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Deep learning (DL) is a promising method for genomic-enabled prediction. However, 
the implementation of DL is difficult because many hyperparameters (number of hidden 
layers, number of neurons, learning rate, number of epochs, batch size, etc.) need to 
be tuned. For this reason, deep kernel methods, which only require defining the number 
of layers, may be an attractive alternative. Deep kernel methods emulate DL models 
with a large number of neurons, but are defined by relatively easily computed covariance 
matrices. In this research, we compared the genome-based prediction of DL to a deep 
kernel (arc-cosine kernel, AK), to the commonly used non-additive Gaussian kernel (GK), 
as well as to the conventional additive genomic best linear unbiased predictor (GBLUP/
GB). We used two real wheat data sets for benchmarking these methods. On average, 
AK and GK outperformed DL and GB. The gain in terms of prediction performance of 
AK and GK over DL and GB was not large, but AK and GK have the advantage that 
only one parameter, the number of layers (AK) or the bandwidth parameter (GK), has to 
be tuned in each method. Furthermore, although AK and GK had similar performance, 
deep kernel AK is easier to implement than GK, since the parameter “number of layers” 
is more easily determined than the bandwidth parameter of GK. Comparing AK and DL 
for the data set of year 2015–2016, the difference in performance of the two methods 
was bigger, with AK predicting much better than DL. On this data, the optimization of 
the hyperparameters for DL was difficult and the finally used parameters may have been 
suboptimal. Our results suggest that AK is a good alternative to DL with the advantage 
that practically no tuning process is required.

Keywords: deep learning, deep kernel, genomic selection, kernel methods, artificial neural networks,  
genomic × environment interaction
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inTrODUcTiOn
Using dense molecular markers, Meuwissen et al. (2001) were the 
first to propose genome-enabled prediction for implementing 
genomic-assisted breeding. Subsequently, an enormous number 
of research articles published in animal and plant breeding 
journals explored and studied genomic selection (GS) and 
genome-based prediction (GP) outcomes in a large variety 
of animal and plant species for different traits and measured 
in different environments (Crossa et al., 2017). GS combines 
molecular and phenotypic data in a training population to predict 
genomic breeding values (or genetic values) of individuals that 
have been genotyped but not phenotyped. The predictions can be 
used in a breeding program to reduce cycle length or to increase 
the selection precision, thus enhancing the response to selection.

GS and prediction approaches have focused on two different 
cases. One is predicting additive effects in early generations of a 
breeding program to achieve rapid selection with a short interval 
cycle (Beyene et al., 2015; Zhang et al., 2017). Here, breeders focus 
on GP of breeding values (additive values) of an infinitesimal 
model that assumes a linear function of allelic effects for an infinite 
number of loci; therefore, additive linear models that summarize 
the effects of the markers are sufficient. The most commonly 
used additive method is genomic best linear unbiased predictor 
(GBLUP/GB) (Van Raden, 2007). The other case considers the 
complete genetic values of individuals including both additive and 
nonadditive (dominance and epistasis) effects, thereby estimating 
the genetic performance of the cultivars (Crossa et al., 2017).

As pointed out by Harfouche et al. (2019), despite the fact that 
GS programs have provided extensive amounts of new data in 
crops, legumes, and tree species, the lack of predictive accuracy 
for many complex traits is underpinned by the complexity of 
modeling all of the important factors inherent to targets such 
as grain yield. Harfouche et al. (2019) mentioned that linking 
phenotypes with genotypes using high-throughput phenomics 
and genomics will continue to be the main challenge for plant 
breeding in the next decades.

The complexity of applying GS and GP in breeding is influenced 
by various factors acting at different levels. An important 
difficulty arises when predicting unobserved individuals in 
specific environments (site-year combinations) by incorporating 
genotype (genomic) × environment (G×E) interaction into 
statistical models. An additional layer of complexity is the G×E 
interactions for multitraits. Here statistical-genetic models exploit 
multitrait, multienvironment variance-covariance structures and 
correlations between traits and environments simultaneously. 
Understanding the complexity of traits requires a theoretical 
framework that accounts for often cryptic interactions.

Some of the statistical complexities can be addressed by 
using semiparametric genomic regression methods to account 
for nonadditive variation (Gianola et al., 2006; Gianola et al., 
2011; Morota and Gianola, 2014; Morota et al., 2014). These 
methods have been used to predict complex traits in wheat with 
promising practical results (González-Camacho et al., 2012; 
Pérez-Rodríguez et al., 2012). Semiparametric models often use 
kernel methods (a kernel utilizes functions that represent the 
inner product of many basic functions) for addressing complex 

gene actions (e.g., gene×gene epistatic interactions), thus 
capturing nonlinear relations between phenotype and genotype. 
Kernel-based methods for genomic regression have been used 
extensively in animal and plant breeding due to their capacity to 
produce reasonably accurate predictions (Gianola et al., 2014).

A commonly used kernel is the Gaussian kernel (GK) defined 
as exp( / )'−hd qii

2 , where h is a bandwidth parameter which controls 
the rate of decay of the covariance between genotypes, and q is the 

median of the square of the Euclidean distance, d x xii ik i k
k

' '( )2
2

= −∑  

which is a measure of the genetic distance between individuals (i,i’) 
based on molecular markers. The parameter q could also be included 
in the bandwidth parameter h, but standardizing the Euclidean 
distances by q makes it easier to apply a standardized grid search 
when looking for the optimal h. The GK appears as a reproducing 
kernel in the semiparametric reproducing kernel Hilbert spaces 
(RKHS) (Gianola and van Kaam, 2008; González-Camacho et al., 
2012). Pérez-Elizalde et  al. (2015) proposed an empirical Bayes 
method for estimating the bandwidth parameter h. An alternative 
approach to using a kernel with specific bandwidth parameters is 
the multikernel fitting proposed by de los Campos et al. (2010). 
Cuevas et al. (2016; 2017; 2018) and Souza et al. (2017) showed that 
using the GK within the multienvironment genomic G×E model 
of Jarquín et al. (2014) led to higher prediction accuracy than the 
same method with the linear kernel GB. Parametric alternatives for 
modeling epistasis have also been broadly discussed in literature 
(Jiang and Reif, 2015; Martini et al., 2016).

