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Abstract: Genomic integrity is constantly insulted by solar ultraviolet (UV) radiation. Adaptative
cellular mechanisms called DNA damage responses comprising DNA repair, cell cycle checkpoint,
and apoptosis, are believed to be evolved to limit genomic instability according to the photoperiod
during a day. As seen in many other key cellular metabolisms, genome surveillance mechanisms
against genotoxic UV radiation are under the control of circadian clock systems, thereby exhibiting
daily oscillations in their catalytic activities. Indeed, it has been demonstrated that nucleotide excision
repair (NER), the sole DNA repair mechanism correcting UV-induced DNA photolesions, and ataxia–
telangiectasia-mutated and Rad3-related (ATR)-mediated cell cycle checkpoint kinase are subjected
to the robust control of the circadian clock. The molecular foundation for the circadian rhythm of
UV-induced DNA damage responses in mammalian cells will be discussed.

Keywords: circadian clock; DNA damage response; ultraviolet radiation (UV); DNA repair; nu-
cleotide excision repair (NER); ataxia-telangiectasia-mutated and Rad3-related (ATR); chronotherapy;
cyclobutane pyrimidine dimer (CPD); 6-4 photoproduct (6-4 PP)

1. Introduction

Everlasting day-night cycles and the accompanying environmental oscillations have
placed evolutionary pressure on most organisms on Earth. To accommodate these recur-
ring environmental changes, organisms have been equipped with an internal oscillating
system to keep track of light-dark cycles, the “circadian clock system.” The evolutionarily
conserved feature of the circadian clock across most living organisms strongly suggests
that it must confer selective advantages [1].

Rhythmic oscillations in physiology and behavior with a period close to 24 h are called
circadian rhythms, which are generated by the cell-autonomous molecular clock operating
virtually in every single cell [2]. The mammalian molecular clock system is a conserved
transcriptional and translational autoregulatory feedback loop through the concerted action
of the heterodimeric transcription activator’s CLOCK-BMAL1 complex, which induces
the transcription of target genes that contain E-box elements (CACGTG) in their promoter
and/or enhancer regions. The gene expression of transcriptional repressors cryptochrome
(CRY) and period (PER) are also induced by CLOCK-BMAL1 activity, thereby creating self-
sustainable 24 h rhythms in gene expression. [3]. This transcriptional circuitry generates
daily oscillations of output genes for the temporal regulation of cell-specific physiology,
which ultimately maintains the metabolic homeostasis of an organism [4]. Consequently,
the chronic disruption of circadian regulation as a result of shiftwork or other lifestyle
factors predisposes to the onset of numerous chronic diseases such as cardiovascular
diseases, cancer, and aging [5].

Ultraviolet (UV) radiation from sunlight consists of three different wavelengths termed
UVA (315–400 nm), UVB (280–315 nm), and UVC (100–280 nm). The one with shorter wave-
lengths generates more DNA lesions efficiently. Indeed, UVB and UVC readily respond to
DNA to produce genotoxic photoproducts such as cyclobutane pyrimidine dimers (CPD)
and pyrimidine–pyrimidone (6-4) photoproducts (6-4PP) [6]. Because these photolesions
can interfere with pivotal DNA metabolisms, including replication and transcription, if
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not repaired promptly by an error-free repair system, they can accumulate mutations
and eventually provoke genomic instability, a hallmark of both cancer and aging [7,8].
Indeed, increased recreational exposure to sunlight has significantly contributed to the
surge in recent skin cancer cases [9], and prolonged exposure to solar UV also can cause a
plethora of acute and chronic symptoms, including sunburn erythema, skin thickening,
and photoaging [10].

