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Abstract

We study a deterministic framework for important cellular transport phenomena involving a

large number of interacting molecules called the excluded flow of extended interacting

objects with drop-off effect (EFEIOD). This model incorporates many realistic features of

biological transport process including the length of biological “particles” and the fact that

they can detach along the biological ‘tracks’. The flow between the consecutive sites is unidi-

rectional and is described by a “soft” simple exclusion principle and by repelling or attracting

forces between neighboring particles. We show that the model admits a unique steady-

state. Furthermore, if the parameters are periodic with common period T, then the steady-

state profile converge to a unique periodic solution of period T. Simulations of the EFEIOD

demonstrate several non-trivial effects of the interactions on the system steady-state profile.

For example, detachment rates may help in increasing the steady-state flow by alleviating

traffic jams that can exist due to several reasons like bottleneck rate or interactive forces

between the particles. We also analyze the special case of our model, when there are no

forces exerted by neighboring particles, and called it as the ribosome flow model of

extended objects with drop-off effect (RFMEOD), and study the sensitivity of its steady-state

to variations in the parameters.

1 Introduction

There are many important biological transport phenomena where the driving force for the

movement of particles depends upon the constant source of energy [1]. One of the most

known examples of such a system is intracellular transport carried out by motor proteins

which are also known as biological molecular motors. They utilize the free energy that is pro-

duced during the chemical hydrolysis of adenosine triphosphate molecules (ATP) by convert-

ing it into mechanical work for their movement along cytoskeleton protein filaments [2].

These transport processes are modeled as the unidirectional or bidirectional flow of biological

“particles” (RNA polymerases, ribosomes, motor proteins) along an ordered chain of sites

(DNA, mRNA, microtubules).

Experimental investigations show that in many complex cellular processes such as mRNA

translation by ribosomes or intracellular transport carried by motor proteins, the particles are

larger than their step sizes and they usually function in large groups and interact with one
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another by binding and repelling actions based on the state of its neighboring particles [3].

Also, it has been seen that in many of these transport processes, the biological particles may get

detached along the tracks. For example, kinesin-family motor proteins get detached from the

microtubule after every power stroke or when their path is blocked [4, 5]. Defects in kinesin-

linked transport may disrupt the functioning of nerve cells and can cause many serious dis-

eases [6]. The neuron-wide system requires intracellular transport of cargo throughout com-

plex neuronal morphologies and its transport malfunction is one of the indications of some

neuronal diseases like Alzheimer’s [7]. Therefore, deriving mathematical models of these

dynamical biological phenomena is important and crucial for understanding the collective

behavior of the movement of particles and unraveling its biophysical aspects in the context of

synthetic biology and biomedical applications.

These transport phenomena are usually studied using several multi-particle lattice gas mod-

els [3]. The totally asymmetric simple exclusion process (TASEP) is an important model in

non-equilibrium statistical physics that has been used to model molecular motors traffic and

ribosome flow during mRNA translation [8–10]. In this stochastic model, particles hop unidi-

rectionally with a step size of one along an ordered lattice of sites. The biological particles have

volume and thus cannot overtake one other, i.e. as long as a site remain covered by a particle,

it is inaccessible to the other particles thus obeying the simple exclusion principle. TASEP and

its various versions have been introduced to model realistic observed features of interactions,

extended objects and dissociations [11–16]. Unfortunately, rigorous analysis of TASEP is non-

trivial and exact solutions exist in special simplified cases like the model with the homogeneous

rates. Moreover detailed TASEP-type models are analyzed via various approximations and

time-consuming Monte Carlo computer simulations. Therefore, a deterministic mathematical

model called ribosome flow model (RFM) obtained via a mean-field approximation of TASEP

has been introduced that is both amenable to mathematical analysis using tools from systems

and control theory [17, 18] and is easy to simulate. The analysis holds for any set of feasible

parameter values. The RFM and its various extensions have been used to analyze many biologi-

cal processes including positive feedbacks [19], the effect of competition for shared resources

in translation [20], extended length of particles [29], bidirectional flow with Langmuir kinetics

[21], networks of interconnected mRNAs [22], etc. Also, the analysis of the TASEP and its var-

ious extensions always provide approximate results which become accurate as number of sites

n goes to infinity whereas analysis of the RFM and its various extensions hold true for every n.

