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ABSTRACT: In the field of data-driven material development, an imbalance in data sets where data points are concentrated in
certain regions often causes difficulties in building regression models when machine learning methods are applied. One example of
inorganic functional materials facing such difficulties is photocatalysts. Therefore, advanced data-driven approaches are expected to
help efficiently develop novel photocatalytic materials even if an imbalance exists in data sets. We propose a two-stage machine
learning model aimed at handling imbalanced data sets without data thinning. In this study, we used two types of data sets that
exhibit the imbalance: the Materials Project data set (openly shared due to its public domain data) and the in-house metal-sulfide
photocatalyst data set (not openly shared due to the confidentiality of experimental data). This two-stage machine learning model
consists of the following two parts: the first regression model, which predicts the target quantitatively, and the second classification
model, which determines the reliability of the values predicted by the first regression model. We also propose a search scheme for
variables related to the experimental conditions based on the proposed two-stage machine learning model. This scheme is designed
for photocatalyst exploration, taking experimental conditions into account as the optimal set of variables for these conditions is
unknown. The proposed two-stage machine learning model improves the prediction accuracy of the target compared with that of the
one-stage model.

1. INTRODUCTION
Data-driven material development has attracted significant
attention in recent years. This scientific field is often referred
to as materials informatics (MI) and has been applied to
various material systems.1−5 Machine learning methods are
applied at the MI to predict the material properties. Libraries
in Python, a programming language commonly used in
machine learning and available for MI, are also being
developed.6−13 In addition, open databases that can be used
for machine learning exist.14−25 Machine learning methods
have the potential to predict target material properties, even in
complex material systems, for which theoretical equations and
computational simulations are sometimes difficult to apply.
The following are examples of the application of machine
learning methods to complex material systems. We (Takahara

and coauthors) studied thermosetting resin composite
materials.26 Okuyama and coauthors investigated alternative
composite materials.27 However, in the field of materials
development, an imbalance in data sets where data points are
concentrated in certain regions presents difficulties when
building prediction models using machine learning. The
imbalance in data sets often reduces the reliability of the
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model and results in outputs that include both reliable and
unreliable predictions. Training a machine learning model on
imbalanced data sets often causes the model to overfit specific
patterns in the data and reduces its ability to generalize to
unseen data.

One example of inorganic functional materials facing such
difficulty is photocatalysts. Recently, photocatalytic water
splitting has attracted attention as a promising technology
for producing low-cost green hydrogen.28−30 The development
of visible light-responsive photocatalysts is important for the
efficient utilization of solar light. Metal sulfide is an attractive
photocatalyst group because many of them show a high
efficiency for the photocatalytic H2 evolution reaction (HER)
using visible light in the solar spectrum. A metal-sulfide
photocatalyst plays an important role as an H2-evolving
photocatalyst when a Z-scheme system is constructed for
water splitting under visible light irradiation. Figure 1 shows

sacrificial H2 evolution using a semiconductor particulate
metal-sulfide photocatalyst and factors affecting the photo-
catalytic performance. The sacrificial H2 evolution is a half
reaction of photocatalytic water splitting into H2 and O2 in a
2:1 ratio. When a metal-sulfide photocatalyst absorbs light of
which energy is larger than the bandgap, electrons are excited
from a valence band to a conduction band. Here, the band
levels and the bandgap mainly determined by constituent
elements and the crystal structure are important. As the next
step, the photogenerated electrons and holes migrate to the
surface and react with water. Calcination temperature in the
preparation affects the crystallinity, particle size, surface area,
and defect formation, which are also significant positive and
negative factors. The cocatalyst is often loaded on the surface
for introducing active sites for water reduction to form H2 by
photogenerated electrons. Photogenerated holes should
oxidize water to form O2 in water splitting. However, the
holes photogenerated in the valence band of a metal-sulfide
photocatalyst cannot oxidize water because they oxidize a
photocatalyst itself, resulting in photocorrosion. The photo-
corrosion is suppressed by a sacrificial reagent working as an
electron donor instead of water. As mentioned above, the HER
is a phenomenon influenced by both chemical composition
and experimental conditions.