Nucleotide excision repair (NER) is the sole and error-free DNA repair mechanism
capable of correcting UV-induced DNA photolesions in placental mammals [11]. Based on
the genomic position of the photolesion, two distinct NER subpathways comprising the
global genome repair (GGR) and the transcription-coupled repair (TCR) can be operating
optionally. The GGR, in which a DNA lesion not undergoing transcription is repaired,
is activated by the DNA damage sensor proteins, xeroderma pigmentosum group C
(XPC) and DDB complex (DDB1 and DDB2), whereas the TCR, in which damage to the
transcribing strand of DNA is repaired, is initiated by the stalling of RNA polymerase II
through its ability to sense the blocking of transcript elongation [12].

NER is exceptional among the DNA repair systems in its ability to eliminate the
widest class of structurally unrelated DNA lesions, including UV-photolesions, chemical-
DNA bulky adducts, reactive oxygen species induced base alterations, and intrastrand
crosslinks [13]. The NER system consists of more than 30 proteins, including seven XP
proteins from XPA to XPG, and two Cockayne syndrome proteins, CSA and CSB [14].

In addition to activating the NER mechanism, UV-photolesions trigger the ataxia–
telangiectasia-mutated and Rad3-related (ATR) checkpoint pathway to transiently arrest
the cell cycle to allow sufficient time for NER [15]. To stimulate the kinase activity of ATR,
a common DNA structure consisting at least partly of single-stranded DNA covered with
replication protein A (RPA) is a prerequisite. This structure can be generated during the
NER process as an intermediate and also can serve as a platform for the recruitment of
ATR-interacting protein (ATRIP), which facilitates ATR recruitment to the damaged site.

Consequently, the NER and the ATR pathways are expected to be interconnected
intimately to each other to cope with UV-photolesions on genomic DNA. The recent
findings on the circadian rhythm of NER and the ATR pathways and possible crosstalk
between the two systems will be discussed to shed light on the role of the circadian clock
system in UV-evoked DNA damage responses and ultimately to translate it into clinical
application for human health.

2. Circadian Oscillation of XPA and the NER Activity

Circadian oscillations of metabolic processes are pervasive and play key roles in ensur-
ing homeostatic balance with the environment to coordinate virtually every aspect of the
cellular event, physiology, and behavior [16]. Likewise, the activity of genome surveillance
mechanisms against the inevitable attack from solar UV is also highly dependent on the
fitness of molecular clock circuitry. Indeed, the gene expression of the key genes catalyzing
the mechanism is under the control of the circadian clock and exhibits high-amplitude
daily oscillations [17].

The efficiency of NER is essential for the maintenance of genome integrity against UV
irradiation in placental mammals, including humans, because it represents the sole system
capable of neutralizing the two major UV-photolesions (CPD and 6-4PP) on genomic DNA.
Mutations in genes associated with the NER mechanism, consequently, cause a wide range
of cutaneous symptoms, from mild solar sensitivity to severe skin cancers [18].

XPA is an essential component of both subpathways for NER, and its transcriptional
and post-transcriptional regulation may have significant effects on cellular repair and
survival following exposure to UV and UV-mimetic agents [19]. Functionally, XPA mediates
the damage verification, and this serves as a confirmation signal for dual incision by XPF
and XPG endonucleases [13]. Consequently, the steady-state level of XPA directly dictates
the capacity of DNA lesion removal by NER [20].
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A decade ago, the circadian rhythm of XPA and NER activity was observed in mam-
malian tissues. To gain insight into the mechanistic foundation underlying this phe-
nomenon, Kang et al. analyzed the levels of key components consisting of the NER system
and revealed that only the level of XPA was governed by the circadian clock, showing a
daily oscillation with maximum and minimum levels closely correlating with the NER
activity [21]. By demonstrating that XPA is a clock-controlled gene exhibiting robust cir-
cadian rhythm in its both transcript and protein levels, he provided for the first time
compelling evidence that DNA repair in mammals is controlled by the circadian clock [22].