An extension of the RFM called excluded flow with local repelling and binding model

(EFRBM) was introduced to study the nearest-neighbor interactions between the motor pro-

teins [23]. The advantage of this model is that it is that is amenable to rigorous analysis even in

case of non-homogeneous rates. The EFRBM is a non-linear, continuous-time compartmental

model for the unidirectional flow of interacting particles along a one-dimensional chain of n
consecutive compartments. In this model, each particle is assumed to cover a single site and

the nearest-neighbor effect is modeled by two interaction parameters q and r. The rate of

movement of particle from site i to i + 1 depends upon the parameter q� 0 [r� 0] if site i + 2

[i − 1] is already occupied. A value q> 1 [q< 1] implies that the particle at site i will be

strongly attracted [repelled] to the particle at site i + 2. This means that particle will move

faster from site i to i + 1 creating a new bond with particle at site i + 2. Similarly a value r> 1

[r< 1] represents the detachment[attachment] force at site i by the neighboring particle at

site i − 1. It has been shown that the trajectories of EFRBM evolve on the compact and convex

set Cn≔ [0, 1]n.

In this paper, we extend the EFRBM to include the fact biological “particles” cover several

sites and are susceptible to detach at various sites along the lattice. We refer to this model as

the excluded flow of extended interacting objects with drop-off effect (EFEIOD). Using the
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theory of contractive dynamical systems, we prove that EFEIOD always converges to a steady-

state. This steady-state depends on the length of the lattice n, the particle size ℓ, transition rates

λis, detachment rates αis and the interaction parameters q and r but not on the initial conditions.

We also prove that it entrains to periodic excitations in the transition/detachment rates and the

interaction parameters. This is important for the proper functioning of the biological processes

that are excited by the periodic events. Analysis and simulations highlight the role of the effect of

interactions on the steady-state flow. For example, in the case of strong attractions from the

neighboring particle at site i − ℓ, the flow of particles from site i to i + 1 gets reduced, therefore

an increase in detachment rate of particles at site i − ℓ leads to an easy steady-state flow. In the

absence of interactions, we analyze the transport phenomena of mRNA translation with ribo-

some drop-off and called it RFMEOD. We also show using simulations that the RFMEOD cor-

relates well with the TASEP with extended objects and including the drop-off phenomenon.

The EFEIOD presented here is more general than the EFRBM as it includes biologically

observed more features such as particles with extended length and phenomena of dissociation

of particles along the tracks.

The remainder of the paper is organized as follows. Section 2 describes the mathematical

model. The next section presents our main theoretical results and the effects of the nearest-neigh-

bor interactions on the steady-state behavior. Section 4 describes the application of the EFEIOD

to model mRNA translation with ribosome drop-off and allows us to understand how a change

in one of the parameters affects protein production. The final section concludes and summarizes

the paper. To increase the readability of the paper, all the proofs are placed in the Appendix.

2 Model

The EFEIOD is a nonlinear, continuous time, compartmental model for the unidirectional

flow of biological “particles” of size ℓ directed from left to right on a one-dimensional chain of

n consecutive compartments or sites along the track.

The EFEIOD contains the following sets of 2n + 3 non-negative parameters:

1. λi> 0, i = 0, 1, . . ., n: controls the transition rate from site i to i + 1.

2. αi� 0, i = 1, . . ., n: controls the detachment rate from site i to the environment.

3. r� 0, is the attachment/detachment force between any two existing consecutive particles.

4. q� 0, is the attachment/detachment force between any two new consecutive particles.

Each parameter λi and αi has units of 1/time. A parameter q controls the repelling or bind-

ing forces between two new neighbors and a parameter r between two existing neighbors. In

many studies, creating and breaking of bonds between the nearest neighbors has been viewed

as opposite chemical reactions [24]. So, it is assumed that
q
r ¼ exp E

KB T

� �
, where E denotes the

interaction energy, by applying the detailed balance arguments.