A number of metal-sulfide photocatalysts have been
developed for hydrogen evolution from aqueous solutions
containing sacrificial reagents under visible light irradia-
tion.28,31,32 In particular, Kudo, who is one of the collaborators
of our study, and the Kudo group have developed many metal-
sulfide photocatalysts such as ZnS−CuInS2−AgInS2,

33 A2
I−

Zn−AIV−S4(AI=Cu, Ag; AIV=Sn, Ge),34 ZnS−CuGaS2,
35 and

Cu3MS4(M = V, Nb, Ta)36 being active for sacrificial hydrogen
evolution under visible light irradiation. It is necessary to
develop a novel metal-sulfide photocatalyst for efficient
hydrogen evolution in the present stage because the activities
of the developed photocatalysts are still low. Therefore, MI is
expected to efficiently develop novel photocatalytic materials.
This research topic is challenging because numerous and
reliable data on various photocatalysts are necessary to
construct a prediction model utilizing MI. Here, we have a
large amount of original experimental data on the activities of
sacrificial hydrogen evolution over metal-sulfide photocatalysts.
The HER over photocatalysts is strongly influenced by
experimental conditions, such as synthesis conditions, reaction
conditions, and chemical composition.28,37,38 Specifically, their
HER activities vary by 103 orders of magnitude depending on
the experimental conditions, even if the chemical compositions
of the photocatalysts are identical. This trend creates a
situation in which there are very few optimal synthesis
conditions and reaction conditions, and the distribution of
HERs is often skewed toward lower activity. Therefore,
predicting HER activity is known to be difficult.

As mentioned above, training a machine learning model on
imbalanced data sets often reduces generalization to unseen
data. In machine learning, a log transformation can be
employed when the distribution of an objective variable is
skewed. Because a log transformation helps to reduce skewness
and stabilize variance, the data are more suitable for modeling.
However, zero values cannot be transformed using the log
function, and samples with large values of the objective variable
tend to exhibit large discrepancies.

We propose a two-stage machine learning model aimed at
handling imbalanced data sets without data thinning. This
approach predicts the target by combining a first regression
model that predicts the target quantitatively with a second
classification model that determines the reliability of the values
predicted by the first regression model. In other words, the
second classification model defines the applicability scope of
the first regression model. The reliability metrics of the two-
stage machine learning model consider both the prediction
accuracy of the prediction model and the metrics of the
domain about whether the data itself is reliable or not.
Reliability can be considered with residuals39 or an approach
that deals with domain applicability metrics,40 as described in
previous studies. In contrast to the previous studies, the data
set we are working with has an imbalanced frequency
distribution, with certain values appearing more frequently.
In this study, we aimed to transform the regression problem of
a data set with an imbalanced frequency distribution,
characterized by the high occurrence of certain values, into a
balanced binary classification problem to avoid data imbalance.
Approaches combining models have been reported in the field
of MI. Examples of these investigations are as follows. Sakaushi
and coauthors have dealt with the loop between material
synthesis and machine learning.41 In this study, a seamless loop
between prediction by machine learning and material develop-
ment was achieved using Bayesian optimization to determine
the subsequent experimental conditions for 11 composition-
related variables. This study assumes that the properties are
uniquely determined by the chemical composition. Talapatra
and coauthors investigated bandgaps using density functional
theory calculations.42 Parts of the data with a certain threshold
value were removed to obtain an accurate prediction model.

Figure 1. Sacrificial H2 evolution over a metal-sulfide photocatalyst
and factors affecting the photocatalytic performance.
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Balachandran and coauthors also investigated perovskite
compounds.43 They classified perovskites or nonperovskites
in the first step and cubic or noncubic in the second step. Here,
we discuss our attempts to deal with imbalanced data sets
without data thinning.

When searching for a photocatalyst with high HER activity
using the constructed two-stage machine learning model, it is
necessary to define variables related to the experimental
conditions in addition to the chemical composition. Because
the optimal set of variables for the experimental conditions for
the chemical compositions to be explored is unknown, it is
desirable to consider as many diverse sets of variables related
to the experimental conditions as possible. Furthermore, the
considered sets should be in a range in which the two-stage
machine learning model can be driven well. We also propose a
search scheme for variables related to the experimental
conditions in anticipation of a photocatalyst search utilizing
this two-stage machine learning model. This search scheme
explicitly visualizes the importance of experimental conditions,
as the activities can vary by 103 orders of magnitude even with
identical chemical compositions.

