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Purpose: Leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) are 
an inhibitor of receptor tyrosine kinases (RTKs) that was discovered in recent 
years, and many studies showed that LRIG1 is a tumor suppressor gene and may 
be related to tumor drug resistance. In this study, we explored whether LRIG1 
protein expression can improve the chemosensitivity of glioma cells and what 
was its mechanism. Materials and Methods: We collected 93 cases of glioma 
tissues and detected the expression of LRIG1 and BCL-2. We constructed a mul-
tidrug resistance cell line U251/multidrug resistance (MDR) and examined the 
change of LRIG1 and BCL-2 at mRNA and protein expression levels. LRIG1 ex-
pression was upregulated in U251/MDR cells and we detected the change of 
multidrug resistance. Meanwhile, we changed the expression of LRIG1 and 
BCL-2 and explored the relationship between LRIG1 and BCL-2. Finally, we 
also explored the relationship between LRIG1 and RTKs. Results: LRIG1 was 
negatively correlated with BCL-2 expression in glioma tissue and U251/MDR 
cells, and upregulation of LRIG1 can enhance chemosensitivity and inhibit BCL-
2 expression. Furthermore, LRIG1 was negatively correlated with RTKs in 
U251/MDR cells. Conclusion: These results demonstrated that LRIG1 can im-
prove chemosensitivity by modulating BCL-2 expression and RTK signaling in 
glioma cells.
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INTRODUCTION

Malignant gliomas, the most common primary brain tumors, are highly invasive 
and neurologically destructive neoplasms with a very poor prognosis. Surgical re-
section is the main treatment option for glioma patients, but postoperative recur-
rence is a pressing problem due to the invasiveness of the gliomas. At present, 
comprehensive treatments, such as chemotherapy and  radiotherapy, are used to 
treat glioma, but the prognosis is still very poor.1 The current research, therefore, 
has been focused on how to solve this problem. 

Traditional chemotherapy is not the preferred adjuvant therapy after glioma re-
section due to its uncertain outcomes, but combined chemotherapy and radiothera-
py or other adjuvant therapies have generally been shown to have a curative effect 
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MATERIALS AND METHODS

Reagents 
Chemicals were purchased from Sigma-Aldrich (Wuhan 
branch, China). The LRIG1 plasmid was graciously provid-
ed by the Renmin Hospital of Wuhan University, China. The 
siRNAs against BCL-2 and LRIG1 were synthesized by 
Sangon (Shanghai, China). Antibodies were purchased from 
Abcam (Cambridge, UK).

Specimens
Specimens from 98 astrocytic tumors in 93 patients were 
collected at the Renmin Hospital of Wuhan University from 
April 2009 to January 2011. The present study was ap-
proved by the Ethics Committee of the Faculty of Medicine 
of Renmin Hospital, Wuhan University. The characteristics 
of these patients and tumors are shown in Table 1. Astrocyt-
ic tumor diagnoses of all specimens were panel reviewed 
by an experienced pathologist according to the criteria of 
the World Health Organization (2000).23 Included in our 
analyses are 20 cases of grade I, 39 of grade II, 21 of grade 
III, and 13 of grade IV astrocytomas.

Construction of a tissue microarray (TMA) of human 
brain astrocytoma 
The tissue microarray (TMA) was constructed as previously 
described.24 The sample diameter of the tissue core in the mi-
cro-array block was 1000 μm. 5-μm thick sections were pre-
pared from representative array paraffin blocks. Between 0 
and 8.7% of samples were lost during the TMA section prep-

on glioma patients.2,3 Temozolomide (TMZ) is a new che-
motherapy drug that has been shown to have positive ef-
fects on glioma patients in recent years,4 allowing doctors to 
reconsider the role of chemotherapy in the treatment of 
these patients. However, despite the fact that chemotherapy 
is beneficial in prolonging the survival time of patients, its 
impact has been limited. Drug resistance is the main reason 
for the failure of chemotherapy, particularly the emergence 
of multidrug resistance (MDR).5 Many molecular players 
participate in the formation of multidrug resistant glioma, in-
cluding multidrug resistance protein, lung resistance-related 
protein, metal sulfur protein, and glutathione among others.5,6 
Altered expression of these genes or proteins may be helpful 
in reversing the multidrug resistance of glioma.7,8 At present, 
patients treated with TMZ adjuvant therapy are also treated 
with other adjuvants, including receptor tyrosine kinase 
(RTK) inhibitors, to improve its curative effects.9 