Deep learning (DL) methods are very flexible and have the 
potential to adapt to complex potentially cryptic data structures. In 
general, DL architectures are composed of three types of layers: (1) an 
input layer corresponding to the input information (predictors, 
that is, markers); (2) hidden layers, that is, the number of internal 
transformations performed on the original input information, 
which can be at least one but also a larger number; however, the 
number of neurons in each hidden layer needs to be tuned or 
specified; and (3) the output layer that produces the final predictions 
of the response variables we are interested in. Montesinos-López 
et al. (2018a; 2018b; 2019a; 2019b) recently performed extensive 
studies using DL methods for assessing GP for different types of 
traits (continuous, ordinal, and binary) accounting (or not) for G×E 
and comparing their prediction accuracies with those obtained by 
GB for single environments and multiple environments (with G×E). 
The authors used data from extensive maize and wheat multitrait, 
multienvironment trials. DL produced similar or slightly better 
prediction accuracies than GBLUP when G×E was not considered, 
but it was less accurate when G×E was included in the model. The 
authors hypothesized that DL may already account for G×E, so that 
its inclusion in the model was not required. Overall, the current 
drawback of applying DL for GP is the lack of a formal method 
for defining hyperparameters (e.g., number of neurons, number of 
layers, batch size) and, therefore, the time required for parameter 
tuning. Moreover, there may be an increased tendency towards 
overfitting the training data, and when important data features such 
as G×E interaction are known, direct modeling may lead to better 
predictions than modeling the structures implicitly in DL.

Recently, Cuevas et al. (2019) introduced the positive-definite 
arc-cosine kernel (AK) function for genome-enabled prediction. 
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The AK was initially proposed by Cho and Saul (2009) for exploring 
the option of DL in kernel machines. The nonlinear AK is defined 
by a covariance matrix that emulates a DL model with one hidden 
layer and a large number of neurons. Moreover, a recursive formula 
allows altering the covariance matrix stepwise, thus adding more 
hidden layers to the emulated deep neural network. The AK kernel 
method has been used in genomic single-environment models, as 
well as for genomic multienvironment models including genomic × 
environment interaction (G×E) (Cuevas et al., 2019). AK has the 
advantage over GK that it is computationally much simpler, since 
no bandwidth parameter is required, while performing similarly 
or slightly better than GK. The tuning parameter “number of 
layers” which is required for AK can be determined by a maximum 
marginal likelihood procedure (Cuevas et al., 2019).

Although AK has already been compared with GK (Cuevas 
et al., 2019), AK has not been formally compared with DL methods. 
Therefore, the main objective of this study was to compare the 
genome-based prediction accuracy of the GB, GK, AK, and 
DL methods using single-environment and multienvironment 
G×E models on two data sets from the CIMMYT Global Wheat 
Program. The data sets comprised two years (2015–2016 and 
2016–2017) of Elite Yield Trial data, each consisting of 1052 and 
1040 elite wheat lines, respectively. Lines of both Elite Yield Trials 
were evaluated in four environments using two irrigation levels [5 
irrigations, 5IR, and 2 irrigations, 2IR] and two planting systems 
(flat, F, and bed, B) reflecting mega-environments defined by 
breeders in South Asia and Mexico.

MaTeriaL anD MeThODS

Genome-Based Prediction Models
The statistical methods used in this study have been described 
in several articles (Cuevas et al., 2016; Cuevas et al., 2017; Souza 
et  al., 2017; Cuevas et al., 2018) for the single-environment model 
and the multienvironment G×E models using the GB and the 
GK. In addition, AK has recently been described in Cuevas et al. 
(2019). A brief description of the models (single-environment and 
G×E models) and methods (GB, GK, AK, and DL) is given below.

Single-Environment and Multiple-Environment G×E 
Models
For a single environment and only one kernel, the model can be 
expressed as:

 y u= + +µ1 εε  (1)

where µ is the overall mean, 1 is the vector of ones, and y is 
the vector of observations of size n. Moreover, u is the vector 
of genomic effects u N K~ ( , )0 σu

2 , where σu
2 is the genomic 

variance estimated from the data, and matrix K is constructed as 
K Z GZ= g g

' , with matrix Zg a matrix of 0s and 1s with exactly one 
1 in each row, and which relates the genotypes to the observations. 
The covariance matrix G models the genomic similarities 
between genotypes and varies between models: GB (G=XX’/p) 
(where X is the scaled marker matrix and p denotes the number 
of markers); GK (G hd qii ii' 'exp( / )= 2  where d x xii ik i k

k
' '( )2 2= −∑ ); 

and AK (see the description below). The random residuals are 
assumed independent with normal distribution εε ~ ( , )N I0 σ ε

2 , 
where σ ε

2 is the error variance.
In the G×E multienvironment model of Jarquín et al. (2014), 

Lopez-Cruz et al. (2015), and Cuevas et al. (2016), Eq. (1) takes 
the form

 y Z u u= + + + +µ ε1 E Eββ 1 2  (2)

where y=[y1, ,ynm]’ are the observations collected in each of the 
m sites (or environments) with n lines in each site. The fixed 
effects of the environment are modeled with the incidence matrix 
of environments ZE, where the parameters to be estimated are 
the intercept for each environment βE (other fixed effects can be 
incorporated into the model). In this model, u N K1

2
11

~ ,0 σu( ) 
represents the genomic main effects, σui

2  is the genomic variance 
component estimated from the data, and K Z GZ1 = g g

' , where 
Zg relates the genotypes to the phenotypic observations. The 
random effect u2 represents the interaction between the genomic 
effects and their interaction with environments and is modeled 
as u N K2

2
22

~ ,0 σu( ), where K Z GZ Z Z2 = ( )°g g E E
' '( ), where ° is the 

Hadamard product.