2. DATA SET DESCRIPTION
In this study, we used two types of data sets that exhibit
imbalance: the Materials Project data set (openly shared due to
its public domain data) and the in-house metal-sulfide

photocatalyst data set (not openly shared due to the
confidentiality of experimental data). The former serves as a
demonstration of public domain data, while the latter serves as
a demonstration of our proprietary experimental data. The
common characteristic imbalance in the two data sets is that
data points are concentrated near zero, with the frequency
decreasing as the values become larger. Detailed descriptions
of each data set are provided below.
2.1. Materials Project Data Set. In this study, we used

153219 data collected from the Materials Project (version
2023.11.1) as public domain data. This data set consisted of a
material variable (chemical composition) and an objective
variable (bandgap). As shown in Figure 2A, the distribution of
the bandgap was skewed toward smaller values. In this study,
the material variables were converted into numerical feature
vectors using Xenonpy10 and converted into a format that
could be processed by machine learning algorithms. The
procedure is described in the following section. First, chemical
compositions were converted into comp_dict, a dictionary of
proportions by element, using Pymatgen.6,7 Subsequently, 290
compositional features based on comp_dict were calculated
from 58 features of each element (atomic number, bond
radius, van der Waals radius, electronegativity, thermal
conductivity, bandgap, polarizability, boiling point, melting
point, etc.).44 All of the chemical compositions used in this
study were normalized. In this data set, there were no features
with zero variance. Only duplicate features were removed, and

Figure 2. (A) Histogram of bandgaps in the Materials Project data set used in this study. (B) Histogram of HERs in the photocatalyst data set used
in this study.

Figure 3. (a) Overview of the photocatalyst data set. (b) Example of the imputation of missing values.
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232 features were used. Also, there were no missing values in
this data set.
2.2. Photocatalyst Data Set. Kudo et al. have developed a

number of metal-sulfide photocatalysts capable of producing
hydrogen from an aqueous solution containing sacrificial
reagents under visible light irradiation. For example, these data
were used in this study.32−36,45−53 577 experimental data for
these photocatalysts were used in this study. This data set
consisted of a material variable (chemical composition),
variables related to the experimental conditions (91 variables
related to synthesis conditions and reaction conditions), and
an objective variable (HER). In this data set, sacrificial
hydrogen evolution was conducted under visible light
irradiation (λ ≥ 420 nm) using a 300 W Xe lamp attached
with a cutoff filter (L42, HOYA). Figure 3a presents an
overview of the data set. As shown in Figure 2B, the
distribution of the HER was skewed toward smaller values.

Similar to the Materials Project data set, the chemical
compositions were converted into 290 compositional features.
Compositional features with zero variance and duplicate
features were removed, and 225 features were used.

If the values of a particular variable for the experimental
conditions were not present, then it was assumed that these
values were missing. An example of this case is shown in Figure
3a. Subsequently, a two-stage machine learning model was
built using the data set containing these missing values, which
are written as NaN (namely, Not a Number) in Figure 3a. In
addition, Uniform Manifold Approximation and Projection
(UMAP),54,55 the dimensionality compression algorithm used
in the present study, does not allow for the presence of missing
values. The missing values were complemented as much as
possible without compromising their intrinsic physical mean-
ing. The yellow highlight in Figure 3b shows an example of
missing value imputation. The missing values were comple-

Figure 4. Pipeline of the two-stage machine learning model.

Figure 5. (A) Histogram of the Materials Project data set divided into reliable and unreliable categories: (a) cutoff = 0.0001 [eV], (b) cutoff = 0.1
[eV], and (c) cutoff = 1.0 [eV]. (B) Histogram of the photocatalyst data set divided into reliable and unreliable categories: (a) cutoff = 10 [H2/
μmol h−1], (b) cutoff = 100 [H2/μmol h−1], and (c) cutoff = 300 [H2/μmol h−1].
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mented by replacing the calcination time with 0 h at room
temperature (300 K). The missing values in the entire data set
were imputed as follows: processing time, 0 h; processing
temperature, 300 K (room temperature); and number of
elements in the synthesis, 0.

3. TWO-STAGE MACHINE LEARNING MODEL
3.1. Method. Figure 4 shows the pipeline of the two-stage

machine learning model proposed in this study. The two-stage
model consisted of a first regression model and a second
classification model. The second classification model deter-
mines the reliability of the values predicted by the first
regression model. The second model yields a ″reliable″
judgment for the case of reliable, whereas an ″unreliable″
judgment is made in the case of unreliable.