Leucine-rich repeats and immunoglobulin-like domains 1 
(LRIG1) is a negative regulator of RTKs.10 The LRIG1 gene 
is the human homologue of mouse Lig-1 and is located on 
chromosome band 3p14.11 The expression of LRIG1 is re-
duced in human tumors.12,13 LRIG1 can inhibit the growth of 
glioma cells through the inhibition of epidermal growth fac-
tor receptor (EGFR) signaling.14 LRIG1 can also inhibit the 
growth of breast cancer cells, prostate cancer cells and so 
on.15-17 In addition, LRIG1 can negatively regulate c-Met re-
ceptor signaling,18 LRIG1 deletion induces upregulation of 
EGFR, ErbB2 and ErbB3, downregulation of LRIG1 can 
promote the proliferation of squamous cell carcinoma, breast 
cancer cells and so on.17,19 Therefore, LRIG1 may be a new 
tumor suppressor gene.20 LRIG1 expression is related to 
BCL-2 gene expression in human ependymomas,21 and B 
cell lymphoma/lewkmia-2 (BCL-2) is an apoptosis-inhibit-
ing factor and is related to chemosensitivity.22 LRIG1 has 
been shown to improve chemosensitivity in bladder cells. 
However, whether LRIG1 can enhance the chemosensitivity 
of glioma cells and the mechanism by which it achieves this 
remain unknown.

We hypothesized that LRIG1 was related to the chemo-
sensitivity of glioma cells and that LRIG1 expression could 
improve the cell’s chemosensitivity through the inhibition 
of BCL-2, EGFR, and c-Met gene expression. To test this 
hypothesis, we constructed a multidrug resistant cell line, 
and studied the expression of LRIG1, BCL-2, EGFR, and 
c-Met. Using this cell line, we modulated the expression of 
LRIG1 and BCL-2, determined how these changes affected 
the cell’s chemosensitivity. 

Table 1. Characteristics of 93 Patients with 98 Astrocyto-
mas Included in the Tissue Microarray Analyses

Item n %                 
Gender                      
    Male 64 68.8
    Female 29 31.2
Age (yr)
    ≤18   9   9.7
    >18 84 90.3
Type of tumor
    Primary 85 91.4
    Recurrence   8   8.6
WHO grade of tumor
    I 20 21.5
    II 39 41.9
    III 21 22.6
    IV 13 14.0

WHO, World Health Organization.
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β-actin sense 5’-gtccaccgcaaatgcttcta-3’ and antisense 
5’-tgctgtcaccttcaccgttc-3’.

Transfection and CCK-8 assay
To overexpress LRIG1, U251/MDR and U251 cells at 50--
80% confluence were transfected with the LRIG1 plasmid 
(2 μg/well, 6-well plate) using the FUGENE HD transfec-
tion reagent (Roche, Basel, Switzerland) according to the 
manufacturer’s instructions.

For knockdown experiments, siRNAs against human 
BCL-2, LRIG1, and control siRNA were purchased from 
Sangon. According to the manufacturer’s instructions, cells 
at 30--50% confluence were transfected with a final concen-
tration of 40 nM siRNA using the Lipofectamine 2000 trans-
fection reagent (Invitrogen, Carlsbad, CA, USA).

