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Different pathophysiologic mechanisms are involved in the initiation, development, and

outcome of dry eye disease (DED). Animal models have proven valuable and efficient

in establishing ocular surface microenvironments that mimic humans, thus enabling

better understanding of the pathogenesis. Several dry eye animal models, including

lacrimal secretion insufficiency, evaporation, neuronal dysfunction, and environmental

stress models, are related to different etiological factors. Other models may be

categorized as having a multifactorial DED. In addition, there are variations in the

methodological classification, including surgical lacrimal gland removal, drug-induced

models, irradiation impairment, autoimmune antibody-induced models, and transgenic

animals. The aforementioned models may manifest varying degrees of severity or specific

pathophysiological mechanisms that contribute to the complexity of DED. This review

aimed to summarize various dry eye animal models and evaluate their respective

characteristics to improve our understanding of the underlying mechanism and identify

therapeutic prospects for clinical purposes.

Keywords: dry eye, animal model, lacrimal gland, tear deficiency, evaporative, environmental stress, translational

research, DED

INTRODUCTION

Dry eye disease (DED) is one of the most common ocular surface disorders affecting millions
of people worldwide (1–3). Its symptoms range from irritation and light sensitivity to blindness
in severe cases (4–6). The tear film is the most important component of the ocular surface in
maintaining microenvironment stability and providing lubrication to the cornea, thus maintaining
its refractive function (7–9). Factors that affect the production or quality of tear film may lead
to DED; these include but are not limited to lacrimal gland impairment, inflammation, infection,
systemic autoimmune conditions, and environmental stress (10–14). The pathogenesis of DED is
complicated, andmuch remains unknown. Animalmodels of DED are essential to better investigate
the mechanisms underlying this multifactorial condition, explore potential therapeutic targets,
and identify factors that can accurately predict prognosis. Conventionally, DED is classified into
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two categories, namely tear-deficient and evaporative (15).
Recent evidence from a translational research using animal
models demonstrated that tear film dysfunction involvesmultiple
risk factors, with ocular surface inflammation an important
component, where the resident immune cells initiate and
propagate alterations in the ocular surface microenvironment
(16, 17). Herein, we reviewed various dry eye animal models from
published literature according to different modeling methods.
We will discuss their therapeutic targets and relative advantages
and disadvantages in this translational research.

AQUEOUS DEFICIENT DRY EYE TYPES

Lacrimal Gland Excision/Radiation Models
The surgical removal of the lacrimal gland in mice and rats is the
most commonly reported model in DED research. Generally, the
main procedures for mice lacrimal gland excision are as follows:
after anesthetic administration, an incision is made to expose
the extraorbital and/or intraorbital lacrimal gland with the aid
of stereoscopic microscopy, and glands are generally excised
and removed using micro-forceps and Vannas scissors without
injuring surrounding blood vessels and nerves. All excisions are
made ipsilaterally, usually on the right side, and only a sham
surgery with cutaneous incision is performed on the contralateral
side simultaneously (18, 19).

Principally, the excision of the primary lacrimal gland
immediately reduces aqueous tear secretion. Compromised tear
production manifesting with a reduced Schirmer’s test score is
the major outcome (20). This model can also be applied to other
animals, such as dogs, rabbits, cats, and monkeys (21–24). The
aforementioned models have demonstrated reduced Schirmer’s
test values and decreased basal tear production. However, vast
differences in ocular surface anatomy and physiology between
these models lead to inconsistency in the extent of affecting tear
production, the duration of ocular surface complications, and
reversibility. This warrants the selection of an appropriate animal
specific to the needs of each study. For example, according to
studies on the rat and mouse dry eye model (19, 25), the excision
of the extra-orbital lacrimal gland reduces the tear volume
and results in significant corneal epitheliopathy. However,
decreased tear production does not necessarily manifest signs
of ocular surface disease (26). Contrarily, the severity of dry
eye symptoms may vary between genders. Mecum et al. (18)
reported on a gender predilection that female mice were
more susceptible to lacrimal gland excision-induced corneal
damage. Regarding conjunctival changes resulting from the
lacrimal gland removal, the evidence seems to vary among
different animal modes. Stevenson et al. (19) reported increased
T helper 17-cell frequencies in the conjunctiva and draining
lymph nodes after extraorbital lacrimal gland removal in female
C57BL/6 mice over 14 days. In contrast, Maitchouk et al. (21)
concluded that the main lacrimal gland removal is not related to
keratoconjunctivitis sicca.