AK Method
DL architectures are generally difficult to tune. The tuning 
process involves, for instance, selecting the activation function, 
determining the number of hidden layers and the number 
of neurons in each hidden layer, and selecting the type of 
regularization. For this reason, Neal (1996) proposed a Bayesian 
method for deep artificial neural networks (ANN with more 
than one hidden layer), also called simple DL models, and, in 
conjunction with the results of Williams (1998) and Cho and 
Saul (2009), established the relationship between the AK and 
the deep neural networks with one hidden layer. These authors 
proposed a family of kernels that emulate DL models.

For AK, an important component is the angle between two 
vectors computed from marker genotypes xi xi, as

 
   cos

|| |||| ||,θi i
i i

i i
′

′

′

−=






⋅1 x x
x x  

where ˙ denotes the inner product and ||xi|| is the norm of line 
i. The following kernel is positive semidefinite and related to an 
ANN with a single hidden layer and the ramp activation function 
(Cho and Saul, 2009)

 AK1 1( , ) || |||| || ( )' ' , 'x x x xi i i i i iJ=
π

θ  (3)

where π is the pi constant and J(θi,i’)=[sin(θi,i’)+(π-θi,i’)cos(θi,’i)]. 
Equation (3) gives a symmetric positive semidefinite matrix 
(AK1) preserving the norm of the entries such that AK(xi, 
xi)=||xi||2, and AK(xi, - xi)=0 and models nonlinear relationships.

Note that the diagonal elements of the AK matrix are not 
identical and express heterogeneous variances of the genetic 
values u. This is different from the GK matrix, with a diagonal that 
expresses homogeneous variances. This property could represent 
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a theoretical advantage of AK when modeling interrelationships 
between individuals.

In order to emulate the performance of an ANN with more 
than one hidden layer (l), Cho and Saul (2009) proposed a 
recursive relationship of repeating l times the interior product

 AK AK AKl
i i

l
i i

l
i i

( ) ( )( ) ( ), [ , , ]+ ( )
′ ′ ′= ( )1

11x x x x x x
π

22   ( ), '
( )J i i
lθ  (4)

where θi i
l l

i i
l

i i
lAK AK AK, '

( ) ( ) ( ) ( )cos { , [ ,( ) ( ) (= −
′

1 x x x x xx x′ ′
−

i i, ] })
1
2 . Thus, 

computing AK(l+1) at level (layer) l+1 is done from the previous 
layer AK(l). Computing a bandwidth is not necessary, and the only 
computational effort required is to compute the number of discrete 
layers. Cuevas et al. (2019) described a maximum marginal likelihood 
method used to select the number of hidden layers (l) for the AK kernel.

DL Neural Network
The DL for a single trait, including the multienvironment 
G×E situation employed in this study, follows the approach 
delineated by Montesinos-López et al. (2018a). In DL, the 
input to the model is a vector space that is subject to several 
complex geometric transformations that decompose into simple 
geometric transformations. The main objective of these geometric 
transformations is to map the input space to the target output 
space where the transformations are parameterized by the weight 
of the input at each neuron in each layer. A brief description of 
the process for tuning DL and for model selection is provided.

The implemented DL has a feedforward topology in which 
the information moves in only one direction (i.e., forward) from 
the input nodes (representing prediction variables), through 
the hidden nodes (located in hidden layers), and to the output 
nodes (representing target variables). There are no cycles or loops 
in this network. The three groups of nodes in this DL model are 
called layers. When the DL model has only one hidden layer, 
it reduces to a conventional artificial neural network. The lines 
connecting the input layer neurons, hidden layer neurons, and 
output layer neurons represent the network weights which need 
to be learned. From all input connections, the hidden neuron 
sums up the corresponding weight so the weighted summation is 
then transformed through an activation function to produce the 
output of each neuron. The activation functions play an important 
role in transforming the input and output of hidden layers so they 
come out in a more useful form (Chollet and Allaire, 2017).

We used the rectified linear unit (RELU) as the activation 
function for all neurons in the hidden and output layers because 
our response variables are continuous. In addition, we used 
a batch size of 56 for implementing the DL model with 1,000 
epochs. One epoch means one pass (forward and backward) of 
the full training set through the neural network, and to complete 
an epoch, we required a certain number of iterations calculated 
as the size of the training set divided by 56 (batch size). We used 
the R statistical software (R Core Team, 2019) for implementing 
all the models, and the DL model was implemented in the keras 
library (Chollet and Allaire, 2017). In keras we used the root-
mean-square propagation (RMSprop) method with its default 
values as an optimizer. Also, to avoid overfitting we used dropout 

regularization, which consists of temporarily removing a random 
subset (%) of neurons with their connections during training.

For selecting the number of hidden layers, the number of units 
(neurons) in each hidden layer and the % dropout that needs to 
be defined, we used a grid search method. In grid search, each 
hyperparameter of interest is discretized into a desired set of 
values to be studied, and models are trained and assessed for all 
combinations of the values across all hyperparameters (that is, a 
“grid”). The grid search looked for the optimal combination of 
these three hyperparameters; the values used in the grid were 1, 
2, 3, and 4 hidden layers. With regard to the number of units, we 
tried 80, 160, 240, 320, and 400 units, while for the % dropout (% 
neurons removed from the DL network), we tried 0%, 5%, 10%, 
20%, 25%, and 35%. To select the optimal combination of these 
three hyperparameters, we implemented a fivefold cross-validation. 
After obtaining the optimal combination of hyperparameters, the 
model was refitted using the complete training data.

random cross-Validations for assessing 
Model Prediction accuracy
The cross-validation strategy used in this study was a fivefold random 
cross-validation where 20% of the wheat lines were predicted by 
80% of the other lines. This is the random cross-validation CV2 
(Burgueño et al., 2012) that mimics a prediction problem faced by 
breeders in incomplete field trials where lines are evaluated in some, 
but not all, target environments (usually called sparse testing, when 
not all breeding lines are included for testing in all the environments). 
In this case, 20% of the lines are not observed in some environments 
and thus predicted in those environments, but are observed in other 
environments. When the main purpose of the model is prediction, 
a reasonable criterion of model quality is the mean squared error 
of prediction (MSEP) that measures the mean squared distance 
between the prediction value and the observed value.