The position of the particle along the lattice is denoted by the site covered by the leftmost

end of it and this part is referred as the reader. Thus, ‘the reader is at site i’ means that the par-

ticle is located at site i and covers the sites i, i + 1, . . ., i + ℓ − 1. Let xi(t) 2 [0, 1] denote the nor-

malized reader density of the biological particle at site i at time t and let yi(t) 2 [0, 1] denote its

normalized coverage density at site i at time t, i.e.,

yiðtÞ ¼
Xi

j¼maxf1;i� ‘þ1g

xjðtÞ; i ¼ 1; 2; . . . ; n: ð1Þ
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The term ‘normalized’ here means that each xi(t) and each yi(t) takes value in the interval

[0, 1] for all t� 0. The value zero [one] corresponds to completely empty [full]. The schematic

explanation of a particle with size ℓ on the lattice is shown in Fig 1.

Eq (1) implies that the total particle coverage at any site i is the summation of the reader

densities of ℓ consecutive sites left to site i. The state variables xi(t) and yi(t) can be interpreted

as the probability that site i is occupied and covered respectively at time t. Hence, xi and yi are

dimensionless. Fig 2 depicts the possible transition scenarios from site i to site i + 1.

Fig 1. A schematic view of a single particle of size ℓ at site i covering sites i, i + 1, . . ., i + ℓ − 1 on the lattice of

dimension n. The state variable xi(t) describes the reader density of particle at site i at time t. R(t) denotes the output

rate at time t.

https://doi.org/10.1371/journal.pone.0267858.g001

Fig 2. The particle covers ℓ sites and the dark red label denotes the reader location. Schematic explanation of the transition flow

from site i to site i + 1 in the EFEIOD: Upper-left: When there are no readers at sites i − ℓ, i + ℓ and i + ℓ + 1, the transition rate is λi
and detachment rate is αi. Upper-right: When there is a reader at site i + ℓ + 1 and site i − ℓ does not have, the transition rate is λiq
and detachment rate is αi. Middle-left: When there is reader at site i − ℓ and no readers at sites i + ℓ and i + ℓ + 1, the transition rate is

λir and detachment rate is αir. Middle-right: When there are readers at sites i − ℓ and i + ℓ, detachment rate is αir2. Lower part: When

there are readers at sites i − ℓ and i + ℓ + 1, the transition rate is λiqr and detachment rate is αir.

https://doi.org/10.1371/journal.pone.0267858.g002
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To state the dynamical equations describing the EFEIOD, we introduce more notation for

simplicity. Let

ziðtÞ≔
xiðtÞ i ¼ 1; 2; . . . ; n

0 otherwise;

(

ð2Þ

and

wiðtÞ≔
yiðtÞ i ¼ 1; 2; . . . ; n

0 otherwise

(

ð3Þ

The dynamics of the EFEIOD is described by n nonlinear first order ordinary differential

equations:

_xi ¼ fi� 1ðxÞ � fiðxÞ � giðxÞ; i ¼ 1; 2; . . . ; n: ð4Þ

where

f0ðxÞ≔l0ð1 � w‘Þð1þ ðq � 1Þz‘þ1Þ; ð5Þ

fiðxÞ≔lixið1 � wiþ‘Þð1þ ðq � 1Þziþ‘þ1Þð1þ ðr � 1Þzi� ‘Þ; i ¼ 1; 2; . . . ; n; ð6Þ

and

giðxÞ≔aixið1þ ðr � 1Þziþ‘Þð1þ ðr � 1Þzi� ‘Þ; i ¼ 1; 2; . . . ; n: ð7Þ

Eq (4) implies that the change in the reader density at site i is the inflow fi−1(x) from site i
− 1 to site i minus the outflow fi(x) to site i + 1 minus the outflow gi(x) to the cell environment.