Exponentially growing cells were plated in 96-well plates 
(1000 cells/well). After 24 h, the U251/MDR and U251 
cells were transfected and cultured for 48 h or 72 h, and 
Cell Counting Kit 8 (CCK-8) solution (10 µL/well) was 
added to the cells. The cells were then incubated for 1 h at 
37°C. Cell proliferation was determined by measuring ab-
sorbance at 490 nm with a microplate reader (Leibo, Fin-
land). The inhibition ratio of proliferation was calculated 
using the following equation: (control group CCK-8--exper-
imental group CCK-8)/control group CCK-8.

Immunoblotting
Total protein was extracted from the U251 and U251/MDR 
cells of each group 48 h after transfection, and the total cell 
extracts were centrifuged at 12000 rpm at 4°C. The protein 
concentration was determined using the Bradford method, 
with bovine serum albumin as the standard. Protein lysates 
(30 µg) were resolved using sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis, transferred to polyvinylidene 
fluoride membranes (Millipore, Bedford, MA, USA), and 
then probed with primary antibodies overnight at 4°C. The 
membranes were then incubated with the corresponding 
horseradish peroxidase-conjugated secondary antibodies at 
room temperature, and the reaction was visualized using 
chemiluminescent electrochemiluminescence. Antibodies 
were purchased from Abcam.

Statistical methods
The statistical analyses were performed using the Prism 5.0 
software (Graphpad Software, La Jolla, CA, USA). All data 
are presented as mean±SEM. The statistical significance of 
the findings between the experimental and control groups 

aration or immunostaining procedures. The tissue array was 
purchased from Beacher, Sun Prairie, WI, USA. The paraffin 
embedding machine was purchased from Leica (Bannock-
burn, IL, USA); the immunohistochemistry kit was pur-
chased from Boster (Wuhan, China); and the optical micro-
scope (BX51) was purchased from Olympus (Tokyo, Japan).

Immunohistochemistry for LRIG1 and BCL-2 
expression in the TMA 
According to previously described methods,21 the LRIG1 
antibody and BCL-2 antibody (Abcam, UK) developed in 
our laboratory were used for the immunostaining. Negative 
controls were not treated with primary antibodies. As 
shown in previous analysis,21 the astrocytic tumor cells 
were immunoreactive in the cytoplasmic, nuclear, and peri-
nuclear areas. LRIG1 and BCL-2 expression in the TMA 
was determined. All evaluations were performed using the 
blind method and agreed on by four observers.

The isolation of a multidrug resistant cell line
The U251 cells were purchased from the State Key Labora-
tory of Molecular Biology, Institute of Biochemistry and Cell 
Biology, Shanghai Institutes for Biological Sciences, Chinese 
Academy of Sciences, Shanghai, China. The cells were cul-
tured in Dulbecco’s modified Eagle’s medium supplemented 
with 10% fetal bovine serum in a humidified incubator (San-
yo, Osaka, Japan) with 5% CO2 at 37°C. Basal cell culture 
was maintained in T-75 flasks (Sigma-Aldrich, St. Louis,  
MO, USA). Cells were trypsinized when they reached 80--
90% confluence and were seeded into 6-well plates. TMZ 
was added to the 6-well plates at an initial concentration of 
0.25 µg/mL. The concentration was doubled after the cells 
were cultured for 15 days, and the final concentration of 
TMZ was 16 µg/mL. After withdrawal of TMZ for 2 
months, the cells were re-challenged with 16 μg/mL TMZ 
for 1 week every month.

RT-PCR
Total RNA was isolated using an RNA miniprep kit (Sigma 
Santa Clara, CA, USA). For RT-PCR, the cDNA was synthe-
sized using a cDNA reverse transcription kit (Applied Bio-
systems, Zurich, Switzerland), and the PCR kits were pur-
chased from Sigma. Based on the LRIG1, BCL-2, and β-actin 
gene sequences, three pairs of gene-specific primers were 
designed: LRIG1 sense 5’-ttgctgatgttgtttcgctg-3’and anti-
sense 5’-tgatggtctgtcacggtcg-3’, BCL-2 sense 5’-ttctttgagttc 
ggtggggtc-3’ and antisense 5’-tgcatatttgtttggggcagg-3’, 
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Immunoblot analysis showed that LRIG1 expression in the 
LRIG1-U251/MDR cells was significantly increased where-
as BCL-2 expression was downregulated when compared 
to the control group (Fig. 3A). Next, we detected BCL-2 
expression and the changes in chemotherapy sensitivity in 
the LRIG1-U251/MDR cells, using the CCK-8 assay com-
pared to the untransfected N1-U251/MDR cells (Fig. 3B). 
The results showed that increasing LRIG1 expression could 
inhibit BCL-2 expression and enhance the chemosensitivity 
of U251/MDR cells.