The thresholds for the classification between reliable and
unreliable in the second model were determined such that the
numbers of reliable and unreliable values were balanced as
much as possible. Here, the cutoff for determining reliability
based on bandgap was set at 0.1 eV to balance the rates of
reliable and unreliable data in the Materials Project data set. As
shown in Figure 5A, the cutoff value was determined by testing
various values to find the one that best balanced reliable and
unreliable data. A data set is considered reliable if its bandgap
is 0.1 [eV] or higher and unreliable if its bandgap is below 0.1
[eV]. Similarly, the cutoff for determining reliability based on
HER was set at 100 [H2/μmol h−1] to balance the rates of
reliable and unreliable data in the photocatalyst data set. As
shown in Figure 5B, the cutoff value was determined by testing

various values to find the one that best balanced reliable and
unreliable data. Moreover, metal-sulfide photocatalysts with
HER values of 100 [H2/μmol h−1] or higher are considered
promising based on photocatalytic expertise. A data is
considered reliable if its HER is 100 [H2/μmol h−1] or higher,
and unreliable if its HER is below 100 [H2/μmol h−1]. In the
Materials Project data set, the LightGBM56,57 was used to
construct the first and second models. In the photocatalyst
data set, the LightGBM, the XGBoost,58,59 the CatBoost,60,61

the Random Forest,62 the Gaussian Process,63 and the Support
Vector Machine64 are used. The Operating System used in this
method and the values of the hyperparameters are shown in
the Appendix. The LightGBM, the XGBoost, and the CatBoost
are based on a gradient-boosting algorithm that can be driven
even in the presence of missing values. Scikit-learn65,66 was
used for the cross-validation, evaluation metrics, the Random
Forest, the Gaussian Process, and the Support Vector Machine.
The Random Forest, the Gaussian Process, and the Support
Vector Machine do not allow for the presence of missing
values. Missing values were imputed using the same method
described in the UMAP section for the Photocatalyst Data Set.
The default decision probability for the reliable and unreliable
values of the second model was 0.5.

The same folds used for cross-validation were used for both
models. This enabled the first and second model results to be
combined during the performance evaluation. Specifically, they
are combined via out-of-fold (OOF). OOF is the collection of
all of the predictions of the machine learning model in the
validation data for each fold during cross-validation, rearranged

Figure 6. (A) Fold split results for the Materials Project data set: (a) fold:0, (b) fold:1, (c) fold:2, (d) fold:3, and (e) fold:4. (B) Fold split results
for the photocatalyst data set: (a) fold:0, (b) fold:1, (c) fold:2, (d) fold:3, and (e) fold:4.
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in the same order as the original training data. The cross-
validation employed in this study was performed by dividing
the objective variable into bins and stratifying the k-fold into 5-
fold (stratified k-folds). The number of bins was determined
using Sturge’s law.67 This validation design balances the
difficulty of quantitatively validating data for each fold. This is
expected to build models with good generalization perform-
ance.

Generally, when constructing a machine learning model, it is
essential to identify which features (descriptors) are important
for the target and to make physical sense of that importance. In
this study, we calculated the average feature importance values
using the get_score method with the weight importance type
on the booster objects obtained from 5-fold cross-validation
models.
3.2. Results and Discussion. 3.2.1. Materials Project

Data Set. Figure 5A(b) shows the histogram in which the data
set was divided into reliable and unreliable data. Compared to
Figure 2A, the imbalance of the data set has been eliminated by
dividing it into two classes. Figure 6A shows the results of
partitioning all data into 5-fold using stratified k-folds. The
distributions of the partitioned data (Figure 6A (a−e)) almost
resembled each other and the original data set shown in Figure
2A. This indicates that cross-validation can divide the data set
into five partitions while retaining the imbalance in data sets.

The receiver operating characteristic (ROC) curve calcu-
lated using the OOF in the second model is shown in Figure
7A. The accuracy, F1 Score, and area under the ROC curve
(AUC) are summarized in Table 1A. The accuracy, F1 score,
and AUC were 0.861, 0.864, and 0.938, respectively. These
results indicate that a second model with a good classification
performance was constructed.