External beam radiation therapy is a risk factor for DED
following the treatment of head and neck cancers (27–29). Thus,
it can be used to induce DED in animals. Hakim et al. (30)
reported on a rabbit dry eye model using 15Gy external beam

radiation, which resulted in the functional impairment of the
lacrimal gland and reduced tear production. Rocha et al. (31)
introduced serial radiation doses at 8 or 6Gy, delivered over
5 consecutive days, and successfully induced dry eye syndrome
in mice. They observed a considerably lower production of tear
secretion in the radiation group as well as a reduction in the
epithelial thickness of the cornea, the absence of basal epithelium,
and the thickening of corneal stroma at 10 days. However,
these additional differences were transient and disappeared at
56 days post-radiation. Thus, radiation-induced dry eye models
are reproducible and involve reversible alterations that provide
a platform for mechanistic research into the treatment and
prognosis of DED (32). The nuclear factor of activated T cells
5 plays a potential role, whereas α-lipoic acid exerts a protective
effect on this radiation-induced model (33). However, compared
with the previous simple lacrimal gland removal method, this
method requires special radioactive equipment and poses certain
risks and collateral damage.

Blockage of Lacrimal Gland-Associated
Nerve Pathways
The lacrimal nerve displays extensive sympathetic innervation,
thus influencing tear production and composition (34).
Therefore, researchers can develop aqueous-deficient models
by blocking the afferent or efferent nerves associated
with the lacrimal gland. Parasympathetic blockers are the
first and foremost drugs. As a competitive antagonist of
muscarinic acetylcholine receptors, atropine blocks the action
of acetylcholine, thereby suppressing the function of the
parasympathetic nervous system. In an albino rabbit dry eye
model (35), atropine eye drops considerably reduced tear
production and Schirmer’s test scores within 2 days of onset.
Aicher et al. (36) subcutaneously injected male Sprague-Dawley
rats with 0.1% methyl atropine (1 mg/kg) twice daily for 2 days.
Methyl atropine considerably reduced basal tear production
compared with pretreatment baselines. This dry eye model
can be implemented rapidly and easily; however, it is relatively
simple and does not represent complicated pathophysiological
processes in human dry eye syndrome.

Another method involves the use of neurturin-deficient
(NRTN−/−) transgenic mice. Neurturin is a neurotrophic factor
that regulates neuronal survival and function (37). Neurturin-
deficient mice develop ocular surface inflammation similar
to that observed in human DED. This transgenic mouse
model substantially decreased aqueous tear production, tear
fluorescein clearance, and corneal sensation (38). Moreover, it
provided researchers with a method for better understanding
the association between lacrimal gland denervation and ocular
surface inflammation in DED. Nonetheless, its disadvantages are
that the use and verification of this model are time-consuming.

Autoimmune Disease-Associated Dry Eye
Models
A specific class of mice shares common characteristics with
autoimmune DED, owing to the presence of a specific mutation
or gene-editing technique. They release autoreactive lymphocytes
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to attack their lacrimal glands, consequently resulting in tear
secretion deficiency. They can be categorized as experimental
autoimmune disease-associated dry eye models (Table 1).

Sjögren’s syndrome is a systemic autoimmune disease that
causes secretory gland dysfunction (53). Several genetically
modified mice have been used to mimic Sjögren’s syndrome in
dry eye studies. The non-obese diabetic (NOD) mouse model
is mostly used for type 1 diabetes mellitus (54). NOD mice are
susceptible to the spontaneous development of autoimmune
insulin-dependent diabetes mellitus (55). Moreover, it facilitates
investigating the influence of autoimmune processes on
dry eye syndrome (56, 57). Lymphocytic infiltration leads
to the degradation of extracellular matrix structures in the
lacrimal gland of NOD mice (58). Ju et al. (39) reported that
NOD mouse lacrimal glands displayed increased lymphocytic
infiltration. Furthermore, they demonstrated substantially
increased expression of major histocompatibility (MHC) II and
interferon-γ in the lacrimal gland at 12 and 20 weeks. However,
this model demonstrated a higher incidence of dacryoadenitis
in male NOD mice than in females (59), thus suggesting the
spontaneous autoimmune response may be modulated by sex
steroids, particularly testosterone. Autoimmune lesions in
this model involve autoreactive Th1 cell secretions, including
interleukin (IL)-10 and IL-12. Sjögren’s syndrome in the NOD
mouse model is an interleukin-4, time-dependent, antibody
isotype-specific autoimmune disease (60). Recently, Robinson
et al. reported on a NOD-derived murine model (40), where
NOD.B10.H2b mice, comprising MHC congenic to NOD,
exhibited exocrine gland lymphocytic infiltration typical of
Sjögren’s syndrome-like disease and dysfunction observed in
NOD mice, but without diabetes. Thus, the NOD.B10.H2b
mouse model is considered interesting for studying primary
Sjögren’s syndrome.