Eq (6) can be explained as follows. The term xi represents that the reader flow from site i to

site i + 1 increases with the reader density at site i. The term (1 − wi+ℓ) represents a “soft” ver-

sion of the simple exclusion principle which implies that the flow increases with the ‘vacancy’

level at site i + ℓ i.e. as the density in any of the ℓ consecutive sites increases the reader flow

from site i to site i + 1 gradually decreases. The term (1 + (q − 1)zi+ℓ+1) represents that the

reader flow from site i to site i + 1 also depends upon the reader density at site i + ℓ + 1 and

increases [decreases] if q> 1 [q< 1]. The particle at site i + ℓ + 1 will attract [q> 1] or repel

[q< 1] the particle that move from site i to i + 1. Similarly, the term (1+ (r − 1)zi−ℓ) represents

that the flow into site i + 1 also depends upon the reader density at site i − ℓ.

The term gi(x) in Eq (7) represents the detachment of particles from the site i to the cell

environment. If r> 1 [r< 1] then the particles at sites i − ℓ and i + ℓ repel [attract] the particle

at site i and increases [decreases] its detachment from site i.
The output rate from site n at any time t is given by

RðtÞ ¼ ðln þ anÞxnðtÞð1þ ðr � 1Þxn� ‘Þ: ð8Þ

Note that in the particular case, r = 1, q = 1, ℓ = 1 and αi = 0, the model gets reduced to the

RFM [17]. Clearly, in the case when the length of the biological particle is equal to the lattice

length, i.e. ℓ = n, there are no role of interaction forces in the system. The splitting of interac-

tion energy E between the creation and breaking processes is not unique. Like in [15], we also
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assume that E is equally split between the rates r and q.

q ¼ exp
E

2KBT

� �

; r ¼ exp
� E

2KBT

� �

ð9Þ

Note that Eq (9) implies r = 1/q and have a simple physical meaning. If E> 0 then there are

attractive interactions in the system, i.e. the particle moves faster creating a new pair [q> 1]

and the process of breaking out of the pair is slowed down [r< 1]. Similarly, E< 0 implies

that there are repulsive interactions in the system. The case E = 0 corresponds to the fact that

there are no interactions in the system and then we have q = r = 1.

The next section analyzes the EFEIOD using tools from systems and control theory and in

particular contraction theory.

3 Main results

Let Cn denote the closed n-dimensional unit cube:

Cn≔fx ¼ ðx1; x2; . . . ; xnÞ 2 R
n : xi 2 ½0; 1�g: ð10Þ

Note that the state variable xi at any time t represent a reader density in the range [0, 1].

Example 1 Consider a EFEIOD with dimension n = 6, particle size ℓ = 2, rates λ0 = 0.01, λi

= 1, αi = 0.1 for i = 1, 2, . . ., n, r = 2 and q = 1/2. Consider an initial condition x(0) = [1 0.9

0.5 1 1 1]0. It has been observed that at some time t we have x(t) = [1.0033 0.8907

0.4993 1.0744 0.6954 0.9084]0 (all numbers are four digit accurate).

The set Cn is not an invariant set of the EFEIOD as shown in the above example. Therefore,

it is relevant to define a state space which is an invariant set of the dynamics. We assume that

any initial condition belongs to the state-space defined as:

H≔fx 2 Rn
: x 2 Cn and Px 2 Cng ð11Þ

where P is the lower triangular square matrix of size n with all entries zero, except for the

entries on the main diagonal and (ℓ − 1) diagonals below the main diagonal that are ones.

Note that the set H is a compact and convex set. We have shown in the following subsections

that H is a relevant state-space for EFEIOD.

Let int(H) and @H denote the interior and boundary of H respectively. Let x(t, a) denote the

solution of Eq (4) at time t� 0 for the initial condition a 2H.

3.1 Invariance and persistence

The following result shows that H is an invariant set for the dynamics of the EFEIOD.

Proposition 1 If a 2 H then the solution of EFEIOD satisfies x(t, a) 2H for all t� 0. For any
a 2 @H, x(t, a) 2 int(H) for t> 0.