Figure 8A shows the effects of the combination of regression
using the first model and classification using the second model
on the prediction accuracy. The color of the plot in Figure 8A
(a) indicates the probability value of reliable decisions in the
second model. Figure 8A (a) shows a distorted shape with a
shoulder near zero owing to the imbalanced bandgap
distribution. Figure 8A (b) and (c) depicts the impact of the
classification of Figure 8A (a) based on the score of the
probability of reliability (the threshold was 0.5). In Figure 8A
(b), the distortion is improved, and the plot points are closer
to the ideal line indicated by the dotted line. However, Figure
8A (c) shows that the plot points were generally far from the
ideal line. The coefficient of determination (R2), root mean

squared error (RMSE), and mean absolute error (MAE)
indicated better accuracy for the data with reliable judgments
and worse accuracy for the data with unreliable judgments
compared to the case of all data. In conclusion, the proposed
two-stage machine learning model was effective in improving
the prediction accuracy of the bandgap.

3.2.2. Photocatalyst Data Set. Figure 5B(b) shows the
histogram in which the data set was divided into reliable and
unreliable data. Compared to Figure 2B, the imbalance of the
data set has been eliminated by dividing it into two classes.
Figure 6B shows the results of partitioning all data into 5-fold
using stratified k-folds. The distributions of the partitioned
data (Figure 6B (a−e)) almost resembled each other, and the
original data set is shown in Figure 2B. This indicates that
cross-validation can divide the data set into five partitions
while retaining the imbalance in data sets.

The accuracy, F1 score, and AUC of the second model for
each machine learning algorithm are summarized in Table 1B.
The results of XGBoost that achieved the highest accuracy are
discussed in detail. The ROC curve calculated using the OOF
in the second model with XGBoost is shown in Figure 7B. The
accuracy, F1 score, and AUC of XGBoost were 0.875, 0.870,
and 0.942, respectively. These results indicate that a second
model with good classification performance was constructed.

The R2, RMSE, and MAE of the first model for each
machine learning algorithm are summarized in Table 2. The
R2, RMSE, and MAE of the two-stage machine learning model,
based on the score of the probability of reliability (the

Figure 7. (A) ROC curves calculated using the OOF in the second model for the Materials Project data set. (B) ROC curves calculated using the
OOF in the second model for the photocatalyst data set.

Table 1. (A) Accuracy, F1 Score, and AUC in the Second
Model on the Materials Project Data Set; (B) Accuracy, F1
Score, and AUC in the Second Model for Each Machine
Learning Algorithm on the Photocatalyst Data Set

(A)

accuracy F1 Score AUC

0.861 0.864 0.938
(B)

algorithm accuracy F1 Score AUC

LightGBM 0.858 0.854 0.929
XGBoost 0.875 0.870 0.942
CatBoost 0.873 0.868 0.933
Random Forest 0.868 0.864 0.933
Gaussian Process 0.858 0.852 0.912
Support Vector Machine 0.802 0.794 0.889
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threshold was 0.5), for each machine learning algorithm are
summarized in Table 3. The results from Tables 2 and 3
confirmed an improvement in prediction accuracy for the two-
stage machine learning model across all of the algorithms. This
indicates that the use of the two-stage model is useful
regardless of the algorithm. The results of XGBoost that
achieved the highest accuracy are discussed in detail. Figure 8B
shows the effects of the combination of regression using the
first model and classification using the second model, both
based on XGBoost, on the prediction accuracy. The color of

the plot in Figure 8B (a) indicates the probability value of
reliable decisions in the second model. Figure 8B (a) shows a
distorted shape with a shoulder near zero owing to the
imbalanced HER distribution. Figure 8B (b) and (c) depicts
the impact of the classification of Figure 8B (a) based on the
score of the probability of reliability (the threshold was 0.5). In
Figure 8B (b), the distortion is improved, and the plot points
are closer to the ideal line indicated by the dotted line.
However, Figure 8B (c) shows that the plot points were
generally far from the ideal line. The R2, RMSE, and MAE

Figure 8. (A) (a) Plot of predicted versus measured values for the OOF of the first model on all data, (b) plot of predicted versus measured values
on these for which the second model made reliable decisions, and (c) unreliable decisions for the Materials Project data set. (B) (a) Plot of
predicted versus measured values for the OOF of the first model on all data, (b) plot of predicted versus measured values on these for which the
second model made reliable decisions, and (c) unreliable decisions for the photocatalyst data set.