In line with this report, a study by Gaddameedhi et al., in which a mouse skin
was analyzed for assessment of circadian rhythmicity of NER, also confirmed that the
transcription of the XPA gene is regulated positively by the CLOCK-BMAL1 complex and
negatively by CRY-PER complex [23]. The peak NER activity coincides with maximum XPA
protein levels, indicating the importance of XPA in determining the NER capacity [21,23,24].
It is advantageous for organisms to have elevated levels of NER activity at the time
of the day of maximal exposure to sunlight. It is noteworthy that circadian oscillation
of XPA levels was not uniformly observed in all tissue types (e.g., absent in actively
proliferating tissues such as testis [24] and tumor [25]) and may contribute to a range
of NER thresholds among different tissues [26]. Coupled with circadian transcriptional
regulation, XPA protein is subjected to constitutive ubiquitin-dependent degradation by
the HERC2 ubiquitin ligase, independent of circadian oscillation, thus ensuring the prompt
removal of XPA protein, contributing to a robust circadian oscillation of XPA protein and
the subsequent NER activity (Figure 1A) [24].

With few exceptions for a protein to demonstrate robust circadian oscillation, the
gene encoding it must first be transcribed with circadian rhythmicity, and secondly, the
protein must have a relatively short lifetime; even if a gene is transcribed with circadian
rhythm, it would not show high-amplitude oscillation if it is stable [27]. HERC2, a large
HECT- and RCC-like domain-containing protein [28], is found to regulate NER activity by
ubiquitinating and degrading XPA [20,29]. In addition to NER, HERC2 is implicated in
regulating other DNA damage response pathways, such as homologous recombination
repair through its effect on BRCA1 [30] and replication stress response through that on
CLASPIN [31]. Frameshift mutations in HERC2 have been found in both gastric and
colorectal carcinomas with microsatellite instability [32]. The HERC2 locus has also been
associated with both cutaneous melanoma and uveal melanoma [33,34].

HERC2 is initially reported to function as a scaffold to recruit a RING finger E3 ligase 8
(RNF8) to the sites of double-strand breaks to aid in double-strand break repair [30]. In the
study, while knockdown of either HERC2 or RNF8 sensitizes cells to ionizing radiation, a
catalytically inactive HERC2 mutant complemented HERC2-depleted cells, but an active-
site mutant of RNF8 failed to complement RNF8-depleted cells for resistance to ionizing
radiation. Therefore, a conclusion has been drawn that RNF8 is the active E3 ligase within
the HERC2-RNF8 complex, implying that the enzyme activity of HERC2 is dispensable.
However, a series of follow-up studies established that HERC2 is an enzymatically active
E3 ligase for the turnover of its targets, including BRCA1 [35], USP20 [36,37], and XPA [20].

ATR has been reported as a binding partner of XPA, and this interaction can sub-
stantially increase the NER activity and cell viability in response to UV damage [38]. To
this end, ATR phosphorylates XPA at serine residue 196 (S196) [39], which results in the
increased protein stability of XPA by attenuating HERC2-catalyzed XPA ubiquitination
(Figure 1B) [29]. Specifically, the report demonstrates that upon UV irradiation ATR facil-
itates HERC2 dissociation from the XPA complex, which results in the accumulation of
XPA proteins. However, this regulation is abrogated in S196A (a phospho-deficient form
of XPA)-complemented XPA-deficient cells due to persistent association of HERC2 with
this form of XPA, resulting in enhanced ubiquitination of S196A protein. Conversely, the
S196D (a phospho-mimic form of XPA) substitution shows delayed degradation kinetics
compared with the wild-type XPA due to the resistance of HERC2 association, resulting
in reduced ubiquitination of S196D protein, hence enhanced NER capacity. Therefore,
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it is likely that any factor engaged in the activation of ATR kinase such as direct ATR
activators (TOPBP1 [40] and ETAA1 [41]), mediators (CLASPIN [42] and TIMELESS [43]),
and proximal regulators (PKA [44], NDR1 [45], and TTP [46]) would positively affect NER
activity through either directly or indirectly modulating the ATR pathway.
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Figure 1. Circadian rhythm of XPA and NER activity in an unperturbed (A) and UV-damaged (B) cell. (A) The promoter
of the XPA gene possesses E-box sequences for CLOCK-BMAL1-driven transcription of the gene, thereby generating a
circadian rhythm of XPA and NER activity. The half-life of XPA is short due to the action of an E3 ubiquitin ligase HERC2,
which adds ubiquitin to XPA and degrades it through the proteasome pathway, making the amplitude of circadian NER
activity robust. (B) Upon UV damage, the ATR checkpoint pathway is activated and then phosphorylates XPA at Ser196.
This results in an increase in XPA protein stability by attenuating HERC2-induced XPA ubiquitination and consequently
upregulates the NER activity.