This implies that the trajectories that emanate from the boundary of H ‘immediately’ enter

the interior of H. The next proposition is useful because it shows that the solutions of the

EFEIOD get ‘immediately’ uniformly separated from the boundary of H.

Proposition 2. For any τ> 0, there exists a compact and convex set Hτ that is strictly con-
tained in H such that for any a 2H, x(t, a) 2 Hτ, for all t� τ.

This means in particular that for any τ> 0 there exists d ¼ dðtÞ 2 0; 1

2

� �
such that,

d � xiðt; aÞ; yiðt; aÞ � 1 � d; for all t � t; for all i and all a 2 H: ð12Þ

This property is useful in analyzing the asymptotic properties of the system dynamics.
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3.2 Contraction

Differential analysis provides a very useful way to study the behavior of certain non-linear

dynamical systems. In particular, contraction theory is based on analyzing the time evolution

of the distance between the trajectories that emanate from different initial conditions and have

its applications to synchronization and reaction-diffusion partial differential equations [24,

25]. However, for our proposed model, we needed a generalized version of contraction theory

that has been defined in [26].

Consider a time-varying dynamical system,

_xðtÞ ¼ Fðt; xðtÞÞ; ð13Þ

with the state x evolving on a compact and convex set O � Rn
. Let x(t, t0, a) denote the solu-

tion of (13) at time t� t0 with x(t0) = a.

We say that (13) is contractive on O with respect a norm j:j : Rn
! Rþ, if there exists c> 0

such that

jxðt2; t1; aÞ � xðt2; t1; bÞj � expð� ðt2 � t1ÞcÞja � bj; for all t2 � t1 � 0 and all a; b 2 O: ð14Þ

Now, the following generalization of contraction is required to apply contraction theory to

the EFEIOD. The system (13) is said to be contractive after a small overshoot and short tran-

sient (SOST) [26] with respect a norm j:j : Rn ! Rþ, if for each � > 0 and each τ> 0 there

exists c = c(τ, �) > 0 such that

jxðt2 þ t; t1; aÞ � xðt2 þ t; t1; bÞj � ð1þ �Þ expð� ðt2 � t1ÞcÞja � bj; ð15Þ

for all t2� t1� 0 and all a, b 2 O.

The next result shows that the EFEIOD satisfies this generalization of contraction. Let j:j
1

:

Rn ! Rþ denote the L1 norm, i.e. for x 2 Rn, |x|1 = |x1|+ |x2|+ . . .+ |xn|.

Proposition 3. The EFEIOD is SOST with respect to the L1 norm, i.e., for each � > 0 and each
τ> 0 there exists c = c(τ, �)> 0 such that

jxðt þ t; aÞ � xðt þ t; bÞj
1
� ð1þ �Þ exp ð� tcÞja � bj

1
; for all t � 0 and all a; b 2 H: ð16Þ

This means that the EFEIOD is contractive after an arbitrarily small time transient τ and

with an arbitrarily small overshoot (1 + �). This implies that any two initial feasible densities in

the EFEIOD evolving in time become ‘more similar’ to each other at an exponential rate.

3.3 Global asymptotic stability

Since the convex and compact set H is an invariant set of the dynamics, it contains atleast one

steady-state e [27]. By Proposition 1, we have e 2 int(H). Using Eq (16) with b = e, yields the

following result.

Theorem 1. Assume that q, r> 0. The EFEIOD admits a globally asymptotically stable
steady-state density e 2 int(H), i.e. limt!1 x(t, a) = e, for all a 2 H.

This means that, regardless of the initial density, all trajectories emanating from different

initial conditions converge to the unique steady-state density that depends on the system

parameters: transition rates λis, detachment rates αis, interactions determined by q and r, parti-

cle size ℓ and length of the chain n. The next example demonstrates that the assumption q,

r> 0 is necessary.