The MRL/1pr mouse is a model of autoimmune arteritis,
antiphospholipid syndrome, and systemic lupus erythematosus-
like autoimmune syndromes (61–63). The lpr gene is a mutated
Fas antigen that leads to lymphoproliferative disease (64). This
model demonstrates anti-Ro/Sjögren’s-syndrome type A and
anti-La/Sjögren’s syndrome type B autoantibody production,
a characteristic manifestation of Sjögren’s syndrome, besides
exhibiting lacrimal gland infiltration, predominantly by CD4+

T cells (41). Unlike the NOD mouse model, the extent of
inflammation is considerably greater in the lacrimal glands of
female MRL/lpr mice than that in males (65). Furthermore,
MRL/lpr mice develop glomerulonephritis, which is classic in
systemic lupus erythematosus but rare in Sjögren’s syndrome
(66). Therefore, the MRL /1prmouse model is usually considered
for secondary Sjögren’s syndrome.

The inhibitor of DNA binding 3 (Id3) is an immediate early
response gene involved in growth regulation and T-cell receptor-
mediated T cell selection during its development (42). Id3-
deficient mice develop lymphocyte infiltration in the lacrimal and
salivary glands, reducing tear and saliva secretion and detectable
anti-Ro and anti-La antibodies in the mouse serum. Similar
to the clinical manifestations of primary Sjogren’s syndrome,
Id3-deficient mice serve as useful dry eye models for primary
Sjogren’s syndrome.

Conjunctival changes were also observed in autoimmune
disease-related dry eye models. Using an autoimmune disease
model mouse, BXSB/MpJ-Yaa, Hiraishi et al. (67) observed that
goblet cell density in the conjunctiva epithelium decreased at 20
and 28 weeks compared to at 8 weeks. Wang et al. (68) reported
spontaneous Sjögren-Like lacrimal keratoconjunctivitis in germ-
free C57BL/6 mice, with significant goblet cell loss compared to
conventional mice.

Researchers have reported other models, including the New
Zealand Black and New Zealand White mouse (30, 35), the
NFS/sld mouse (44), the IQI/Jic mouse (48, 69), the CD25
knockout mouse (45, 46), and the transforming growth factor
β1 knockout mouse (51, 52). These autoimmune models affect
the function of the lacrimal gland, eventually resulting in
inadequate tear production. Depending on the characteristics of
the specific model, they can be applied to different scenarios. Of
all autoimmune dry eye models, the NODmouse (39, 40) and the
MRL-1 pr/1prmouse model (41) are most commonly reported in
scientific literature.

EVAPORATIVE DRY EYE MODELS

Environmental Stress-Induced Dry Eye
Models
In addition to decreased tear production, DED can occur despite
normal tear secretion in the context of significant environmental
stressors. Numerous models utilize changes in the external
environment, ventilation, humidity, or the forced exposure of the
ocular surface to simulate evaporative DED.

Dursun et al. (70) introduced a desiccating environment by
placing mice in a hood with a continuous airflow blower, with a
flow rate of 300 ft/min at 7 s for 1 h, thrice per day for 4 days. Mice
placed in the blower hood manifested the most severe ocular
surface disease. Simsek et al. (71) used a model in which BALB/c
male mice were exposed to an air fan inside a small compartment
for 5 h per day for 3 days. The external environment considerably
decreased the tear volume and increased corneal fluorescein and
lissamine green staining scores. Moreover, the corneal subbasal
nerve density was substantially damaged following exposure.
Contrarily, several studies have introduced dry eyemousemodels
induced by air pollution particulate matter (PM), such as PM10

and urban particulate matter (UPM). PM10 impairs tear film
function and destructs the structural organization of the ocular
surface in mice. The topical administration of PM10 in mice
induces ocular surface changes, similar to those induced by
DED in humans (72). UPM exposure induces apoptosis in the
corneal epithelium and decreases the number of goblet cells in
the conjunctiva. Moreover, it affects the stability of the tear film
by disrupting its mucin-4 layer (73). The advantage of these
models, which simulate the real environment, is highly relevant
to the development of environmentally-induced ocular surface
diseases, including DED.

In another model, researchers introduced a lid retractor to
prevent blinking. This model can be used in a short time and is
easy to implement. It enables testing preventive and therapeutic
strategies for DED (74). However, minimal changes in the ocular
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TABLE 1 | Autoimmune disease-associated dry eye models.