BCL-2 knock down can enhance the chemosensitivity
siRNA targeting BCL-2 was transfected into U251/MDR 
cells, and the results showed that BCL-2 expression was 
significantly reduced. Next, we found that silencing BCL-2 
can enhance the chemosensitivity of glioma cells (Fig. 4).

LRIG1 can enhance chemosensitivity by regulating the 
BCL-2 gene in glioma cells
Our results showed that LRIG1 expression improved the 

was determined using Student’s t-test or ANOVA. A value 
of  p<0.05 was considered statistically significant.
 

RESULTS
 

LRIG1 was negatively correlated with BCL-2 
expression in glioma tissue
Immunohistochemical results show LIRG1 proteins local-
ized to different subcellular compartments in human brain 
astrocytomas, including the cytoplasm, nucleus and perinu-
clear area. BCL-2 proteins are mainly located in the cyto-
plasm of human brain astrocytomas (Fig. 1). Moreover, 
LRIG1 expression was negatively correlated with BCL-2 
expression (r=-0.713, p<0.05) (Fig. 1, Table 2). 

Establishment of MDR cell line and the expression of 
LRIG1 and BCL-2
The multidrug resistant cell line U251/MDR was isolated by 
stepwise exposure to increasing TMZ concentrations for ap-
proximately 6 months. This cell line exhibited resistance to 
TMZ, etoposide (VP-16), and vincristine sulfate (Fig. 2A). 
The expression of LRIG1 and BCL-2 was detected in the 
U251/MDR cells using RT-PCR and Western blot (Fig. 2B 
and C), and the results showed that LRIG1 expression was re-
duced whereas BCL-2 expression was increased, compared 
to the parent cells. LRIG1 expression was negatively correlat-
ed with BCL-2 expression (p<0.05).

LRIG1 can inhibit BCL-2 expression and improve the 
chemosensitivity of glioma cells 
The LRIG1 plasmid was transfected into U251/MDR cells. 

Table 2. The Expression of LRIG1 and BCL-2 in Astrocytic 
Tumors Tissue (OD, mean±SD)

WHO Cases
OD (mean±SD)

LRIG1 BCL-2
I 20 0.3080±0.0075 0.2801±0.0023
II 39 0.2885±0.0069 0.2887±0.0057
III 21 0.2801±0.0063 0.2993±0.0042
IV 13   0.2631±0.0067*   0.3296±0.0062*

LRIG1, leucine-rich repeats and immunoglobulin-like domains 1; BCL-2, B 
cell lymphoma/lewkmia-2; OD, optical density; WHO, World Health Orga-
nization.
*p<0.05 vs. Grade I.

Fig. 1. Immunohistochemical analysis of LRIG1 and BCL-2 protein expression in human astrocytomas (light microscope). LRIG1 was localized in the cyto-
plasm, nucleus and perinuclear area and BCL-2 was mainly localized in the cytoplasm in grades II and IV of astrocytoma. Arrows indicate LRIG1 protein ex-
pression. Moreover, LRIG1 expression was negatively correlated with BCL-2 expression (r=-0.713, p<0.05). LRIG1, leucine-rich repeats and immunoglobulin-
like domains 1; BCL-2, B cell lymphoma/lewkmia-2.
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including EGFR and c-Met,25,26 and some RTK inhibitors 
have been shown to enhance the effects of glioma thera-
py.27,28 We detected the expression of EGFR and c-Met in 
the U251/MDR cell line using immunoblot analysis, and 
Fig. 6 shows that the expression of these genes was in-
creased in the U251/MDR cells, compared to the parent 
U251 cell line. 

