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K‑clique percolation in free 
association networks 
and the possible mechanism 
behind the 

7± 2
 law

Olga Valba1* & Alexander Gorsky2,3

It is important to reveal the mechanisms of propagation in different cognitive networks. In this study, 
we discuss the k‑clique percolation phenomenon as related to the free association networks including 
the English Small World of Words project (SWOW‑EN). We compared different semantic networks and 
networks of free associations for various languages. Surprisingly, k‑clique percolation for all k < k

c
= 

6–7 is possible on free association networks of different languages. Our analysis suggests new 
universality patterns for a community organization of free association networks. We conjecture that 
our result can provide a qualitative explanation of Miller’s 7± 2 rule for the capacity limit of working 
memory. A new model of network evolution extending the preferential attachment is suggested, 
providing the observed value of k

c
.

Networks represent powerful models for exploring different cognitive systems and  processes1,2. For example,  in3,4, 
the authors propose a multiplex network model of the formation of mental lexicon and early word acquisition. 
 In5, the author discusses the structural properties of semantic networks for low and high creativity people.  In6–10, 
network-based methods are used to simulate the mechanisms of solving Remote Associates Tests, allowing one 
to estimate a human’s creative  potential11.

Complex networks often exhibit meso-scale or global characteristics of structural order. Certain networks 
exhibit community structure, in which densely connected communities of nodes exhibit sparse or weak inter-
community connections. In semantic networks, one word can belong to several communities, so standard com-
munity detection methods are not applicable. We investigate the community organization of the free association 
network, focusing on one described  in12, known as English Small World of Words project (SWOW-EN). This 
network differs from other datasets in its higher density, which is achieved by the presence of links of weak 
association strength. The dense network structure allows us to study a k-clique community organization of 
larger k. We compared its properties with various semantic networks of the English and Dutch languages and 
networks of free associations.

This study is mainly focused on percolation analysis of the free association networks. The percolation 
approach was used to quantify the flexibility of one or another network characteristics of semantic  network13–15. 
 In13, flexibility of thought was investigated by percolation analysis and the cognitive declines due to aging are 
discussed. In context of the creativity theory the percolation analysis has been discussed  in5,13,14, demonstrating 
that the semantic network of the high-creative group broke apart slower than that of less-creative group. It was 
also shown via a percolation approach  in14 that the mental lexicon is fragile against progressive word failure with 
multiplex network attacks across the lifespan.

A more general phenomenon involves the percolation of k-clique introduced  in16,17. For the random Erdos-
Renyi ensemble, the critical link probability for any k can be found analytically. However, for real networks, an 
estimation of the critical threshold for k-clique percolation is a nontrivial problem. In cognitive networks, the 
k-clique percolation has been recently discussed  in18 related to the problem of aging in the semantic memory.

In this study, we investigate a k-clique percolation in the free association networks and question if there 
is some upper boundary kc where no k-clique percolation exists for k > kc . A bit surprisingly, there is a sharp 
boundary at kc = 6–7 for the English and Dutch languages.
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The sharp boundary for clique percolation certainly provides information concerning the structural organiza-
tion of free association networks. However, it also influences the effectiveness of the processes on the network, 
since k-clique percolation is a particular dynamical process. Only the k-cliques with k < kc can propagate effec-
tively through the free association network. A discussion concerning the distinction between a structure and a 
process in semantic networks can be found  in19,20.

The test protocols for free associations allow very short time intervals for answering; hence, we can consider 
them a kind of probe of working memory. On the other hand, the limitation of the working memory capacity 
is a well-known  phenomenon21–23. A person can remember only a finite number of items of different nature 
simultaneously, although there is some mild dependence on the nature of an item. This phenomenon is known as 
Miller’s 7± 2 law. We conjecture that our finding could serve as a potential explanation of the mechanism behind 
Miller’s law. We have to remember the k-linked items for some short period of time; this can be considered as 
the k-clique percolation process in some effective “working memory network”.