Models Modeling method Modeling genre Sex preference Pathogenesis Detectable serum

antibodies

Pathogenic effects References

NOD mouse Spontaneously

developed

SS-like Male CD4+ Th1 cell infiltration of the

lacrimal gland

Anti-thyroid Ab

Anti-ss-A/Ro

Anti-b adrenergic R Ab

Anti-a-fodrin Ab

Anti-M3 muscarinic R Ab

Pancreas, submandibular,

and thyroid gland

(39)

NOD.B10.H2b

mice

NOD mutant with an

altered MHC region

SS-like Male Did not develop autoimmune

diabetes, but displays lacrimal T-cell

infiltration

Similar with NOD mouse Similar to NOD mouse (40)

MRL-1 pr/1pr

mouse

Mutated Fas antigen 2nd-SS. Female Serological manifestations

characteristic of SS and exhibit

lacrimal gland infiltration,

predominantly by CD4– T cells

Anti-ds DNA Ab

Anti-ss DNA Ab

Anti-gp70 Ab

Rheumatoid factor

Anti-SA/Ro

Anti-SS-B/La

Sialadenitis

Dacryoadenitis

Kidney

Joints

blood vessels

(41)

Id3-deficient mice Gene knockout pSS-like ND T-cell-dominant lymphocyte infiltration

in both lacrimal and salivary glands

Anti-SSA/Ro

Anti-SSB/La antibodies

Reduced abilities to secrete

tears and saliva

(42)

NFS/sld mouse Spontaneous

autosomal recessive

mutation

pSS-like Female Lymphocytic infiltrates in exocrine

glands are dominated by CD4+ T

cells, with fewer CD8+ T cells and B

cells

Anti-a-fodrin Ab Inflammatory changes in the

submandibular, parotid, and

lacrimal glands

(43)

3d-Tx NFS/sld

mouse

Thymectomy of

NFS/sld mice at 3 days

of age

pSS-like Female Thymectomy impairs the expansion

of regulatory T cells

ND Severe than NFS/sld mouse (44)

CD25KO mice Interleukin 2 receptor

alpha gene knockout

SS-like disease ND Worsening of corneal surface

parameters and an increase of CD4+

T cell infiltrating the cornea

Anti-RBC antibody Age-dependent SS-like

autoimmune

lacrimal-keratoconjunctivitis,

dacryoadenitis, and corneal

epithelial disease

(45, 46)

PD knock-in

mouse

p65 S276D knock-in

mice

KCS or SS-like ND Dependent on NF-κB;

TNFR1-independent corneal

inflammation

ND Genetic and independent of

decreased lacrimal function;

Dacryoadenitis

(47)

IQI/Jic mouse CR-derived inbred

strain

2nd-SS disease Female Focal lymphocyte infiltration and

tissue destruction in the salivary

glands (SG) and LG

Antinuclear autoantibodies Salivary and lacrimal glands,

pancreas, and lungs

dysfunction

(48, 49)

Aly/aly mouse Spontaneous

autosomal recessive

mutation

SS-like disease No predilection Chronic inflammatory cell (CD4+ T

cell) infiltration in multiple organs

No detectable

autoantibodies against

nuclear components or

salivary gland proteins

Cell infiltration in multiple

organs, including the

salivary and lacrimal glands,

pancreas, skin, bones and

lungs

(50)

TGF-b1 Knock out

mouse

Gene knockout SS-like disease ND Mainly CD4+ T cells infiltration ND Heart, lung, pancreas,

lacrimal, salivary, and

submandibular gland

(51, 52)

KCS, keratoconjunctivitis sicca; ND, not determined; pSS, primary Sjögren’s syndrome; and 2nd-SS, secondary Sjögren’s syndrome.
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surface during a short preparation time limit its application in
studying dry eye syndrome.

Other models exposed animals to low-humidity environments
and continuous airflow. Chen et al. (75) established a
murine model of DED using an intelligently controlled
environmental system that maintained low humidity. Animals
exposed to this environment exhibited decreased aqueous
tear production, increased corneal fluorescein staining, and
marked thinning and accelerated desquamation of the apical
corneal epithelium compared with control eyes. The dry eye
environment supposedly upregulated apoptosis on the ocular
surface. Furthermore, biological and morphological changes in
this model were similar to those in human DED. Barabino
et al. (76) developed a controlled-environment chamber and
confirmed that low humidity could substantially alter tear
secretion, goblet cell density, and related ocular surface signs.
Moreover, Nakamura et al. (77) combined a low-humidity
environment, continuous airflow, and jogging board treatment,
which mimicked both mental and physical stress, to induce
abnormal tear dynamics and superficial punctate keratopathy,
similar to that in humans.