Example 2 Consider the EFEIOD with dimension n = 3, particle size ℓ = 1.
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For q = r = 0 we have:

_x1 ¼ l0ð1 � x1Þð1 � x2Þ � l1x1ð1 � x2Þð1 � x3Þ � a1x1ð1 � x2Þ

_x2 ¼ l1x1ð1 � x2Þð1 � x3Þ � l2x2ð1 � x1Þð1 � x3Þ � a2x2ð1 � x1Þð1 � x3Þ

_x3 ¼ l2x2ð1 � x1Þð1 � x3Þ � l3x3ð1 � x2Þ � a3x3ð1 � x2Þ:

ð17Þ

Also, for q = 1 and r = 0, we have:

_x1 ¼ 0ð1 � x1Þ � 1x1ð1 � x2Þ � 1x1ð1 � x2Þ

_x2 ¼ 1x1ð1 � x2Þ � 2x2ð1 � x1Þð1 � x3Þ � 2x2ð1 � x1Þð1 � x3Þ

_x3 ¼ 2x2ð1 � x1Þð1 � x3Þ � 3x3ð1 � x2Þ � 3x3ð1 � x2Þ:

ð18Þ

Eqs (17) and (18) admits a continuum of steady-states, here [1 1 v]0 is a steady-state for

all v. Therefore, the assumption that q, r> 0 cannot be dropped.

The next example demonstrates the global asymptotic property, i.e. trajectories starting

from different initial conditions in H asymptotically converge to a unique density profile along

the lattice.

Example 3 Consider the EFEIOD with dimension n = 3, particle size ℓ = 2, rates λi = 1, αi =

0.01, q = 1 and r = 1. Fig 3 depicts trajectories for three different initial conditions [1, 0, 0], [0,

1, 0] and [0, 0, 1] in H. It can be seen that the three solutions converge to the same equilibrium

point e = [0.4959 0.2483 0.2459]0.

Fig 3. Trajectories of EFEIOD for three initial conditions given in Example 3 as a function of time. The equilibrium

point is marked by a ellipse.

https://doi.org/10.1371/journal.pone.0267858.g003
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The next subsection analyze how the various parameters in the proposed model affects the

steady-state output rate.

3.4 Analysis of the steady-state

At steady state, for x = e the left-hand side of all the equations in (4) is zero, so

fi� 1ðeÞ ¼ fiðeÞ þ giðeÞ; i ¼ 1; 2; . . . ; n: ð19Þ

It follows from Eq (19) that if we multiply parameters λis and αis by a scalar constant c> 0

then e will not change, i.e. e(cp) = e(p) where p = [λ0, λ1, . . ., λn, α1, α2, . . ., αn]. Also, R(cp) =

cR(p), i.e. the output rate is homogeneous of order one w.r.t. the parameters λis and αis. By Eq

(19), we have:

R ¼ fnðeÞ þ gnðeÞ ¼ fiðeÞ �
Xn� 1

k¼iþ1

gkðeÞ; i ¼ 0; 1; . . . ; n � 1: ð20Þ

However, solving Eq (20), in general, is non-trivial.

The next result shows that the derivatives of the equilibrium point coordinates with respect

to the rates exists and are well defined. Let the mapping from the parameters to the unique

equilibrium point be denoted by η, i.e., ηi(γ) = ei, all i = 1, 2 . . ., n and γ = [λ0, λ1, . . ., λn, α1,

α2, . . ., αn, r, q]0.

Proposition 4 The derivative (@/@γj)ηi(γ) exists for all i, j.
The above result allows to calculate the derivatives of the steady-state density if some of the

parameters in the system are changed. This is useful to study the sensitivity of the steady-state

w.r.t. small changes in the rates.

3.5 Effect of interactions

We demonstrate with several simulations the non-trivial effect of interactions on the steady-

state of the EFEIOD.

The example below demonstrates that in the presence of strong attractive interactions,

detachment of particles could be useful for increasing the flow of particles along the lattice.

Example 4 Consider the EFEIOD with dimension n = 9, particle size ℓ = 3, rates λ0 = 1, λi =

1 and αi = α. Fig 4 depicts that increasing the detachment rate increases the steady-state output

for the higher values of q.