Looking at the mechanism responsible for the limit of working memory capacity, the natural question con-
cerns the evolutionary origin of the particular value of kc and the rules of evolution that bring the network to this 
particular value of kc . We suggest a new rule of network evolution which can be considered as the modification of 
preferential attachment when a new node is linked to two others connected to each other. This new mechanism 
provides the desired value kc = 5–6 for various sizes of the network.

Methods
Data description. The free association network SWOW-EN is a weighted directed network with N = 12 217 
stimuli words. Stimulus materials (cue words) were constructed using a snowball sampling method, allowing 
 authors12 to include both frequent and less frequent cues at the same time. The final set consists of 12 292 cues 
(stimuli); the weight of the link indicates the fraction of the experiment participants who gave this particular 
response to a cue and can be considered as the conditional probability of a response given a cue. Therefore, the 
total weight of links going out of each node is lower than or equal to 1. For our analysis, we considered the net-
work as undirected, attributing the greatest weight to an edge in the case of a bidirectional association.

We also analyzed the free association network, based on the South Florida Free Association data  base24 and 
the free association network, known as the Edinburgh Associative  Thesaurus25.

We used networks, containing various types of relations. The phonological network captures the phonologi-
cal similarities, which are based on IPA transcription from WordNet 3.027. Words A and B are connected if they 
have IPA transcriptions with an edit distance of one. The network of synonyms contains the coupled words with 
the same meaning. Many words refer to categories that are taxonomically organized, e.g.,“horse”is a type of 
“animal”. This taxonomic organization results into basic, superordinate and subordinate-level object categories.
The taxonomic network contains hyponymy relationships between words. All data were retrieved from Wolfram 
 Research26, which mostly coincides with WordNet 3.027. The multiplex network contains all these three types 
of word relations.

Finally, we studied free association networks for the Russian and Dutch languages. We used Russian 
 thesaurus28 and Dutch association  data29, removing words, that have no associations. Table  1 summarizes the 
basic structural properties of used networks.

K‑clique percolation. We begin with a few definitions, laying down the fundamentals of k-clique 
 percolation16,17. K-clique is a complete (fully connected) subgraph of k vertices. We say, that two k-cliques are 
adjacent if they share k − 1 vertices, i.e., if they differ only in a single vertex. A subgraph, which is the union of 
a sequence of adjacent k-cliques, is called k-clique chain, and two k-cliques are k-clique-connected, if there exists 
at least one k-clique chain containing the two k-cliques. Finally, k-clique percolation cluster is defined as a maxi-
mal k-clique-connected subgraph, i.e., it is the union of all k-cliques that are k-clique-connected to a particular 
k-clique.

The Erdosh–Renyi random graphs show a series of interesting transitions when the probability p of two nodes 
being connected is increased. For k = 2 , the transition is well known and manifested by the appearance of a 
giant component in a network at critical probability pc(k = 2) = 1

N , where N is the number of nodes. For each k, 
one can find a certain threshold probability pc(k) above which the k-cliques organize into a giant  community17:

Table 1.  Structural properties of semantic networks.

Network Nodes        Edges Density Transitivity Clustering pc(2) pc(3)