Predictions were made for each environment for both the single-
environment model (G) and the G×E multienvironment model, 
using GB, GK, and AK constructed with molecular markers. To 
make the models comparable in their prediction accuracy as well 
as their computing time, exactly the same random cross-validations 
were used for the four methods: GB, GK, AK, and DL.

experimental Data
We used data from CIMMYT’s Global Wheat Program 
(GWP) consisting of a set of elite wheat lines evaluated under 
differently managed environmental conditions at CIMMYT’s 
main wheat breeding experiment station in Cd. Obregon, 
Mexico. These environmental conditions simulated target areas 
of megaenvironments for the CIMMYT GWP. The wheat lines 
included in this study were later included in screening nurseries 
that were distributed worldwide.

Phenotypic Data
The phenotypic data consist of grain yield (ton/ha) records 
collected during two evaluation years (year 2015–2016 including 
1,052 elite wheat lines, and year 2016–2017 including 1,040 elite 
wheat lines). All trials were established using an alpha-lattice 
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design with three replicates per line and environment. Each 
environment was defined by a combination of a planting 
system (BED = bed planting; FLAT = planting on the flat) and 
an irrigation intensity (2IR = two irrigations giving moderate 
drought stress; 5IR = five irrigations representing an optimally 
irrigated crop). In the 2IR and 5IR regimes, irrigation was applied 
without measuring soil moisture, and each irrigation added 
100 mm of water. Thus, for each of the years (2015–2016 and 
2016–2017), four environments BED5IR, FLAT5IR, BED2IR, 
and FLAT2IR were established. The phenotype used in the 
analysis was the best linear unbiased estimate (BLUE) of grain 
yield obtained from a linear model applied to the alpha-lattice 
design of each year-environment combination. The data included 
in the present study represent two years of field trials under the 
same environmental conditions and using similar experimental 
designs. However, the wheat lines included in both data sets 
are different and the environmental conditions of the two years 
were relatively different during the growing season. We therefore 
decided not to consider a joint analysis of the two data sets.

Genotypic Data
Genotypes were derived using genotyping-by-sequencing 
technology (GBS; Poland et al., 2012). GBS markers with a minor 
allele frequency lower than 0.05 were removed. As is typical of 
GBS genotypes, all markers had a high uncalling rate. In our 

quality control pipeline, we applied thresholds for the incidence 
of missing values aimed at maintaining relatively large and similar 
numbers of markers per data set. We removed markers with more 
than 60% missing values; this left 15,744 GBS markers available 
for analysis. Finally, only lines with more than 2,000 called GBS 
markers were used in the data analysis; this left 515 and 505 wheat 
lines in years 2015–2016 and 2016–2017, respectively.

Data repository
The phenotypic and genotypic data for both data sets, year 2015–
2016 and year 2016–2017, are available at the following link: 
http://hdl.handle.net/11529/10548273. Furthermore, basic codes 
for running the DL and AK kernel methods can be found in the 
Appendix.

reSULTS

Phenotypic Data
A box plot of the grain yield of the four environments in each of the 
years (2015–2016 and 2016–2017) is displayed in Figures 1A, B. The 
two irrigated environments (BED5IR and FLAT5IR) in year 2015–
2016 had similar productivity as in year 2016–2017, but the two 
drought environments (BED2IR and FLAT2IR) produced less grain 
yield in year 2015–2016 than in year 2016–2017, reflecting the year 

FiGUre 1 | Box plot of grain yield (ton/ha) for four environments (BED5IR, FLAT5IR, BED2IR, and FLAT2IR) for (a) year 2016–2017 and (B) year 2015–2016.

Frontiers in Genetics | www.frontiersin.org December 2019 | Volume 10 | Article 1168

http://hdl.handle.net/11529/10548273
https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Deep Kernels for Genomic SelectionCrossa et al.

6

effect in the drought environments. The narrow-sense heritabilities 
based on the full model in Eq. (2) for grain yield of environments 
in year 2015–2016 were BED5IR=0.595, FLAT5IR=0.446, 
BED2IR=0.590, and FLAT2IR=0.744, and for environments in 
year 2016–2017 the narrow-sense heritability were BED5IR=0.547, 
FLAT5IR=0.603, BED2IR=0.565, and FLAT2IR=0.500.

In general, the phenotypic correlations between the four 
environments in each year were low except for the two drought 
environments BED2IR and FLAT2IR (0.609 in year 2015–2016 
and 0.585 in year 2016–2017) (Table 1). The phenotypes of 
environment FLAT5IR were correlated with those obtained in 
environments BED2IR and FLAT2IR in year 2016–2017 at ~0.44. 
The narrow-sense heritability of grain yield in all environment 
and year combinations was relatively high. Note that these 
heritability estimates were obtained using genomic markers for 
the single-environment and the multienvironment models. The 
heritability of grain yield for years 2016–2017 and 2015–2016 
across all four environments were 0.72 and 0.82, respectively. 
The heritability for year 2016–2017 for the four environments 
ranged from 0.50 (FLAT2IR) to 0.60 (FLAT5IR), whereas for 
year 2015–2016, the heritability was 0.45 for FLAT5IR and 0.59 
for BED5IR.

