control trials (black). L, As for H, but now comparing lick distributions and reaction times between puff trials and control trials.
See also Fig. 3-1E.
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Figure 5. Inhalation duration transforms mean baseline MTC activity in a large proportion of cells. A1–C1 refer to one example cell, while
A2–C2 refer to a different example cell. A1–2, Example nasal flow traces and Vm traces in absence of odor. Sniffs are color coded according
to inhalation duration (blue � slow, and red � fast). Black ticks indicate inhalation onset. B1–2, Left: average spike count histograms
triggered by inhalations of different durations (denoted on each histogram). Right: mean spike count per sniff as a function of inhalation
duration. Error bars � standard error (SE). C1–2, Left: inhalation-triggered mean Vm waveforms for sniff cycles of different inhalation duration.
Right: mean Vm and timing of Vm peak for membrane potential waveforms averaged across all sniffs as a function of inhalation duration.
Error bars � SE. D, Top: heatmap of R values for correlations between inhalation duration and 3 different activity parameters (spike count,
mean membrane potential, and timing of peak membrane potential, rows 1–3, respectively), for 45 MTCs. Cells are sorted left to right from
largest number of significant correlations to lowest number. Black squares show where the correlation was insignificant (p � 0.01, linear
regression). Two lowest heatmaps show the same data but for two example shuffle controls, where inhalation durations were shuffled with
respect to the physiology, and the data reanalyzed. This gives an indication of false-positive rates in this analysis. Bottom: histogram to
show proportion of cells with 0–3 significant correlations between the different activity parameters and inhalation duration. Gray shows
proportion for shuffle controls. E, Scatter plot between inhalation duration predicted by a simple linear model using peak spike rates of 25
cells (see Methods) and the actual (true) inhalation duration for all 7 sniff cycles tested in each category. See Fig. 5-1 for the impact of cell
type on responses to inhalation change, Fig. 5-2 for further analysis regarding detecting inhalation change, and Fig. 5-3 for a hypothetical
relative timing code using this information to infer environmental concentration change.
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suggested that high baseline firing rates of MTCs could
obscure such a latency code for concentration being used
(Mainland et al., 2014); however, this was based on a
overestimation of baseline FRs from unit recordings. The
whole-cell recordings we employ here are thought to be
unbiased in terms of baseline FRs (Margrie et al., 2002;
Shoham et al., 2006; Kollo et al., 2014), and discriminabil-
ity of MTC responses based on latency shifts is overt (Fig.
2G). Congruently it is known that mice can perceive the
latency difference in optogenetic glomerular activation on
the order of tens of milliseconds (Smear et al., 2013;
Rebello et al., 2014).

Sniff changes have been hypothesized to alter odor
concentration profiles within the nasal cavity (Teghtsoon-
ian et al., 1978; Shusterman et al., 2018). Here we show
for the first time directly that sniff changes can indeed
mimic the effect of concentration change at the level of
both firing rates (Fig. 1) and temporal shifts in spike
activity (Fig. 2). This is not to say that OSN input is
perfectly matched when we compare faster sniff rates and
higher concentration. In fact, since subthreshold inhibition
is greater for the higher concentration (Fig. 1-3), it would
appear that the input strength is higher for the case of
increased concentration as compared to faster sniffing.
Despite this, overt changes in the spiking output are very
similar for increased sniff frequency compared to in-
creased concentration. Potentially, inhibitory circuits are
normalizing the spiking output across large changes in
input (within a dynamic range), such that while we see
differences in subthreshold inhibition, the excitatory spike
outputs look very similar. Such a role has been suggested
for the various external plexiform layer and juxtaglomer-
ular cells (Tavakoli et al., 2018), including periglomerular
(Aungst et al., 2003; Roland et al., 2016), dopaminergic
(Banerjee et al., 2015), and parvalbumin-positive (Kato
et al., 2013; Miyamichi et al., 2013) neurons.