Meibomian Gland Dysfunction Models
Meibomian glands produce lipids, which are important
components of the tear film (78). In physiological states, they
prevent or lessen tear film evaporation, serve as the superficial
protective layer, and stabilize the tear film by lowering surface
tension. Lipid deficiency can lead to dryness of the ocular
surface, damage to the conjunctiva and corneal epithelium, and
an imbalance of the ocular surface microenvironment (79).

Jester et al. (80) introduced a meibomian gland dysfunction
(MGD) model in 34 albino rabbits by topically applying 2%
epinephrine twice daily, over 6 months to 1 year. Sixty-eight
(56%) rabbits developed signs of MGD. The development and
progression of MGD in rabbits appeared to correlate with
increasing stratification and keratinization of the meibomian
gland duct epithelium. Mishima et al. reported another rabbit
MGD model by squeezing out meibomian gland contents and
cauterizing the lid margin. Thus, a protective oily film layer
could not form over the eyes of the treated animals, eventually
leading to rapid tear evaporation. In another rabbit MGD model
that used light cautery on meibomian gland orifices, researchers
observed increased tear osmolarity in the presence of normal
lacrimal gland function and ocular surface abnormalities, similar
to that in keratoconjunctivitis sicca (81).

Other types of MGD models comprise transgenic mouse
models, including X-linked anhidrotic-hypohidrotic ectodermal
dysplasia (Tabby), apolipoprotein C1 transgenic mice, and
ACAT-1-/- mice (82, 83). The meibomian glands were absent
or abnormal in the aforementioned mice (Table 2). Tabby mice
sequentially developed corneal epithelial defects, central corneal
stromal edema, and corneal neovascularization 8–16 weeks
following birth (91). Despite reduced tear film breakup time
and tear evaporation times, tear secretion remained normal.
This model is useful for identifying novel therapeutic agents for
evaporative DED.

CHEMICAL-INDUCED DRY EYE MODELS

Researchers have used chemical substances, drugs, or biological
agents to develop a class of lacrimal gland injury models.
The scopolamine-induced dry eye model is most commonly
used. Simsek et al. (92) assessed morphological changes in
the corneal subbasal nerve plexus in wild-type mice following
exposure to scopolamine. They observed decreased tear volume
and shortened tear film breakup time (TFBUT). Confocal
microscopy revealed substantially lower mean corneal subbasal
nerve fiber density and reflectivity in the scopolamine-treated
groups. Furthermore, the mean tortuosity and mean dendritic
cell density were considerably higher in this model. Viau et al.
(93) induced dry eye symptoms using scopolamine in 6-week-old
female Lewis rats. Scopolamine was delivered via subcutaneously
implanted osmotic pumps. TNF-α, IL-1β, and IL-6 mRNA levels
increased with scopolamine treatment in both the conjunctiva
and ex-orbital lacrimal glands. All animals exhibited unilateral
or bilateral keratitis after 17 days. The scopolamine-induced dry
eye model could serve as a stable model of moderate severity for
dry eye studies.

Benzalkonium chloride (BAK) is the most frequently
used preservative in eye drops. Researchers have consistently
demonstrated its toxic effects on the ocular surface (94–96). It
causes tear film instability, the loss of goblet cells, conjunctival
squamous metaplasia and apoptosis, the disruption of the
corneal epithelium barrier, and damage to deeper ocular tissues
(97). In a rabbit BAK toxicity model, researchers demonstrated
damage to the conjunctiva-associated lymphoid tissue via the
topical application of BAK (98). In addition, Pauly et al. (99)
developed a technical model that closely resembled the human
ocular surface environment. They used fluorescence techniques
conjugated with confocal microscopy on a 3-D reconstructed
corneal epithelial model and observed an increase in apoptotic
cells from the superficial to the deeper layers.

Botulinum toxin (BTX) is a potent toxin widely used in
modern medicine (100) and has been used in various dry eye
models. Park et al. (101) developed a mouse tear-deficient dry eye
model without lacrimal gland inflammation by injecting BTX-
B into the lacrimal gland. This model could effectively induce
dry eye in mice 2 and 4 weeks following injection. The lacrimal
structures were adequately maintained without significant T
lymphocyte infiltration. Moreover, there are reports of a BTX-
A-induced DED model in male C57BL/6 mice (102), which has
also been demonstrated to be stable.

Researchers have also used other agents to establish different
mouse, rat, or rabbit models, such as the injection of human
recombinant interleukin-1 and concanavalin A into lacrimal
glands and the oral administration of finasteride. Table 3

summarizes the chemical-, biological agent-, and drug-induced
dry eye animal models.