The above example suggests that for larger values of attractive interactions there could be a

regulatory mechanism to increase the flow of particles in the system by allowing the particles

to detach from the sites. The next example shows the positive role of increasing the detach-

ment rate in the presence of a bottleneck rate at a site.

Example 5 Consider the EFEIOD with dimension n = 9, particle size ℓ = 2, rates λ0 = 1, λi =

1 for all i except λ5 = 0.01, αi = 0. Note that λ5 is the bottleneck rate. We vary the parameter α3,

i.e. detachment rate of particles at site 3. It can be seen in Fig 5 that for q> 1 i.e. r< 1, increas-

ing α3 increases the steady-state output rate. However, for q = 1 i.e. r = 1, increasing α3

decreases the steady-state output rate.

This can be explained as follows: for r< 1, a particle at site 5 will tend not to hop forward as

there is strong attraction from particle at site 3. Therefore, allowing particles to detach from

site 3, leads to an easy flow of particles from site 5 and this increases the flow. This is important

to study as the interactions from the neighboring particles at the bottleneck rate further deteri-

orate the flow of particles along the lattice. In the case of no interactions i.e. q = 1 [r = 1], it can
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be seen that increasing the detachment rate leads to decrease in the steady-state flow which is

always true as we theoretically analyze this special case in the next section.

The example above demonstrates that in the case of interactions, locally controlled detach-

ment can avoid bottlenecks and can lead to faster movement of particles, and hence increasing

the flow and alleviating the “traffic jams” [28]. One may perhaps think that increasing the par-

ticle size leads to a decrease in the steady-state output rate, but steady-state densities follow

complicated behavior in the presence of interactions. It have been shown that when q = r = 1

and αis = 0, steady-state output rate for ℓ> 1 is always less than steady-state output rate for the

RFM [29]. But in the presence of interactions, increasing length does not always decrease the

output rate as shown in the example below.

Example 6 Consider the EFEIOD with dimension n = 9, rates λ0 = 1, λi = 1 for all i, αi = 0.

We vary the particle size ℓ. It can be seen in Fig 6 that for q = 13; for ℓ = 1, R = 0.0808, whereas

for ℓ = 2, R = 0.1442 and for ℓ = 3, R = 0.1249.

Furthermore, in the thermodynamical limit, i.e. number of sites goes to1, the homoge-

neous case of TASEPEO with strong repulsions and particle size ℓ, and with entry and exit

rates equal to one is in the maximal current phase, where the steady-state mean reader density

1=ð‘þ 1þ
ffiffiffiffiffiffiffiffiffiffiffi
‘þ 1
p

Þ and the steady-state output rate is 1=ðð1þ
ffiffiffiffiffiffiffiffiffiffiffi
‘þ 1
p

Þ
2
Þ [14]. This implies

that as ℓ goes to1, the steady-state output and mean reader density go to zero. The next exam-

ple shows that this is consistent with the results of our model. We define the steady-state mean

reader density by r ¼ ð1=nÞ
Pn

i¼1
ei.

Fig 4. The steady-state output rate R as a function of q for a EFEIOD with n = 9, ℓ = 3, λ0 = 1, λi = 1, αi = α, for all i.

https://doi.org/10.1371/journal.pone.0267858.g004
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Example 7 Consider EFEIOD with dimension n = 100, rates λ0 = 1, λi = 1 for all i, αi = 0,

q = 0.01, r = 100 and particle size ℓ. Fig 7 depicts that output rate R decrease with ℓ. Also, the

steady-state mean reader density ρ decrease with ℓ as seen in Fig 8.

The next example shows that in the presence of interactions, increase in an initiation rate

does not always lead to increase in the output rate. However, in the case of no interactions i.e.

q = 1 [r = 1], increase in an initiation rate due to feedbacks or due to an increase in number of

‘free’ biological particles leads to an increase in the steady-state output rate as we theoretically

analyze this special case in the next section.

Example 8 Consider the EFEIOD with dimension n = 6, ℓ = 2, rates λi = 1 for all i except λ4

= 0.1 and αi = 0. We vary the initiation rate λ0. It can be seen in Fig 9 that steady-state output

rate decreases with increase in λ0. Fig 10 depicts that the steady-state output rate increases

with increase in λ0.