Meanwhile, it has been reported that XPA is acetylated at lysines 63 and 67 by an
unknown acetyltransferase, and this acetylation significantly reduced XPA function in NER
by interfering with the XPA-RPA interaction [47]. It is also reported that SIRT1, a NAD(+)-
dependent histone deacetylase, binds to XPA and prevents its acetylation or, if XPA is
acetylated, SIRT1 deacetylates and thus activates it [48]. In support of this model, a recent
study demonstrated that downregulation of SIRT1 significantly reduced both the repair rate
of CPDs and the survival of UV-irradiated cells. This report raised the interesting possibility
that the circadian rhythm of NER can be generated by the XPA acetylation/deacetylation
rhythm because both SIRT1 [49,50] and the NAD(+)-synthesizing enzyme, NAMPT [51,52],
exhibit circadian rhythms. Thus, it is reasonable that the circadian rhythms of NAD(+)
and SIRT1 generate an acetylation–deacetylation cycle of XPA with circadian periodicity,
resulting in a daily oscillation of NER activity. However, a recent study revealed that in
mouse liver, less than 5% of XPA is acetylated at a given time of the day, which means that
over 95% of XPA is active at all times, and activation of less than 5% of XPA is not expected
to make a substantial contribution to the rate of NER [20]. In any event, the experiments on
XPA acetylation and the NER rate both in mouse liver and in human cell lines yield results
consistent with the conclusion that SIRT1 deacetylation of XPA does not contribute to the
circadian rhythmicity of NER [20].
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Apart from the UV-photolesion repair, the removal of a chemotherapeutic agent
cisplatin-induced intrastrand crosslink is strongly dependent on the circadian clock due
to the circadian oscillation of XPA expression [24]. Cisplatin, and its second- and third-
generation derivatives, make two major DNA adducts, Pt-(GpG) and Pt-(GpTpG) [53].
Extensive data indicate that these intrastrand diadducts are the major cause of cytotoxicity
and that NER is the primary repair system for these adducts [54]. The cellular response to
genotoxic agents is dictated by pharmacodynamic factors, including the cell cycle phase,
DNA repair capacity, apoptosis, and circadian clock. Hence, in designing a chemotherapy
regimen, all these factors should be taken into account. Ultimately, the implications for
the administration of DNA-damaging therapy by the guidance of the patient’s circadian
clock, so-called “chrono-modulated chemotherapy,” represents a novel strategy of person-
alized cancer therapy for minimizing adverse side effects, thereby improving the cancer
management and patient outcomes [55].