Here we chose relatively high concentrations (1%–3%
saturated vapor pressure) to ensure a good rate of re-
sponse in whole-cell recordings, and relatively modest
concentration differences (up to 0.5 logfold change), since
we expected sniff-related differences in representation to
have the most pronounced effect on performance in these
fine discriminations. The question then arises, at what
concentration range will sniff variation affect concentra-
tion estimation (at the level of OB activity)? This is difficult
to answer without direct measurement of naris odor con-
centration, but we can make some tentative hypotheses.
Fluid dynamic models predict that a sniff with a higher
flow rate will cause the temporal profile of concentration in
the naris to become steeper—i.e., more odor molecules
are drawn in per unit time (Shusterman et al., 2018). Thus
we would expect the concentration change that a sniff
change can mimic to be proportional to both the environ-
mental concentration and the range over which nasal flow
can change (previous measurements show that this is at
least twofold; e.g., Youngentob et al., 1987).

It has been known for some time that the olfactory bulb
is highly modulated by the sniff cycle (Adrian, 1950; Mac-
rides and Chorover, 1972; Cang and Isaacson, 2003;
Margrie and Schaefer, 2003; Wachowiak, 2011; Fukunaga

et al., 2012). Since sniff modulation is more overt in
anesthetized mice and is seemingly reduced at higher
sniff frequencies (Kay and Laurent, 1999; Bathellier et al.,
2008; Carey and Wachowiak, 2011), the importance of
sniff modulation in the awake animal may come into
question. Here we find that sniff patterning of activity in
awake mice gives rise to linear transformations of base-
line activity as inhalation parameters are changed, a fea-
ture that is widespread throughout MTCs (Fig. 5). We thus
reason that a key function of sniff modulation could be to
inform the olfactory system about what kind of inhalation
took place, such that a change in concentration and a
change in sniffing are readily distinguishable without ex-
plicit information from breathing control centers. Congru-
ently, we find that inhalation parameters can indeed be
readily and rapidly inferred from the spiking activity of
MTCs (Figs. 5E and 5-2).

Sensory encoding of sniff parameters has been hypoth-
esized previously when psychophysics showed that hu-
mans could categorize concentrations well despite large
changes in inhalation flow rate (Teghtsoonian et al., 1978).
Previous work has shown that sniff modulation of the
olfactory bulb is generated predominantly peripherally
rather than centrally, since blocking the naris abolishes
sniff modulation in the olfactory bulb (Sobel and Tank,
1993; Margrie and Schaefer, 2003; Schaefer et al., 2006;
Iwata et al., 2017). One possibility is that the olfactory
system uses reafference (the sensory effect of the sniff) to
infer the kind of flow rate evoked by the sniff, and thus
determine real changes in concentration from those
caused by flow changes. This could be an explanation for
the observation that olfactory receptors respond to pres-
sure changes as well as olfactory stimuli (Connelly et al.,
2015; Grosmaitre et al., 2007), and indeed may comprise
a feature rather than a bug in the olfactory system. Con-
sistently, concentration perception in humans can be
affected when the nostril flow rate was changed via
experimenter-induced changes in airway resistance in-
stead of volitional changes in sniff pressure (Teghtsoonian
and Teghtsoonian, 1984)—i.e., only when flow rate is
altered but pressure stays constant. Moreover, imaging of
the olfactory cortex in humans identified a region that
primarily responds to the sensory effect of sniffing in
absence of odor (Sobel et al., 1998). However, it is pos-
sible that the system employs predictive coding (Wolpert
et al., 1995), in which an internal model of the respiratory
motor system predicts the effect on nasal odor concen-
tration based on the sniff command, and accounts for this
somewhere in the olfactory pathway. Since airway resis-
tance is subject to continual changes and even differs
between the two nostrils (Principato and Ozenberger,
1970; Sobel et al., 1999), the internal model would require
constant updating individually for each nostril, and me-
chanical sensory reafference from mitral and tufted cells
could be used to do this on a sniff-by-sniff basis. How-
ever, since there is currently no known projection from the
sniffing motor system to the olfactory system, and given
that mitral and tufted cells can detect a sniff change on
rapid, behaviorally relevant timescales (Fig. 5-2), a purely
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feedforward solution could be an efficient way to encode
sniff effort.