Genome-Based Prediction of the Single-
environment and Multienvironment Models
The results for year 2016–2017 for single-environment and 
multienvironment accuracies are shown in Table 2 and 
Figure 2, whereas results for year 2015–2016 for single-
environment and multienvironment accuracies are shown in 
Table 3 and Figure 3.

Year 2016–2017 Single-Environment Accuracy
The range of MSEP for the single-environment model (G) was 
between 0.0718 (AK for FLAT2IR) and 0.3883 (DL for FLAT2IR) 
(Table 2 and Figure 2). Of the four methods implemented 
(GB, GK, AK, and DL), and the four environments, we found 
that the lowest MSEPs were obtained with the AK method in 
three environments, BED5IR, BED2IR, and FLAT2IR and the 
worst predictions were obtained with DL (except for FLAT5IR, 
where the best model was DL). The second best model was 
GK, which performed very similarly to AK (Table 2) for all 
the environments. Environments FLAT5IR and BED2IR had 
the same MSEP for both GK and AK (0.2297 and 0.0914, 
respectively).

The average MSEP for method GB was higher than for 
methods GK and AK, and the average MSEP of DL was also 
higher than that of any of the other three methods for all 
environments, except for environment FLAT5IR, where DL had 
the best prediction accuracy with an MSEP of 0.1589 (Table 2 
and Figure 2B). In addition, it is clear from Figure 2C that 
for environment BED2IR, the four methods had very similar 
prediction accuracies for the single-environment model (G) 
(GB=0.0977, GK=0.0914 AK=0.0914, and DL=0.1110).

Year 2016–2017 Multienvironment Accuracy
The best method in terms of MSEP was GK for all the environments 
under the G×E genomic model, while the lowest MSEP of 0.0624 
was for environment FLAT2IR. The environment with the highest 
average MSEP was FLAT5IR for the DL method (0.2797) (Table 2 
and Figure 2). The AK kernel closely followed GK in terms of MSEP 
accuracy, ranging from 0.0625 (FLAT2IR) to 0.2048 (FLAT5IR). 
Methods GB and DL were the worst in terms of MSEP accuracy. 
Interestingly, except for GB, GK, and AK for environment BED5IR, 
and DL for environment FLAT5IR, the MSEP for model E+G+GE 
were smaller than the MSEP for model G for all four methods. 
The models including G×E are more precise than those including 
only the genomic effect (G), regardless of the method used. The 
differences between MSEP of method DL versus the MSEP of 
the other methods were much less for the E+G+GE model than 
those found for the single-environment model and especially for 
environments BED5IR and FLAT2IR, where the DL methods had 
high values for MSEP (see Figures 2A, D).

TaBLe 2 | Average mean-squared-error prediction (MSEP) for year 2016–2017 of single environment (G) and multienvironment G×E models (E+G+GE) for predicting 
each environment comprising a combination of irrigation level (five irrigation, 5IR; two irrigations, 2IR) under two planting systems (FLAT and BED) for methods GBLUP 
(GB), Gaussian kernel (GK), arc-cosine (AK), (l is the number of layers of the deep kernel), and deep learning (DL).

GB GK aK DL

Model environment MSeP MSeP MSeP l MSeP

E+G+EG BED5IR 0.1719 (0.006) 0.1656 (0.009) 0.1659 (0.009) 1 0.1924 (0.010)
E+G+EG FLAT5IR 0.2144 (0.025) 0.2040 (0.028) 0.2048 (0.028) 1 0.2797 (0.018)
E+G+EG BED2IR 0.0867 (0.009) 0.0807 (0.008) 0.0811 (0.008) 1 0.1066 (0.004)
E+G+EG FLAT2IR 0.0669 (0.007) 0.0624 (0.007) 0.0625 (0.007) 1 0.0977 (0.007)

G BED5IR 0.1627 (0.019) 0.1545 (0.019) 0.1544 (0.019) 5 0.3806 (0.012)
G FLAT5IR 0.2415 (0.033) 0.2297 (0.037) 0.2297 (0.038) 4 0.1589 (0.013)
G BED2IR 0.0977 (0.010) 0.0914 (0.008) 0.0914 (0.008) 5 0.1110 (0.003)
G FLAT2IR 0.0749 (0.012) 0.0723 (0.011) 0.0718 (0.011) 5 0.3883 (0.012)

Average 0.1396 0.1326 0.1327 – 0.2144

TaBLe 1 | Phenotypic correlations among four environments (BED5IR, BED2IR, 
FLAT5IR, and FLAT2IR) based on grain yield for year 2016–2017 (upper triangle) 
and year 2015–2016 (lower triangle).

Lower triangle\ 
upper triangle

BeD5ir FLaT5ir BeD2ir FLaT2ir

BED5IR 1.000 0.098 0.131 0.006
FLAT5IR 0.260 1.000 0.443 0.446
BED2IR 0.214 0.093 1.000 0.585
FLAT2IR 0.094 0.113 0.609 1.000
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FiGUre 2 | Mean squared error of the prediction for year 2016–2017 for single environment (G) and multienvironment (E+G+GE) models with kernels GB, GK, and 
AK and the deep learning (DL) method for environments (a) BED5IR, (B) FLAT5IR, (c) BED2IR, and (D) FLAT2IR.

TaBLe 3 | Average mean-squared-error prediction (MSEP) for year 2015–2016 of single environment (G) and multienvironment G×E models (E+G+GE) for predicting 
each environment comprising a combination of irrigation level (five irrigation, 5IR; two irrigations, 2IR) under two planting system (FLAT and BED) for methods GBLUP 
(GB), Gaussian kernel (GK), arc-cosine (AK), (l is the number of layers of the deep kernel), and deep learning (DL).