Table 2. R2, RMSE, and MAE in the First Model for Each Machine Learning Algorithm on the Photocatalyst Data Set

algorithm R2 RMSE MAE

LightGBM 0.589 182.382 121.048
XGBoost 0.66 165.79 110.209
CatBoost 0.648 168.793 113.643
Random Forest 0.602 179.374 125.222
Gaussian Process 0.604 178.917 127.09
Support Vector Machine 0.531 194.795 127.492

Table 3. R2, RMSE, and MAE of the Two-Stage Machine Learning Model, Based on the Score of the Probability of Reliability
(the Threshold Was 0.5), for Each Machine Learning Algorithm on the Photocatalyst Data Set

algorithm R(reliable)
2 RMSE(reliable) MAE(Reliable)

LightGBM 0.651 176.524 110.535
XGBoost 0.723 155.648 99.351
CatBoost 0.704 161.409 103.339
Random Forest 0.66 172.546 116.073
Gaussian Process 0.667 172.284 117.503
Support Vector Machine 0.604 192.014 117.592
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indicated better accuracy for the data with reliable judgments
and worse accuracy for the data with unreliable judgments,
compared to the case of all data. In conclusion, the proposed
two-stage machine learning model was effective in improving
the prediction accuracy of the HER.

The demonstrations using the Materials Project data set and
the photocatalyst data set showed that the proposed two-step

machine learning model is effective for handling imbalanced
data, as illustrated in Figure 2.

3.2.3. Feature Importance. We calculated the feature
importance of the two-stage machine learning model
constructed using the photocatalyst data set with XGBoost
because it achieved the highest prediction accuracy. Figure 9
shows the feature importance of the constructed two-stage

Figure 9. (a) Top 20 feature importance values for the first regression model; (b) top 20 feature importance values for the second classification
model for the photocatalyst data set. Features related to experimental conditions are highlighted in red, and those derived from composition are
highlighted in blue.
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machine learning model, where features related to exper-
imental conditions are highlighted in red and those related to
chemical composition are highlighted in blue. Figure 9a,b
shows the top 20 feature importance values for the first
regression model and the second classification model,
respectively. These results suggest that both experimental
conditions and chemical composition play a significant role in
predicting HER. Additionally, calcination temperature and
cocatalyst were identified as more important features, both
ranking among the top 3, in both the first regression model and
the second classification model. This indicates that calcination
temperature is closely related to HER, affecting crystallinity,
particle size, surface area, and defect formation, and the
cocatalyst is closely related to HER, introducing active sites for
water reduction to form H2 by photogenerated electrons, as
explained previously in Figure 1. These findings are consistent
with photocatalytic expertise.

4. SEARCH SCHEME FOR VARIABLES RELATED TO
EXPERIMENTAL CONDITIONS
4.1. Method. Figure 10 illustrates the search scheme for

variables related to the experimental conditions implemented
in this study. This study proposes an approach to photocatalyst
exploration. The actual exploration of photocatalysis is planned
for future work. Among the four steps described below, the
procedures from the third step onward correspond to the
future work. In the first step, sets of variables for the
experimental conditions were extracted from the training data
under screening conditions. The screening conditions for the
first step were set to satisfy the following conditions. A set of
variables related to experimental conditions are extracted to
satisfy that the HER is greater than or equal to 100 [H2/μmol
h−1], which is the threshold of the second model of the two-
stage machine learning model. For identical chemical
compositions, the set of variables for the experimental
conditions with the highest HERs was adopted. Because the
sets were extracted from the training data, it is expected that
the two-stage machine learning model would be well-driven in
terms of the applicability domain of the model. In the second
step, the sets were visualized in the principal 2D space to check

the diversity, where UMAP was used to compress the
dimensions of the variables for the experimental conditions.
The operating systems used in this method and parameter
values are presented in the Appendix. In the third step, a two-
stage machine learning model is run for all combinations of the
obtained sets for the photocatalyst to be explored. We then
adopt the set of photocatalysts and variables for the
experimental conditions that achieve the HER with the largest
value in the first regression model. In the fourth step, we
determine whether the photocatalyst with the set is reliable or
unreliable; if it is reliable, we adopt the set.
4.2. Results and Discussion. Figure 11 shows the

variables related to experimental conditions of the photo-
catalyst data set in the principal two-dimensional space
constructed with UMAP. The orange circles indicate the

Figure 10. Procedures for the search scheme for variables related to the experimental conditions.