DISCUSSION

Gliomas are the most common malignant tumors of the 
central nervous system and a serious threat to a patient’s 
health and life. Therefore, there is an urgent need to identify 
effective treatments that control it’s the growth and recur-
rence. Chemotherapy is an important component in the 

chemosensitivity of glioma cells and inhibited BCL-2 ex-
pression. We also showed that depletion of BCL-2 could 
enhance the chemosensitivity of glioma cells. To detect 
whether LRIG1 enhanced the chemosensitivity through the 
regulation of the BCL-2 gene, we knocked down BCL-2 in 
U251/MDR cells and then knocked down LRIG1 by siR-
NA. As seen in Fig. 5, siLRIG1 could reduce the sensitivity 
to chemotherapy and reverse the effect of siBCL-2, thus 
leading us to conclude that LRIG1 enhanced the chemosen-
sitivity of glioma cells through the regulation of BCL-2 ex-
pression.

The expression of multiple RTKs was increased in 
U251/MDR cells, and LRIG1 negatively correlated with 
RTK expression
The expression of many RTKs was increased in glioma cells, 

Fig. 2. Establishment of an MDR cell line and the expression of LRIG1 and BCL-2. A multidrug resistance cell line U251/MDR was isolated by stepwise expo-
sure to increasing temozolomide (TMZ) concentrations for approximately 6 months. The initial concentration was 0.25 mg/mL, which was doubled after the 
cells had been cultured for 15 days; the final concentration was 16 mg/mL. The U251/MDR cells were seeded in 96-well plates, and chemotherapy drugs 
were added to each well 12 h later [VP-16: 10 mg/mL, TMZ: 16 mg/mL, vincristine sulfate (VCR): 10 mg/mL]. The cell proliferation was detected using the CCK-
8 assay after 48 h (A), and the results showed that the U251/MDR cells were more resistant to TMZ, etoposide (VP-16), and VCR than the U251 cells. The re-
sults are represented as the survival rate. We also detected the mRNA and protein expression of LRIG1 and BCL-2 in the U251/MDR and U251 cells (B and 
C), and the results showed that LRIG1 expression was reduced and that BCL-2 expression was increased in the U251/MDR cells, compared to the U251 
cells. The results are represented as the ratio of absorbance. *p<0.05 vs. U251 cells. MDR, multidrug resistance; LRIG1, leucine-rich repeats and immuno-
globulin-like domains 1; BCL-2, B cell lymphoma/lewkmia-2; VP-16, etoposide; CCK, Cell Counting Kit.
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gliomas have a stronger drug resistance. This finding indi-
cated that LRIG1 is a tumor suppressor gene and may be 
related to tumor drug resistance. In addition, some research-
ers have reported that LRIG1 can inhibit the function of the 
glial cell line-derived neurotrophic factor, which can reduce 
the sensitivity of neuroblastoma cells to chemotherapy.31,32 
Li, et al.33 also showed that LRIG1 expression in combina-
tion with cisplatin treatment can enhance the effect of che-
motherapy in bladder cancer. These results suggest that 
LRIG1 may be involved in drug resistance. To elucidate the 
relationship between LRIG1 and multidrug resistance in gli-
oma cells, we constructed the multidrug resistant cell line 
U251/MDR, and examined the expression of LRIG1 in 

treatment of tumors. In recent years, TMZ, a new chemo-
therapy drug, has proven to be effective in the treatment of 
gliomas. However, tumor resistance, particularly multidrug 
resistance, reduces the effectiveness of TMZ. How to solve 
this problem has become the focus of current research.