GB GK aK DL

Model environment MSeP MSeP MSeP l MSeP

E+G+EG BED5IR 0.1048 (0.009) 0.1007 (0.010) 0.1007 (0.010) 1 0.2403 (0.007)
E+G+EG FLAT5IR 0.1898 (0.032) 0.1719 (0.032) 0.1729 (0.032) 1 0.3749 (0.023)
E+G+EG BED2IR 0.0632 (0.004) 0.0601 (0.004) 0.0601 (0.004) 1 0.1355 (0.011)
E+G+EG FLAT2IR 0.1349 (0.012) 0.1318 (0.012) 0.1321 (0.012) 1 0.2931 (0.009)

G BED5IR 0.1095 (0.011) 0.1031 (0.011) 0.1036 (0.012) 5 0.3307 (0.0124)
G FLAT5IR 0.1901 (0.010) 0.1819 (0.012) 0.1792 (0.013) 4 0.4316 (0.025)
G BED2IR 0.0729 (0.011) 0.0690 (0.010) 0.0693 (0.010) 5 0.1495 (0.008)
G FLAT2IR 0.1415 (0.012) 0.1369 (0.008) 0.1377 (0.007) 5 0.2452 (0.009)

Average 0.1288 0.1194 0.1195 – 0.2751
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Year 2015–2016 Single-Environment Accuracy
Genome-enabled predictive abilities for the single-
environment and multienvironment G×E models are given 
in Table 3 and Figure 3. For the single-environment models 
(G), GK had the lowest MSEP in three environments (0.1031 
for BED5IR, 0.0690 for BED2IR, and 0.1369 for FLAT2IR) 
but not for FLAT5IR, where AK was best (Figure 3B). The 
prediction accuracy of the linear kernel GB was lower than 
that of the nonlinear kernels (GK and AK), ranging from 
0.0729 in BED2IR to 0.1901 in FLAT5IR. The DL accuracies of 
genome-based prediction were the worst, ranging from 0.1495 
in BED2IR to 0.4316 in FLAT5IR.

Figure 3 illustrates that the prediction accuracy of DL was not 
competitive with that of the other methods, which showed a very 
similar MSEP. The values of MSEP in environment BED2IR were 
the lowest across all the environments. The highest MSEP values 
were found in environment FLAT5IR.

Year 2015–2016 Multienvironment Accuracy
The best model in terms of MSEP was GK in all the environments 
under the G×E genomic model, with the lowest MSEP of 0.0601 in 
environment BED2IR. The environment with the highest average 

MSEP was FLAT5IR for the DL method (0.3749) (Figure 3B). 
AK had, together with GK, the two best prediction accuracies, in 
BED5IR (0.1007) and in BED2IR (0.0601) (Table 3). As already 
mentioned, kernel GK was also the best in FLAT5IR and in 
FLAT2IR (0.1318). Similar to previous cases, methods GB and 
DL were the worst in terms of MSEP accuracy. Results show that 
in all four environments except for FLAT2IR and DL, the MSEP 
for model E+G+GE were smaller than the MSEP for model G, for 
all four methods. The models including G×E were more precise 
than those that only included the genomic effect G.

Furthermore, in general, genome-based accuracy for year 
2016–2017 was lower than genomic accuracy computed in year 
2015–2016 (Figure 2 vs. Figure 3). The DL method seemed to 
have more difficulties for learning from the data of year 2015–
2016 than from the data of year 2016–2017. This may be partially 
due to the year effect and to the difficulty of optimizing the 
hyperparameters of the DL method in this year.

DiScUSSiOn
The two data sets included in this study represent two years of data 
with different wheat lines included in each year, but evaluated 

FiGUre 3 | Mean squared error of the Prediction for year 2015–2016 for single environment (G) and multienvironment (E+G+GE) models with kernels GB, GK, and 
AK and the deep learning (DL) method for environments (a) BED5IR, (B) FLAT5IR, (c) BED2IR, and (D) FLAT2IR.
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under the same experimental environments. Results show that 
the prediction accuracy of the same models, for instance DL, 
were very different across years. This may be a result of the 
different lines used in the two data sets, but more likely the year 
effects and differences in the G×E interaction. Using the average 
performance of the lines in each year and performing a two-
year analysis may confound the year effect with the different line 
effects in each year. In order to avoid this possible confounding 
effect, we performed genomic G×E analyses across environments 
within each year.

DL Method
DL is a branch of machine learning inspired by the functioning of 
the human brain. It is helping to automate many tasks that until 
some time ago only humans were able to perform (e.g., artificial 
intelligence and autonomous driving). Applications of DL are 
found in many domains, from social sciences to natural sciences. 
It is used for classifying exoplanets in astrophysics, for selecting 
human resources in enterprises, for detecting frauds in banks, 
and for detecting and classifying many types of cancers, among 
other things (Chollet and Allaire, 2017). In plant breeding, DL has 
been used to predict phenotypes of hybrids or lines for which only 
genomic information is available (Montesinos-López et al., 2018a; 
Montsinos-López, 2018b; Montsinos-López, 2019a; Montsinos-
López, 2019b). However, the training process of DL models is 
challenging because successful implementation requires large data 
sets and a tuning process of many hyperparameters (number of 
hidden layers, number of neurons in each layer, type of activation 
function, number of epochs, batch size, learning rate, optimizer, 
etc.). For this reason, when a data set is not large enough, DL training 
is cumbersome and difficult, because part of the training data must 
be used to select the optimal combination of hyperparameters.