DISCUSSION

DED is a common ocular disorder that threatens the quality
of life. Its symptoms vary from mild to severe, which are
considered public health issues (113–115). The pathophysiologic
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TABLE 2 | Transgenic models of meibomian gland dysfunction.

Models Effect results References

ACAT-1–/– Similar to dry eye syndrome in humans (83)

TRAF6–/– Defective development of epidermal appendixes (84)

K14-Noggin Replacement of meibomian glands in eyelids with hair (85)

Smad4CKO Hair follicles in place of the meibomian glands (86)

Barx2–/– Defective lacrimal gland morphogenesis, defects in meibomian gland (87)

Klf5CN Defective eyelids with malformed meibomian glands, the abnormal cornea

loss of conjunctival goblet cells

(88)

Fatp4–/– Abnormal development of both sebaceous glands and meibomian glands,

specialized sebaceous glands of the eyelids

(89)

Fgfr2CKO Significant meibomian gland acinar atrophy and clinical manifestations of

MGD

(90)

MGD, meibomian gland dysfunction.

TABLE 3 | A summary of chemical-, biological agent-, and drug-induced dry eye animal models.

Models Modeling method Demonstrated outcomes References

C57BL/6 female

mice

Subcutaneous injection of scopolamine

hydrobromide, an exposure to an air draft, and

30% ambient humidity

Tear-deficiency dry eye (103)

Male

Sprague-Dawley

rats

Topically administered 10% N-acetylcysteine Mucin-deficiency dry eye (104)

Rabbit Topically administered 0.1% benzalkonium

chloride

Both aqueous tear and mucin deficiency (105)

Rabbit Burned with 50% trichloroacetic acid Conjunctival goblet cells damage (22)

Rabbit Trichloroacetic acid-treated and/or the removal

of nictitating membrane

Stable KCS model, similar to surgical LG

removal

(106)

Rat Subcutaneous implantation of scopolamine

micro-osmotic pumps

Moderate dry eye (93)

Wistar rats Bilateral ovariectomy in female rats and oral

finasteride; both male and female rats

challenged

Tear deficiency

Androgen deficiency dry eye

(107)

CBA/J mice BTX-B injection into the LG Mimic those in humans with non-SS, KCS (108)

CBA/J mice Transconjunctival injection of BTX-B into the

lacrimal gland

Dry eye model without significant inflammatory

cells infiltration

(109)

Female Wistar rats Androgen deficiency dry eye model induced by

finasteride

Androgen deficiency dry eye (110)

Female BALB/c

mice

A single injection of interleukin-1α into the

lacrimal gland

A severe, but reversible inflammatory response

in lacrimal gland acinar epithelial cells

(111, 112)

BTX, botulinum toxin; KCS, keratoconjunctivitis sicca; LG, lacrimal gland; and SS, Sjögren’s syndrome.

mechanisms of DED comprise multiple factors that not only
involve ocular surface inflammatory processes but are also related
to systemic conditions (116, 117). Dry eye animal models for
interpreting the underlying mechanisms are indispensable. We
reviewed articles on such models, assessed their types, principles,
and characters (Figure 1), and discussed their potential value for
DED. A miscellaneous set of dry eye models has been created
and provided to researchers. Their manifestations and severities
vary according to the specific pathophysiological mechanism.
Researchers should consider an appropriate model according to
their objective.

The surgical removal of lacrimal glands, chemical- or drug-
induced lacrimal damage, and challenging environments are

convenient and effective methods for achieving aqueous
deficiency and evaporative dry eye models. Generally,
aqueous deficiency and evaporative models are the major
classifications (15). Researchers have developed models based
on these classifications according to different implementation
methods (Table 4). They share common traits, including
rapid symptom occurrence, short implementation time,
and reproducibility in different animals. Moreover, they
decrease tear secretion production, which is ideal for assessing
the efficacy of different therapies. However, these models
have different prerequisites. Specifically, a mouse model
using lacrimal gland excision could induce severe aqueous
deficiency; More dedicated surgical techniques are required.
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FIGURE 1 | Principles for animal dry eye modeling. A schematic showing approaches to developing animal dry eye models, including major methods used in recently

published studies, as described in this review. Lacrimal glands excision, neural pathway blocking, and autoimmune disease models, including Sjögren’s syndrome and

systemic lupus erythematosus, have been developed by targeting the lacrimal gland. These result in an aqueous deficiency in the tear film. Conjunctival goblet cell

damage can result in mucin deficiency in the tear film. Further, chemicals, drugs, and radiation hazards mainly cause corneal epithelium damage. Some gene-modified

mice can present with dysfunction or direct damage of the Meibomian glands, resulting in lipid deficiency in the tear film. Environmental stress due to changing

humidity, controlling airflow, and/or introduction of air pollution particulate matter, could also be significant in animal dry eye modeling.