SWOW-EN free association 12 217 352 403 0.0047 0.052 0.113 8.2 · 10−5 0.0064

Florida free association 5 019 55 246 0.0044 0.083 0.186 2.0 · 10−4 0.0100

Edinburgh free association 8 210 241 461 0.0072 0.048 0.103 1.2 · 10−4 0.0078

Taxonomic 7 943 42 042 0.0013 0.048 0.093 1.3 · 10−4 0.0079

Synonyms 6 526 13 134 0.0006 0.284 0.344 1.5 · 10−4 0.0088

Phonological 4 618 15 447 0.0014 0.345 0.246 2.2 · 10−4 0.0104

Multiplex 8 383 68 505 0.0019 0.112 0.283 1.2 · 10−4 0.0078

RUS thesaurus 5 377 51 191 0.002 0.067 0.163 1.9 · 10−4 0.0096

Dutch data 10 486 207 810 0.0038 0.067 0.163 9.5 · 10−5 0.0069
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Table  1 contains the values pc(k) with k = 2, 3 for random networks of the same size as semantic networks. 
We found, that network density,i.e., the observed link probability, for all datasets satisfies the inequality 
pc(2) < ρ < pc(3) . That is, if links in a semantic network were formed randomly, then all the vertices are included 
in the percolation cluster of k = 2 , that is,one connected component, but do not form a cluster of k = 3.

Results
K‑clique community organization of semantic networks. We calculated the fraction of nodes fcc , 
included in k-clique percolation cluster for different values k. The dependencies for different free association 
datasets are presented in Fig. 1a. Firstly, note that almost all words are included in a 3-clique percolation cluster, 
the existence of this cluster explains the high transitivity and average clustering coefficient, see Table  1. Second-
arily, all free association networks demonstrate k-clique percolation for large k, i.e., the clusters of k = 5 and 
k = 6 contain essential fractions of words—and, for in the SWoW-EN dataset, almost all words. Of course, ana-
lyzing free association data, it is necessary to consider the various data collection conditions, which are primarily 
related to properties such as the network size and its density. These properties completely determine the k-clique 
percolation clusters for random  graphs17. We believe that k-clique organization of free association networks is of 
universal nature and does not essentially dependence on the network size and density. This universality allows 
us to propose a new mechanism for the growth of the semantic networks. The network density increases with 
weak associations included, so we discuss k-clique percolation depending on the association strength in details. 
We analysed the robustness of k-clique organization of free association networks, simulating two mechanisms 
of node removing. In the first scenario, we choose randomly αN nodes. In the second model, we took αN nodes 
with the smallest degree. The respective k-clique percolation dependencies for different datasets are presented 
in Supplementary Information Fig. S1). We observe the natural changes of k-clique percolation with increasing 
of the numbers of nodes removed randomly, while k-clique organization in the second process are stable. This 
indicates to the universality of the k-clique organization of free association networks.

In Fig. 1b, the dependencies for semantic networks of different natures are presented. In contrast to the net-
works of free associations, phonological and synonymous networks form a 3-clique percolation clusters only 
partially; clusters of higher orders are completely absent, despite the fact that these networks are characterized 
by higher values of transitivity and clustering. We also calculated the respective dependence for the so-called 
multiplex network, in which we considered three layers:phonological, taxonomic and synonyms. For such a 
network, we observe clusters of the order of 4 and 5. Thus, we can assume that the variety of links ensure the 
existence of high-order clique clusters.

Structural features and clustering in the SWOW‑EN network. We analyzed k-clique community 
clusters depending on the association strength. For this aim, we performed the following numerical experi-
ments. In the first simulation, we took a threshold τ for association strength and deleted all links of weights 
less than the threshold. Figure  2a presents the fraction of nodes including in k-clique community cluster of 
k = 2, 3 . . . 6 depending on the threshold τ . We observe, that k-clique community clusters of higher order ( k = 5 
and k = 6 ) exist only for initial network state and almost disappear at a small threshold. Percolation clusters for 
k = 3 and k = 4 include all vertices up to sufficiently high threshold τ , indicating the stability of network com-
munity organization. The second simulation was as follows. We established a threshold θ for association strength 
and deleted all links of weights more or equal than the value θ , i.e. we analyzed a subgraph of weak associations. 

pc(k) =
1

[N(k − 1)]
1

k−1

.