3. Cryptochrome Control of the ATR-Mediated Checkpoint Pathway

DNA damage-induced cell cycle checkpoints are signal transduction pathways acti-
vated following DNA damage and serve as a genome surveillance mechanism to coordinate
multiple cellular pathways for ensuring genomic integrity [15]. The ATR (ATM and Rad3-
related) and ataxia-telangiectasia-mutated (ATM)-mediated signaling pathways represent
two major DNA damage-induced cell cycle checkpoints in mammals [56]. These path-
ways are composed of proteins in the four conceptual categories of DNA damage sensors,
signal mediators, transducers, and downstream effector molecules [57]. While ATM is
activated to orchestrate DNA double-strand break (DSB) repairs in response to DSBs, the
ATR checkpoint pathway is mainly triggered by single-strand breaks and base modifi-
cations, including the damage generated by UV irradiation [58]. ATR is targeted to the
sites of elongated replication protein A (RPA)-covered single-strand DNA. This event
is mediated by interactions between RPA and the ATR interaction protein (ATRIP) [59].
Upon sensing DNA damage, ATR initiates a complex signaling cascade via phosphoryla-
tion of downstream protein substrates such as CHK1 whose activation leads to cell cycle
arrest [46].

Apart from their canonical clock function, the mammalian clock factors have also
been implicated in diverse noncanonical functions such as the DNA damage response
(DDR), which includes cell cycle checkpoint [60,61] and DNA repair [62,63]. First, as the
most pervasive transcription factor in differentiated cells, the CLOCK-BMAL1 complex
affects DDR capacity by controlling the rate of transcription of genes involved in genotoxic
responses [64,65]. Second, clock proteins sometimes directly interact with and activate
DDR factors for maintaining genomic integrity. Therefore, failure in such intimate crosstalk
between clock and DDR factors can result in genomic instability and tumorigenesis [66–68].
For instance, mice with a homozygous mutation of PER2 show deregulated cyclin D and
c-MYC expression and spontaneous tissue hyperplasias and lymphomas [69]. Although
transcriptional regulation by the circadian clock partially affects tumorigenesis, recent
findings now suggest that each clock factor may play a specific role in DDR by participating
as a key modulator. For instance, PER1 interacts with the ATM-CHK2 complex in response
to DSBs [67].

The clock repressor cryptochromes (CRYs) are indispensable for molecular clock-
work [70] and robustness to circadian timekeeping [71]. Naturally, animals lacking CRY1
have short periods, those lacking CRY2 have long periods, and animals lacking both CRYs
(CRYDKO) are arrhythmic under constant darkness [72]. Intriguingly, in response to UV
damage, CRY1, independently of its canonical clock function, was capable of regulating
the ATR activity by forming a complex with TIMELESS (TIM) in a time-of-day-dependent
manner (Figure 2).
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Figure 2. Circadian rhythm of ATR activity. The circadian repressor CRY1 is a clock-controlled gene
whose gene expression is under the control of the circadian clock. In response to UV damage, CRY1
can regulate the ATR activity by interacting with TIMELESS (TIM) as a function of time, which
generates circadian oscillation of ATR activity.

The ATR activity measured by the level of the phosphorylation status of ATR sub-
strates such as CHK1 and MCM2 exhibits circadian rhythm. Interestingly, clock-deficient
CRYDKO cells retained substantial ATR activity compared with clock-proficient wild-type
cells, although the CRY1-modulated rhythmic ATR activity was abolished in CRYDKO cells.
The molecular foundation of this phenomenon is driven by the temporal interaction of
CRY1 and TIM in the nucleus due to the cyclical expression of CRY1 protein. Depending
on the level of nuclear CRY1, the differential ATR activity was observed, eventually gener-
ating a circadian oscillation of ATR activity. And when CRY1 was ectopically expressed
in CRYDKO cells, the rhythmic ATR activity was recurred. Importantly, the significantly
altered ATR activity in mouse liver that was intraperitoneally injected with cisplatin at
different circadian times was detected, which consequently affected the removal rate of
cisplatin-DNA adducts from genomic DNA in the liver. Collectively, this study demon-
strates the intimate interaction between the circadian clock and the ATR pathway during
genotoxic stress in clock-ticking cells. In line with the story, CRY1 has recently been char-
acterized as a protumorigenic factor that promotes most DNA repair mechanisms (NER,
MMR, BER, HR, NHEJ) and cell survival through temporal transcriptional regulation,
nominating CRY1 as a new therapeutic target [63].