DL algorithms are flexible and generic and have attracted the 
interest of researchers working on genome-based predictions. 
However, the predictive ability of DL versus GBLUP has not 
been very convincing and not well studied, as pointed out by 
a recent review by Pérez-Enciso and Zingaretti (2019). Those 
authors mentioned that initial shallow single-layer neural 
networks are very competitive with penalized linear methods. 
However, what has not been addressed are the main difficulties 
of DL methods when appropriately tuning the hyperparameters 
and finding an optimal combination of them in order to achieve 
good genomic-enabled prediction accuracy without overfitting 
the data. In this study, authors have dedicated important efforts 
to fitting DL to the two data sets; however, the tuning process 
has been very difficult and cumbersome, and the results were 
not completely satisfying. Especially for the data set of the 
wheat lines from 2015–2016, the prediction accuracy was 
much smaller for DL than for any of the other models. We 
can speculate that investing a significant amount of extra time 
would have led to another set of hyperparameters resulting in 
better prediction accuracy.

Optimization of the DL algorithm
The network implemented in this study has no cycles or loops 
but is a feedforward topology where information moves in 

only one direction (forward) from the input nodes (prediction 
variables), through the hidden nodes, and to the output nodes 
(target variables). As previously described (see the Material and 
Methods section), we performed, for each of the 50 random 
partitions of the data, an optimization process for selecting the 
hyperparameters consisting of a grid search method to select 
the “optimal” set of hyperparameters for that specific partition 
of the random cross-validation; therefore, it was not possible 
to give one unique final set of estimated hyperparameters for 
implementing the DL method. Furthermore, the genomic-
enabled prediction accuracy of the DL method will change for 
every random partition of the data due to the different ranges of 
the estimated hyperparameters.

Therefore, since the tuning of the DL algorithm is complex 
and biased for the different range of values of hyperparameters 
obtained in each of the 50 random partitions, it is reasonable to say 
that the optimization process for selecting the hyperparameters 
is suboptimal. This is related to the fact that the optimization 
process does not guarantee finding a global minimum but may 
end at a local minimum. This circumstance makes it difficult to 
tune DL methods.

Deep Kernel Method
Due to the abovementioned difficulties, deep kernel methods 
that imitate DL methods are an appealing alternative 
because deep kernels also capture nonlinearity and complex 
interactions but do not need a complex tuning process, as 
does conventional DL. The kernel function induces nonlinear 
mapping from inputs x to feature vectors Ф(xi) by using the 
kernel trick function: k(xi, xi)=Ф(x)·(xi’) that mimics a single 
hidden layer or ANN model. Therefore, the iterated mapping 
of the following equation:

 k l
i i i

l times
( )

 

( ), ( ( ( ))  x x x′ = …Φ Φ Φ Φ
  

· (( ( ( )))
 

Φ Φ… ′xi

l times
    (5)

emulates the computation of a DL model (ANN with more 
hidden layers) where “·” represents the inner product. However, 
this iterative mapping does not lead to interesting results in 
linear kernels [k(xi,xi’)= xi·xi’], homogeneous polynomial kernels 
[k(xi,xi’)= (xi·xi’)d] and Gaussian kernels [ , ]k ei i

i ix x x x
′

− −( ) = λ ´ 2  
(Cho and Saul, 2009). Applying the exponential function twice 
leads to a kernel which is different from GK, but the qualitative 
behavior will not be changed (Cho and Saul, 2009). However, in the 

AK, the recursion   , ( ( ( ))) ( )( )k l
i i i

l

x x x′ = …Φ Φ Φ
 times

  

·· Φ Φ Φ( ( (  )))… ′xi

l  times
  

,  
also alters the kernel qualitatively and mimics an ANN with 
more than one hidden layer. The results we obtained with 
AK were similar to those obtained with GK, but with the 
main advantage that a complex tuning process for choosing 
the bandwidth  parameter  across a grid is not required. We 
also  found  that GK and AK outperformed the DL method, 
which might be due to the fact that our data sets are not 
large enough for  successful training of DL and that the main 
interaction structures within the data were known (G×E) and 
thus modeled directly.
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It is important to point out that the AK deep kernel method 
is not completely exempt from a tuning process, since one 
needs to define the depth of the kernel (equivalent to the 
number of hidden layers). However, choosing such values 
is straightforward, since we only need to choose integers 1, 
2, 3, 4, 5, etc. (Cho and Saul, 2009). We used the maximum 
marginal likelihood proposed by Cuevas et al. (2019) to select 
this parameter. As has been the case in many other studies, our 
results are not definitive, since we only compared the methods 
with two real data sets. For this reason, we encourage other 
scientists to do this benchmarking process with other types 
of data in order to increase the evidence of the prediction 
performance of these methods. Although our results are not 
conclusive, there is evidence that the AK (deep kernel) method 
competes well with DL and the GK, but with the main advantage 
that the tuning process is considerably less costly. For example, 
for cycle 2016–2017 with a marker matrix of 1040×8311, 
the average time for computing the squared distance for the 
basic GK was 105 s, whereas the computing time (using the 
same server) for the basic deep kernel AK1 (one layer) was 
7 s. Similarly, the average computing time for selecting the 
bandwidth h for GK was, for each partition, 80 s. In contrast, 
the average time for selecting the number of layers for AK was 
10 s. These differences increase (or decrease) exponentially as 
the size of the matrices to be used increases (or decreases). This 
advantage means that the AK method can be implemented in 
many statistical or machine learning software even by users 
with no background in statistics, computer science, or machine 
learning. The deep kernel method can be implemented and 
used more easily than DL models.