Figure 1.  (a) The size of k-clique percolation cluster in dependence on the value k for different free association 
datasets. (b) The size of k-clique percolation cluster in dependence on the value k for different English semantic 
networks.
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The respective dependencies for different k are depicted in Fig. 2b; the 3-clique percolation cluster is not sensi-
tive to the threshold θ and exists for all weak subgraphs. The percolation clusters for k = 4 and k = 5 include all 
words for high threshold and abruptly decrease at small values θ . Interestingly, that for k = 6 (even for very high 
θ ), the percolation cluster contains only some parts of nodes. This result shows that strong free associations can 
be considered as“core”links, which are involved in few cliques, providing intersections of cliques in percolation 
clusters, while weak associations form rather a“shell”of clique community - see Fig. 3.

This assumption is confirmed by studying the distribution of triangles belonging to the links depending on 
association strength. We introduce an edge clustering coefficient for as follows:

where NT (ij) is the number of triangles, containing the edge (i, j), ki , kj are the degrees of i and j nodes respec-
tively. Like the clustering coefficient of a node, the value Cij shows the fraction of triangles and lies in the range 
[0, 1] . Note that the introduced clustering coefficient Cij correlates with a topological overlap for nodes i and j in 
case of their  adjacency30. We found the clustering coefficient for each edge in the free association network 
SWOW-EN, sorted them, and splitted them into b = 100 intervals of equal size. For each intervals l, l = 1, 2, . . . , n , 
we calculated the average values for the clustering coefficient 

〈

clij

〉

 and for the association strengths 
〈

wl
ij

〉

 , which 
are equal to the fraction of the experiment participants who gave this particular response to a cue. Figure 3a 
presents the dependence of the average association strength on the respective clustering coefficient in given 
interval. The dependence is fitted by the curve log

〈

wij

〉

= 5.0 ·
〈

cij
〉

− 4.4 . Thus, we observe a positive 

Cij =
NT (ij)

min(ki , kj)− 1
,

Figure 2.  (a) The size of k-clique percolation cluster in dependence on the threshold τ for different values k in 
SWOW-EN. (b) The size of k-clique percolation cluster in dependence on the threshold θ for different values k 
in SWOW-EN.

Figure 3.  (a) Three k-cliques are adjacent ( k = 6 ) through the central (k − 1)-clique, which could be considered 
as a“core”.
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correlation between the number of triangles, belonging to a link and its association strength. Note that this cor-
relation has not been discussed before and it is interesting by itself and can be used in modeling the human lexi-
con. Besides, we introduce k-clique number of an edge as the maximal clique size, containing the edge. In Fig. 3b, 
the distributions of k-clique numbers are presented for the weakest association links, i.e. wij = 0.01 and for the 
strongest association links, wij > 0.1 , the fractions of the weakest and the strongest links are 20% and 5% 
respectively.

Simulation of clique organization in free association networks. Network models of language 
structure are discussed  in31,32. Particularly, Dorogovtsev and  Mendes32 proposed a stochastic theory of the evo-
lution of human language, which treats language as a self-organizing network of interacting words. It is well 
known that language evolves. Thus, the question is what kind of growth (in the sense of increase of lexical 
repertoire) leads to a self-organized structure with characteristic scale-free degree distribution. Dorogovtsev 
and Mendes’scheme of the language network growth follows. A new word is connected to an old one i, with the 
probability proportional to its degree ki (Barabasi and Albert’s preferential attachment); additionally, at each 
time step, c, new edges randomly emerge between old words, where c is a constant coefficient that characterizes a 
particular network. This model explained power law degree distribution and small-world properties of semantic 
networks very well (Fig. 4).

To describe clique organization in semantic networks we propose a new model based on Dorogovtsev and 
Mendes’mechanism, presented in Fig. 5a. In our model a new word is connected to 2m existing linked words i 
and j with the probability proportional to the sum degree ki + kj , forming a triangle; in addition, at each time 
step, we add c new edges randomly between old words. The network evolution begins with an initially small 
Erdos-Renyi random graph G(l, p0).