In addition, lacrimal gland removal may not fully reproduce
the complete clinical dry eye phenotype and systemic diseases
associated with DED, including Sjögren’s syndrome, rheumatoid
arthritis, and systemic lupus erythematosus because it is
merely artificial. For chemical-induced models, the use of
1.0% atropine sulfate eye drops in albino rabbits rapidly
provided the required symptoms on day 2 of treatment. In
addition, Schirmer test scores, corneal fluorescein staining,
and Ferning tests confirmed dry eye signs (35). However,

the observations were conducted only until day 5, without
additional data.

Evaporative DED models were developed by changing
the feeding environment or imposing environmental stress
on different animals. Animals were kept in a low-humidity
environment or continuous airflow chambers for hours or
days, which decreased tear film production, shortened the
breakup time, and increased corneal fluorescence staining. The
aforementioned environmental stress models are economical
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TABLE 4 | Dry eye animal models.

Animal

models

Type Species Procedure Experimental

days

Effects to dry eye examinations Pros Cons References

Tear

secretion

volume

Tear film

breakup

time

CFS

Lacrimal

gland excision

Aqueous

deficiency

C57BL/6 WT

mice

Exorbital and

intraorbital

lacrimal gland

excision

14 days ↓16.6% ND ↑↑↑ Inducing

severe

aqueous

deficiency

model

More

surgically

invasive

(118)

Radiation-

induced

model

Aqueous

deficiency

female New

Zealand

rabbit

Radiation

15Gy

3 days ↓ ND ND Objective

surrogate

parameters

for radiogenic

dysfunction

Requires

special

radioactive

equipment

(30)

Drug-induced Aqueous

deficiency

Male New

Zealand

albino rabbits

1.0% atropine

sulfate eye

drop

2 days ↓↓ ND ↑ Producing the

required

symptoms

rapidly

Only

observed for

5 days, no

longer time

observation

data

(35)

Drug-induced Lacrimal

Gland

Denervation

Male

Sprague-

Dawley

rats

192-IgG-

saporin was

microinjected

into the

lacrimal gland

3–4 weeks No changes ND ND Useful for

exploring the

mechanism

underlying

corneal

hypoalgesia.

Microsurgery

requirements;

Normal basal

tear

production

(36)

Autoimmune

model

Aqueous

deficiency

NOD mice Derived from

the outbred

Jcl:ICR line of

mice

10–14 weeks ↓↓ 61.43% 1∼2

second

↑ Ideal model

for

autoimmune

related DED

Discrepancies

between

preclinical

studies and

clinical

outcomes

(54, 56, 119,

120)

Autoimmune

model

Aqueous

deficiency

MRL/lpr mice Derived from

the MRL/n

mouse strain

16–18 weeks

(female)

18–20 (male)

↓ ND ND A pivotal

model for

neurological

SLE

Lack of data

in the

literature

(121, 122)

Autoimmune

model

Aqueous

deficiency

Id3-deficient

mice

Gene

knockout

8 weeks ↓ ND ND Ideal primary

Sjogren’s

syndrome

model

Technical

challenges in

gene

knockout

(42)

Autoimmune

model

Aqueous

deficiency

IQI/Jic mice Developed

from outbred

ICR mice

At least 9

months

ND ND ND Model for

secondary

Sjogren’s

syndrome

model

The age of

onset limited

its application

(48, 69)

(Continued)
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TABLE 4 | Continued

Animal

models

Type Species Procedure Experimental

days

Effects to dry eye examinations Pros Cons References

Tear

secretion

volume

Tear film

breakup

time

CFS

Environmental

stress

Evaporative

dry eye model

Balb/c male

mice

Exposed to

an air fan 5

hours a day

for 3 days

3 days ↓↓↓ ↓↓↓ ↑↑↑ Promising

model to

study the

ocular surface

and corneal

nerve

changes

Only male

mice and

acute

alterations

were

assessed

(71)

Environmental

stress

Evaporative

dry eye mode

Rabbit Eyes were

held open

with an eye

specula

1–3 h ND ND ↑↑ Simply and

short-term to

implement

Not suitable

for

mechanism

research

(74)

Meibomian

gland

dysfunction

Evaporative

dry eye mode

New Zealand

rabbit

Meibomian

gland orifices

were closed

by electrical

coagulation or

light cautery

1–14 days ↓↓↓

(Observed on

day 1–3)

↓ (On day 3,

7, 14)

No difference Suitable for

MGD related

dry eye

research

Biochemistry

and

biophysics

differences

between

rabbit and

human

meibum

(81, 123)

CFS, corneal fluorescein staining; DED, dry eye disease; ICR, imprinting control region; MGD, meibomian gland dysfunction; ND, not determined; and SLE, systemic lupus erythematosus.