Figure 11. Variables related to experimental conditions of the
photocatalyst data set in the principal two-dimensional space
constructed with UMAP (focused on extracted points by the second
step of the search scheme for variables related to experimental
conditions).
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extracted sets of variables for the experimental conditions in
this scheme, which are scattered over space without clumping.
The gray areas represent the other sets present in the training
data. This confirmed the diversity in the promising sets of
experimental condition variables obtained.

Figure 12 shows an additional visualization of UMAP. The
overview of Figure 12 is the same as that of Figure 11 because

the plotting parameters are the same. However, there are
additional roles to highlight the plots. Its highlights focused on
the ZnS, AgGaS2, CuGaS2, and CuInS2 are indicated by pink,
red, blue, and green symbols, respectively. Specifically, we
chose points related to experimental conditions corresponding
to the minimum, median, and maximum HER values. These
are plotted as crosses, triangles, and circles. The gray circles
represent the other sets present in the training data. By
focusing on the trend of the positions of the plots highlighted
by the arrows with the corresponding colors, it can be
recognized that the directions of the connected arrows in the
order of minimum, median, and maximum were different from
each other. The circles corresponding to the maximum of the
HER of each photocatalyst are also located in different
positions on the space of UMAP. Taking the plots of ZnS as an
example, the arrow from the cross symbol to the triangular
symbol is directed toward the lower-right side. In contrast, the
arrow from the triangular symbol to the circular symbol was
directed toward the upper left side. This trend is not similar to
those of other representative materials (AgGaS2, CuGaS2, and
CuInS2). These discrepant trends indicate that the optimal
variables for the experimental conditions depend on the
composition of the photocatalyst. Additionally, in Figure 12,
the values in parentheses are the HER values provided in [H2/
μmol h−1]. These show that the minimum to maximum HER
values of ZnS, AgGaS2, CuGaS2, and CuInS2 each change
significantly across 100 [H2/μmol h−1], indicating that the
HER varies significantly depending on the experimental
conditions. In other words, for extracting information to
optimize the variables related to experimental conditions of a
specific composition, data sets corresponding to low HER

values (less than 100 [H2/μmol h−1]) included important
information to improve HER over the composition. If we do
not use the data with HER less than 100 [H2/μmol h−1], we
could not use such information about the dependencies on the
variables related to the experimental conditions and fail to
understand them. Therefore, we confirmed the effectiveness of
the approach presented in this study, which utilizes all of the
data without thinning them.

5. CONCLUDING REMARKS
In the present study, a two-stage machine learning model was
constructed for skewed data sets and applied to the data sets
for bandgap values from the Materials Project and the in-house
metal-sulfide photocatalysts. The results showed that the
present machine learning model improved the prediction
accuracy of the targets (bandgap and HER) compared with
that of the one-stage regression model. In the photocatalyst
data set, results indicate that the use of the two-stage model is
useful regardless of the algorithm for skewed data sets. The
proposed two-stage machine learning model is available with
various regression models and can be applied to a wide range
of tasks. We calculated the feature importance of the two-stage
machine learning model constructed using the photocatalyst
data set. Findings derived from feature importance were
consistent with photocatalytic expertise.

In addition, a search scheme for variables related to the
experimental conditions was constructed in anticipation of a
photocatalyst search utilizing this two-stage machine learning
model. This scheme allowed the preparation of diverse and
promising sets of experimental condition variables for
photocatalyst exploration in future work. It also confirmed
the effectiveness of the approach presented in this study of
using all of the data without thinning out.

The two-stage machine learning model and search scheme
allow us to develop novel materials for photocatalysts that
consider imbalance in data sets and experimental conditions.
We believe that the present approach is effective not only for
photocatalysts but also for various materials for which the
experimental conditions should be considered.

■ APPENDIX
The Operating System used in this study

Linux (Ubuntu 20.04.6 LTS)
The parameters of the first regression model
(LightGBM)

Figure 12. Variables related to experimental conditions of the
photocatalyst data set in the principal two-dimensional space
constructed with UMAP, including a zoomed-in view (focused on
the ZnS, AgGaS2, CuGaS2, and CuInS2). The values within
parentheses are the HER values provided in [H2/μmol h−1].
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(XGBoost)

(CatBoost)

(Random Forest)

(Gaussian Process)

(Support Vector Machine)

The parameters of the second classification model

(LightGBM)

(XGBoost)

(CatBoost)
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(Random Forest)

(Gaussian Process)

(Support Vector Machine)

The parameters of the UMAP
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