On the Marginal Likelihood and the 
number of hidden Layers (Or Levels) of 
the aK Deep Kernel Method
To illustrate how the marginal likelihood changed with the 
number of hidden layers used in the AK deep kernel, we give 
the example of the marginal likelihood of the observations for 
environment BED5IR for year 2016–2017 for layers (l) 1 to 8. 
The corresponding values were -2109.017, -2104.825, -2102.632, 
-2101.585, -2101.228, -2101.305, -2101.669, and -2102.232, 
respectively. The maximum likelihood is reached at l=5 
(-2101.228). Note that for method GB, the marginal likelihood is 

-2116.175, which is even lower than the first level (l=1) of the AK 
deep kernel (-2109.017).

cOncLUSiOnS
We performed a benchmarking study comparing a DL model 
with the AK deep kernel method, with the conventional GBLUP 
and with the nonlinear GK. We found that AK and GK performed 
very similar, but when taking the G×E interaction into account, 
GK constantly predicted best across all four environments and 
with both data sets. In general, AK and GK were better than 
GBLUP and DL. Our findings suggest that AK is an attractive 
alternative to DL and GK, since it offers competitive predictions 
at low costs in the tuning process. AK is a computationally simple 
model that makes it possible to emulate the behavior of DL 
networks with a large number of neurons. In general, the results 
of this study with respect to DL are not conclusive because the 
low performance of DL for year 2015–2016 may be partially a 
result of suboptimal hyperparameters.
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aPPenDiX

Basic codes for aK
######## Equation (3)
### AK1.fun:Build the base kernel (AK1) of AK with level one
AK1.fun<-function(X){
     n<-nrow(X)
     cosalfa<-cor(t(X))
     angulo<-acos(cosalfa)
     mag<-sqrt(apply(X,1,function(x) crossprod(x)))
     sxy<-tcrossprod(mag)
     AK1<-(1/pi)*sxy*(sin(angulo)+(pi*matrix(1,
n,n)-angulo)*cosalfa)
     AK1<-AK1/median(AK1)
     colnames(AK1)<-rownames(X)
     rownames(AK1)<-rownames(X)
     return(AK1)
      }  
#######  ### marg.AK function: Select the optimal recursion 
level 
marg.AK <- function(y,AK1,ml){
            lden.fun<-function(phi,nr,Uh,Sh,d){
            lden  <- -1/2*sum(log((1+phi*Sh)))-(nr-1)/2*log(sum(d^2/
((1+phi*Sh))))
            lden <- -(lden)
            return(lden)
            }
           vero<-function(y,GC) {          
           Kh <- GC
           eigenKh <- eigen(Kh)
           nr<- length(which(eigenKh$val>1e-10))
           Uh <- eigenKh$vec[,1:nr]
           Sh <- eigenKh$val[1:nr]
           d <- t(Uh)%*%scale(y,scale=F)
           sol <-optimize(lden.fun,nr=nr,Uh=Uh,Sh=Sh,d=d,lower=
c(0.0005),upper=c(200))
           phi<-sol[[1]]
           log.vero<--1/2*sum(log((1+phi*Sh)))-(nr-1)/2*log(sum(d^2/
((1+phi*Sh))))
           return(log.vero)
           }
           GC<-AK1
           l<-1
           GC2<-GC
           vero1<-vero(y=y,GC=GC2)
           m<-0
           while( m==0 && (l<ml)){
                l<-l+1
                GC<-AK.fun(AK1=GC2,nl=1)
                GC2<-GC
                vero2<-vero(y=y,GC=GC2)
                if(vero2<vero1) m=1
                vero1<-vero2
                }
          return(l-1)
          }
######### Equation (4)

### Kernel.function: Build the AK kernel, with the base kernel 
(AK1) and the recursion level (nl)
AK.fun<-function(AK1,nl){
    n<-nrow(AK1)
    AK<-AK1
       for ( l in 1:nl){
           Aux<-tcrossprod(diag(AK))
           cosalfa<-AK*(Aux^(-1/2))
           cosa<-as.vector(cosalfa)
           cosa[which(cosalfa>1)]<-1
           angulo<-acos(cosa)
           angulo<-matrix(angulo,n,n)
           AK<-(1/pi)*(Aux^(1/2))*(sin(angulo)+(pi*matrix(1,
n,n)-angulo)*cos(angulo))
       }
    AK<-AK/median(AK)
    rownames(AK)<-rownames(AK1)
    colnames(AK)<-colnames(AK1)
    return(AK)
  }
################################ Fitting the G (single 
enviroment) model
### Inputs: Matrix markers (X), observations  (y)
library (BGGE)
AK1<-AK1.fun(X)
trn<-!is.na(yna)
tst<-is.na(yna)
AKtrn<-AK1[trn,trn]
l<-marg.AK(y=y[trn],AK1=AKtrn,ml=30)
AK<-AK.fun(AK1=AK1,nl=l)
K<-list(list(Kernel=AK,Type="D"))
fit<-BGGE(y=yna,K=K,ne=1,ite=12000,burn=2000,thin=2,verb
ose=T)
cor(fit$yHat[tst],y[tst],use="pairwise.complete.obs")

Basic codes for DL
####Input and response variable
   X_trn=
    X_tst=
    y_trn=
    y_tst=
    Units_O=400
    Epoch_O= 1000
    Drop_O=0.05
    
    ###########specification of the Deep neural network 
#################
    model_Sec<-keras_model_sequential() 
    model_Sec %>% 
      layer_dense(units =Units_O , activation ="relu", input_shape 
= c(dim(X_trn)[2])) %>% 
      layer_dropout(rate =Drop_O) %>% 
      layer_dense(units =Units_O , activation ="relu") %>% 
      layer_dropout(rate =Drop_O) %>% 
      layer_dense(units =Units_O , activation ="relu") %>% 
      layer_dropout(rate =Drop_O) %>% 
      layer_dense(units =Units_O , activation ="relu") %>% 
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      layer_dropout(rate =Drop_O) %>% 
      layer_dense(units =1) 
    ###########Compiling the model #################
    model_Sec %>% compile(
      loss = "mean_squared_error",
      optimizer = optimizer_adam(),
      metrics = c("mean_squared_error"))
    ###########Fitting the model #################

    ModelFited <-model_Sec %>% fit(
      X_trn, y_trn,  
      epochs=Epoch_O, batch_size =56, verbose=0)
    
    ####Prediction of testing set ##########################
    Yhat=model_Sec %>% predict(X_tst)
    y_p=Yhat
    y_p_tst=as.numeric(y_p)
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