Figure 4.  (a) The dependence of average association strengths on the edge clustering. Insert: the dependencies 
for different number of bins b. (b) The distribution of maximal clique sizes for weak ( wij ≤ 0.01 ) and strong 
( wij > 0.1 ) associations.

Figure 5.  Network model description: a new word is connected to a link (i, j) by preferential attachment; 
in addition, random links between old words emerge. Existing links are depicted by solid line, new links are 
dashed.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:5540  | https://doi.org/10.1038/s41598-022-09499-w

www.nature.com/scientificreports/

We simulated the networks of different sizes with the model parameters m = 4 , c = 4, l = 20, p0 = 0.2 . 
Structural properties of the networks are summarized in Table  2. All networks are sparse, with density, 
pc(2) < ρ < pc(3) , and highly clustered.The network properties are determined by the ratio between the tri-
angular and random mechanism of link formation , i.e., between m and c. We studied the structural properties 
depending on the model parameter m with fixed other parameters, the results are presented in Supplementary 
Information (Table S1, Fig. S2). Our results demonstrates that m is the key parameter for k-clique percolation, 
while the degree and clustering properties are almost independent of the value m. The chosen model parameters 
allow us to observe k-clique percolation for k = 5, 6 . Degree distributions of the networks are fitted by the power 
law p = Cd−γ with γ = 2.6 , see Fig. 5a. The size of k-clique percolation cluster in dependence on the value k 
demonstrates the same behaviour as observed for free association networks (Fig. 6b) and does not depend on the 
network size, explaining the observed robustness of free association networks in the node-removing process by 
degree. Thus, the assumption of preferential attachment to an edge rather than a single word may explain clique 
organization in free association networks.

Discussion: towards the explanation of Miller’s 7± 2 rule?
It is  established21 that many phenomena concerning the processing of information by the human brain for a 
short period of time naturally restricted by the number of controlled items. This number is estimated by the 
Miller’s 7± 2 rule, which implies the restricted ability of the brain. There have been a few attempts to apply the 
underlying network structure to explain the Miller rule concerning the capacity limit of working  memory22,23.

From the physiological viewpoint, three groups of mechanisms behind the limit capacity have been suggested 
(see,33 for a review). Some theories assume that representations in WM decay over time, unless decay is prevented 
by some form of restoration process, such as rehearsal. The second mechanism of limited resource claims that 
there are not enough resources for higher capacity. A resource is considered as a limited quantity that enables 
a cognitive function or process. According to the third mechanism, our ability to hold several representations 
available at the same time is limited by mutual destructive interference between these representations. As an 
example of this mechanism, one could have in mind the interference of frequency bands in brain activity. Indeed, 
a few bands are simultaneously involved in the processing of working memory. None of these mechanisms 
can be considered as fully satisfactory. Another network-motivated  approach34 utilizes the mathematical result 
concerning the plane colouring in four colors. This idea was conjectured to be relevant to the smaller critical 
number of items discussed  in22,23.

Can we gain some new insight concerning the mechanism behind Miller’s rule from our study? Let us assume 
that the free association tests are the specific probes of the working memory. This assumption has been discussed 
in the literature before ( see, for  instance35), and it is natural because the time allowed for the performance of 
tests is quite restricted. Hence, let us assume that free association networks reflect the working memory and 

Table 2.  Structural properties of simulated networks.

Nodes        Edges Density Transitivity Clustering pc(2) pc(3)

2000 23 213 0.0116 0.048 0.175 5 · 10−4 0.0158

4000 46 783 0.0058 0.028 0.158 2.5 · 10−4 0.0111

6000 69 307 0.0039 0.016 0.172 1.66 · 10−4 0.0091

8000 91 275 0.0028 0.010 0.187 1.25 · 10−4 0.0079

Figure 6.  (a) Complementary cumulative degree distribution function for simulated networks of different sizes. 
(b) The size of k-clique percolation cluster in dependence on the value k for networks of different sizes.
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their structures code the information concerning the groups of related stimuli during the test. We conjecture 
that keeping the information about the linked group of k stimuli is encoded in the k-clique percolation. Hence, 
our finding that the k-clique percolation for the SWOW-EN and Dutch networks is possible only for k ≤ 6 can 
be interpreted as an example of Miller’s rule.