4. Crosstalk between NER and ATR Pathways

Several studies have already demonstrated that UV-induced ATR activation is depen-
dent on NER in the quiescent cells [73,74]. The activated ATR then directly facilitates NER
by phosphorylating and activating XPA. The NER mechanism excises a ~30 nucleotide
oligomer containing the damage [75]. The resulting gap is filled in by DNA polymerases,
however, if this process is delayed or defective, this NER-intermediate structure can be
further processed by exonuclease 1 (EXO1), a 5′ → 3′ exonuclease. The resulting extended
ssDNA coated with RPA now can serve as a structural requirement for ATR–ATRIP re-
cruitment and checkpoint activation [76]. Subsequently, ATR is ready to participate in the
activation of NER by phosphorylating XPA (Figure 3).
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damage. The resulting excision gap is filled in by DNA polymerases, however, if this process is delayed or defective, the
gap can be processed by EXO1 nuclease. Subsequently, a single-strand binding protein RPA covers the extended gap to
limit DNA double-strand break. This intermediate structure is favored by the ATR-ATRIP complex and followed by XPA
phosphorylation and NER activation, making a positive feedback loop between the two pathways.

The melanocortin 1 receptor (MC1R) regulates pigmentation, adaptive tanning, and
melanoma resistance by activating adenylyl cyclase which accumulates intracellular cyclic
AMP (cAMP) levels [77]. Upon UV exposure, MC1R-cAMP signaling promotes PKA-
mediated phosphorylation of ATR at Ser435, a modification that enhances NER by facilitat-
ing recruitment of the XPA protein to sites of UV-induced DNA photolesions [44]. Similarly,
an XPA-interacting kinase named NDR1 (nuclear-Dbf2-related) facilitates CPD removal by
activating the ATR pathway [45]. The lesion recognition factors in the GGR subpathway,
XPE, and XPC alternatively can activate the ATR pathway by recruiting ATR kinase to the
sites of UV damage [78]. On the contrary, a protein phosphatase WIP1 has been shown to
negatively regulate NER kinetics by dephosphorylating and inactivating XPA [79].

Importantly, a defective NER activity exclusively during the S phase of a majority of
human melanoma cell lines is speculated as a result of decreased ATR signaling, which
may constitute an unrecognized determinant in melanoma pathogenesis [80].

5. Concluding Remarks

In the last 20 years, most of the core factors dedicated to the NER mechanism have
been elaborately described, shifting attention to the mechanisms that facilitate NER in a
spatiotemporal context and to cooperative interactions between NER and other signaling
pathways. While increased NER activity protects the genome against the accumulation of
DNA lesions, thereby maintaining genome integrity, it might be beneficial to reduce the
NER capacity in patients with cancer who are undergoing chemotherapy, because doing so
might help ensure the efficient action of DNA damage-inducing drugs such as cisplatin. In
that regard, we expect that the transient suppression of NER through the pharmacological
manipulation of NER core factors or ATR pathways will synergize with DNA-damaging
agents to optimize chemotherapeutic outcomes. A wide range of transcriptional and post-
translational regulatory mechanisms of NER factors has been revealed recently, providing
attractive targets to adjust the NER threshold [6]. Detailed mechanistic understanding
of these regulatory pathways will be necessary to guide genetic and pharmacological
manipulations for research and disease intervention.

Chronotherapeutics aim at treating illnesses according to the endogenous biological
rhythms, which moderate pharmacokinetics and pharmacodynamics of a certain drug [81].
Given that NER, the primary repair mechanism for removal of chemotherapeutic agent
cisplatin, has a circadian rhythm in healthy tissues but is relatively arrhythmic in cancer
tissues, we can individualize the most favorable time for drug administration, which will
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be when the NER activity is the highest in normal tissues of a patient. Pharmacological
modulation of core clock genes is an alternative approach in cancer therapy [82]. The
integration of circadian biology into cancer research will offer new options for making
cancer treatment more effective.
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