LRIG1 is an inhibitor of RTKs that was discovered in re-
cent years, and it is highly expressed in a variety of tissues. 
LRIG1 is highly expressed in brain tissues, particularly gli-
oma cells.11,29 Goldoni, et al.30 reported that LRIG1 can in-
hibit the growth of glioma cells through the inhibition of 
EGFR signaling. Our study showed that LRIG1 expression 
was reduced in glioma cells, and its expression level de-
creased with increasing tumor grade; therefore, higher grade 

Fig. 4. BCL-2 knockdown reverses MDR in U251/MDR cells. U251/MDR cells at 50% confluence were transfected with siBCL-2 (2 mg/well, 6-well plate) using 
the Lipofectamine 2000 transfection reagent (Invitrogen) according to the manufacturer’s instructions. After 48 h, the cells were seeded in 96-well plates and 
then treated with VP-16 (10 mg/mL), TMZ (16 mg/mL), and VCR (10 mg/mL) for 48 h. The inhibition of cell proliferation was detected using the CCK-8 assay. 
The results are represented as the survival rate. *p<0.05 vs. control group. MDR, multidrug resistance; TMZ, temozolomide; VCR, vincristine sulfate; BCL-2, B 
cell lymphoma/lewkmia-2; VP-16, etoposide; CCK-8, Cell Counting Kit.
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the LRIG1-U251/MDR cells were seeded in 96-well plates and then treated with VP-16 (10 mg/mL), TMZ (16 mg/mL), and VCR (10 mg/mL) for 48 h. Following 
incubation, we detected the inhibition of VP-16, TMZ, and VCR on the U251/MDR cells using the CCK-8 assay (B). The results are represented as the survival 
rate, *p<0.05 vs. control group. MDR, multidrug resistance; LRIG1, leucine-rich repeats and immunoglobulin-like domains 1; TMZ, temozolomide; VCR, vin-
cristine sulfate; VP-16, etoposide; BCL-2, B cell lymphoma/lewkmia-2; CCK, Cell Counting Kit.
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Fig. 5. siLRIG1 can reduce chemosensitivity by regulating BCL-2 gene expression. First, we seeded U251/MDR cells in 6-well plates when they reached 50% 
confluence. siBCL-2 was transfected into U251 cells using the Lipofectamine 2000 transfection reagent (Invitrogen) according to the manufacturer’s instruc-
tions (A). Next, siLRIG1 was transfected into the siBCL-2 cells using the same method. We then detected the inhibition of cell proliferation of VP-16 (10 mg/
mL), TMZ (16 mg/mL), and VCR (10 mg/mL) according to the method described previously (B). The results are represented as the survival rate. *p<0.05 vs. 
siBCL-2 alone. MDR, multidrug resistance; LRIG1, leucine-rich repeats and immunoglobulin-like domains 1; TMZ, temozolomide; VCR, vincristine sulfate, 
BCL-2, B cell lymphoma/lewkmia-2; VP-16, etoposide.

Fig. 6. The expression of EGFR and c-Met in U251 and U251/MDR cells. We seeded U251 and U251/MDR cells in 6-well plates. After 48 h, total protein was 
extracted, and the expression levels of EGFR, c-Met, and LRIG1 were detected using immunoblot analysis. Compared to U251, LRIG1 expression was re-
duced, and the expression levels of EGFR and c-Met were increased in the U251/MDR cells. *p<0.05 vs. U251 cells. MDR, multidrug resistance; LRIG1, leu-
cine-rich repeats and immunoglobulin-like domains 1; EGFR, epidermal growth factor receptor. 
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cells through the downregulation of BCL-2 and the inhibi-
tion of the RTK signaling pathways. When glioma cells re-
tained LRIG1 expression, the BCL-2 and RTK genes expres-
sions were downregulated. When glioma cells lost LRIG1 
expression, the BCL-2 and RTK genes became upregulated 
and stimulated chemo-resistance. It is, therefore, possible 
that treatment with BCL-2 and RTK inhibitors may improve 
the clinical effects of chemotherapy in glioma patients. 
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