One concern may be that in the working memory setup, we have “percolation in time”to keep the group of 
stimuli as a whole for some period of time. On the other hand, in clique percolation, we have a“percolation on 
the network”keeping the clique intact when moving along the graph. However, to some extent, the formation 
of the association network can be considered as the growing network model. This viewpoint (if true) suggests 
the new perspective of explanation of Miller’s rule for all behavioral situations when the network description is 
available. One has to estimate the maximum size of a percolating clique in the particular network architecture 
to find the capacity of the working memory, which ensures the propagation of the linked group of items in time.

One could question why only the small-size clique percolation is possible in the human brain, although 
naively, we could expect that the brain would prefer the higher working memory capacity. In particular, the limit 
of the working memory capacity for humans is higher than of other  animals36, and it is assumed that higher work-
ing memory corresponds to higher intellect. The answer certainly should involve some evolutionary arguments, 
and at least two alternative scenarios are possible. First, presumably, the network architecture admitting higher 
clique percolation contradicts some other vital properties of the brain encoded in connectome architecture.

Second, we can assume that the particular evolutionary rules (see,37 for a review) for the corresponding 
network dynamically bring it to the particular capacity limit somewhat in the spirit of self-organized critical-
ity. In the previous Section, we have supported this possibility suggesting the non-conventional version of the 
preferential attachment procedure which indeed yields the reasonable value of kc = (5− 6).

Conclusion
In this paper, we have analyzed k-clique percolation in free association networks and semantic networks for a few 
languages. Some of the findings of our study which seem to be important. First, using the traditional approach we 
have investigated the structural network properties via the percolation theory and made a few new observations

• There is a critical value kc for the maximal size of a percolating k-clique for the SWOW-EN network and 
semantic networks. The larger clique with k > kc can not percolate through these networks.

• The density of the analyzed network does not allow the percolation of k > 2 cliques if the network is consid-
ered as random. This means that our study confirms the non-randomness of the free association networks.

• Imposing the thresholds on the link weights, we investigated the role of weak and strong associations on the 
k-clique size and percolation. Strong associations play a key role in the k-clique percolating cluster while the 
weak associations provide a kind of shadow, which is necessary ingredient to support the observations made 
 in10. The clear-cut dependence between averaged local weights and local connectivity was established.

Secondly, we proposed a model of generalized preferential attachment, in which the cut-off in the maximal size 
of percolating clique is reproduced. This phenomenon does not exist in Erdos-Renyi random networks of the 
same size and density, however, we can not completely exclude the possibility that the similar cut-off exists for 
another organization of partially random networks.

Finally, we assume that our findings provide additional information not only on the structure but also the 
processing on the network. Namely, the free association networks can be considered as a peculiar probe of the 
working memory. Therefore the critical kc for the k-clique percolation presumably can be interpreted as capacity 
limit of the working memory and therefore can be new, nontrivial, qualitative mechanism behind Miller’s law. 
This can be further checked by investigating a threshold in k-clique percolation for other cognitive networks 
involving short-term performances probing working memory.

It would be interesting to elaborate the possible origin of the kc actual value further. Presumably, it can be 
established  evolutionarily37 as an optimal result of competition between the clique percolation related to the 
working memory and another properties of the connectome responsible for important cognitive properties. 
Another possibility demonstrated in our study is that the specific version of the preferential attachment evolution 
mechanism yields the critical value kc = (5− 6) via a kind of self-organized criticality. It would be interesting 
to test our new evolutionary rule on other cognitive processes.

Data availability
All data and code are available at https:// github. com/ valbao/ k- clique- perco lation- in- seman tic- netwo rks.
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