↑, increased; ↓, decreased.
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and easy to implement. Moreover, some studies focused on air
pollution particulate matters, such as PM2.5, PM10 exposure, or
simulating office working environments (72, 124, 125). These
studies are valuable for investigating environmental factors of
DED and the evaluation of related dry eye medicine therapies.

Evaporative dry eye models can be achieved by Meibomian
gland dysfunction. One type involves the closure of the
Meibomian gland orifices using electrical coagulation or light
cautery. Lipid layer deficiency indirectly leads to aqueous layer
evaporation. Usually, this type of model is combined with a low-
humidity environment or rapid airflow to enhance evaporation.
The abovementioned dysfunction of the Meibomian gland
could provide tools for evaporative DED research; however,
biochemical and biophysical differences between animal and
human meibum limit its application. Other MGD models
comprise transgenic models, such as ACAT-1, TRAF6, and Barx2
knockout mice, which exhibit the abnormal development of
meibomian glands (83, 84, 87). These models are technically
challenging, time-consuming, and expensive.

The short TFBUT-type dry eye model, with or without
decreased tear secretion, highlights the importance of tear film
stability in DED. Tear film stability is considered one of the
important factors for understanding DED (126). Zhang Y et al.
(127) developed a murine model based on graft-vs.-host disease
(GVHD). Shimizu et al. (128) evaluated TFBUT in this GVHD-
relatedmodel and observed significant differences in TFBUT, tear
secretion, and corneal fluorescein scores between the syngeneic
and GVHD groups from 9 to 12 weeks of age. Carpena-
Torres et al. (129) reported on the topical instillation of 0.2%
benzalkonium chloride for 5 consecutive days for establishing a
dry eye model. The results demonstrated a significant difference
in TFBUT before and after instillation; however, there was
no difference in tear secretion. Different dry eye models are
essential for understanding short TFBUT-type DED. Researchers
have demonstrated a higher incidence of short TFBUT and
concomitant keratoconjunctivitis in patients with thyroid eye
disease (130, 131). Thus, these models facilitate understanding
the etiology of short TBUT-type DED, particularly for patients
clinically diagnosed with DED and normal tear secretion.

Dry eye models developed from autoimmune diseases provide
insight into the immunopathogenic mechanisms of DED. NOD
mice and MRL/lpr mice are typical systemic autoimmune
disease models of Sjögren’s syndrome, presenting multiple organ
inflammatory lesions, including lacrimal gland damage that
eventually results in aqueous deficiency. Both demonstrated
significant lymphocytic infiltration of CD4+ T cells in the
lacrimal gland. Dacryoadenitis revealed a higher incidence in
male NOD mice than female mice. Compared with human
Sjögren’s syndrome, which is predominantly associated with
female predilection, tear secretion was not profound in mouse
models (57). MRL/lpr mice displayed more severe lacrimal
gland inflammation in females than in males (65). Moreover,
researchers observed a significant Th2T cell response in the
lacrimal gland of MRL/lpr mice, thus suggesting a mechanism
different from the NOD mouse model (132). Nevertheless, these
two models have been used for decades, with mature technology

and sufficient research support, which are ideal dry eye models
for DED.

This review summarized several major types of dry eye animal
models and discussed their advantages and disadvantages in
interpreting DED. This study had several limitations. It involved
a limited number of animal species. The results of animal
models differ considerably from human clinical manifestations.
Moreover, they exhibit anatomical differences in the lacrimal
gland system. Despite the variety of dry eye animal models, there
are no widely homogeneous criteria for evaluating abnormalities
of the ocular surface and the quality of tear film, thus making a
model-wise comparison difficult.

CONCLUSION

Researchers have used several dry eye animal models
in translational research, each focusing on different
pathophysiological mechanisms of DED. Of these models,
lacrimal gland excision is the easiest and most practical method,
and it is widely used in dry eye research. However, it is relatively
simple as it only reflects the aqueous deficiency component
of DED. Several dry eye models, such as NOD mice, MRL/lpr
mice, and specific transgenic models, provide researchers with
a better understanding of the underlying mechanisms of DED
and ideas for the development of novel biological treatments.
Models based on environmental stress and drug toxicity may
be more feasible for studies on real-world risk factors for DED.
However, DED in humans is usually multifactorial in nature and
involves complicated pathophysiological and immune responses.
Therefore, no single dry eye animal model can serve as the best
tool for research.
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