An accompanying study intuitively suggests that the
advance of odor-driven excitation as sniff frequency in-
creases is the result of fluid dynamics in the nasal cavity
(Shusterman et al., 2018). While we do not investigate the
coding scheme used for invariant concentration coding,
the accompanying study examines various models in de-
tail. A large fraction of our cells show an advance of their
baseline activity peak as the inhalation becomes faster
(Fig. 5D). We could thus hypothesize that non–odor-
responsive MTCs within a region of the bulb can provide
information about the timing of inspired air reaching the
epithelium. If the inhalation becomes faster, both respon-
sive and the much larger population of unresponsive cells
show a latency reduction in their peak activity, while if
concentration has increased, only the sparse odor-
responsive population will show this latency shift. Thus, a
relative timing code could be used as a sniff-invariant
representation of concentration (Fig. 5-3). Previous imag-
ing work congruently suggests that subtracting the pop-
ulation response of MTCs throughout the entire bulb can
act to provide more consistent trial-to-trial odor re-
sponses and remove variation associated with sniffing
(Blauvelt et al., 2013). Exactly where and how the two
kinds of information could be integrated to form a sniff-
invariant representation of concentration should be the
objective of future investigations, though recent evidence
from the piriform cortex of awake mice already suggests
that cortical interneurons sharpen the latency shifts
evoked by concentration change and encode concentra-
tion via the synchronicity of ensemble firing (Bolding and
Franks, 2017). It is possible that in a mouse performing a
concentration guided task, even the olfactory bulb circuit
could be altered by top-down circuits in such a way as to
generate a sniff-invariant representation of concentration
using information about the sniff dynamics.

Our results show that for response latency or FR on the
single-cell level, fast sniffing at low concentration looks
very similar to slow sniffing at high concentration. We
hypothesize that the mechanism for the reduced latency
of response for both increased nasal flow and increased
concentration is similar—in both cases, the concentration
profile in the naris is steeper, and OSNs depolarize to
threshold more rapidly. At the lower end of the concen-
tration scale, this would even occur for the most highly
sensitive “first responding” MTCs that have been hypoth-
esized to account for sniff- and concentration-invariant
odor identity codes (Wilson et al., 2017). We would thus
predict that, for single-cell latency or FR responses, even
a large population of cells similar in properties to those
recorded here would not help distinguish the two scenar-
ios. It is possible, however, that there is a small and
specialized MTC subtype that might encode odor con-
centration in a simple, sniff-invariant manner. We deem
this less likely, since the accompanying study records
from a much larger portion of MTCs and finds that sniff
variance still renders concentrations very difficult to dis-
criminate (Shusterman et al., 2018). Alternatively, popula-
tion level codes could be employed for concentration

encoding (e.g., via spike synchrony or higher-order fea-
tures), which are robust in the face of sniff change but
elude identification with single-cell recordings. It is also
possible that sniff-invariant features appear in the OB
after training on the concentration task; however, it must
be noted that, in our hands, our mice could detect even
the relatively small difference in concentration within the
first presentation of the novel stimulus (Fig. 3F), suggest-
ing that fine odor discrimination occurs readily in a sniff-
independent manner, not requiring any extensive training.

In conclusion, concentration changes in the naris can be
either self-generated through changes in sniffing or the con-
sequence of a true change in environmental concentration,
yet mice can perform sniff-invariant concentration discrimi-
nation. The olfactory bulb contains information about the
odor concentration alongside the inhalation dynamics,
which together may allow inference about whether a sniff
change or a concentration change occurred, overall en-
abling sniff-invariant concentration perception.
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