Now, we analyze the effect of increasing the length of particle in the case q!1.

Example 9 Consider the EFEIOD with dimension n = 3, λ0 = 1, λi = 1, αi = α, for all i. Fig

11 depicts that when q!1, the steady-state output rate decrease to zero. Fig 12 depicts that

when q!1, the steady-state output rate saturates to a non-zero constant value depending on

the value of α, i.e. R = 0.1910 for α = 0, R = 0.1720 for α = 0.5 and R = 0.1267 for α = 1.

A high value of q corresponds to a strong attachment between existing neighbors (small r)
and a high tendency for creating new neighbors (large q), resulting in traffic jams and leading

Fig 5. The steady-state output rate R as a function of α3 for a EFEIOD with n = 9, ℓ = 2, λ0 = 1, λi = 1 for all i except

λ5 = 0.01, αi = 0 and r = 1/q.

https://doi.org/10.1371/journal.pone.0267858.g005
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to a sharp decrease in the output rate. Therefore, the length of the particle has an interesting

role to play in order to maintain a non-zero constant steady-state output rate in the case of

weak repulsions.

3.6 Entrainment

There are many biological processes that are periodic [30], for example in translation-elonga-

tion mechanism; tRNA molecules [31], ATP levels [32], ribosome drop-off rate [33], transla-

tion initiation and elongation factors [34], oscillations in mRNA levels [35] and more may

vary in a periodic manner and this results into the periodicity of the rates in the system. For

the proper functioning of our body, certain biological systems must be in sync with the peri-

odic changes induced due to the continuously changing environment [36, 37]. Entrainment

also plays an important part in designing extracellular biomedical systems [38]. An important

question is: will the state variables of EFEIOD preserve the property of entrainment w.r.t. the

parameters λis, αis, q and r?
Assume that the λis, αis, q and r are non-negative, uniformly bounded time-varying contin-

uous functions satisfying:

• There exists a (minimal) T> 0 such that every λis, αis, q and r is a T-periodic function.

• There exists 0< δ1 < δ2 such that λi(t) 2 [δ1, δ2], for all i = 0, 1, . . ., n and all t� 0.

Fig 6. The steady-state output rate R as a function of ℓ 2 {1, 2, 3} for a EFEIOD with n = 9, λ0 = 1, λi = 1, αi = 0, for

all i and r = 1/q.

https://doi.org/10.1371/journal.pone.0267858.g006
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This model have been referred as periodic EFEIOD (PEFEIOD). The next result follows

from the fact that EFEIOD is SOST on H and the known results on entrainment [39].

Theorem 2 The PEFEIOD admits a unique function � : R! intðHÞ, that is T-periodic and
for any initial condition a 2 H, the trajectory x(t, a) converges asymptotically to φ.

The above theorem implies that the state variables entrain to the periodic excitations in the

parameters. The next example illustrates the behavior of PEFEIOD.

Example 10 Consider a PEFEIOD with dimension n = 3, ribosome size ℓ = 2, λ0 = 1 λi = 1,

except for λ2(t) = 0.5 + 0.25 sin(πt/2) αi = 0.01, r = 5 and q = 1/5. Note, that there is single

time-varying periodic rate in the network and all these rates are periodic with a common mini-

mal period T = 4. We have taken two different initial conditions [0, 0, 0] and [0.2, 0.2, 0.2] in

H. It can be seen from the Fig 13 that all the trajectories converge to the periodic solution with

period T = 4.

In general, to describe the effect of parameters on the system dynamics by a theoretical

framework is cumbersome, as analyzing the set of non-linear equations that define the steady-

state is not trivial. However, for a special case q = r = 1, the steady-state output rate sensitivity

to variations in the parameters of the system can be answered rigorously. Moreover, the pro-

posed general model was representative of the biology of molecular motors whereas this spe-

cial case is important in the context of studying the ribosome flow and provides a tool in

Fig 7. The steady-state output rate R as a function of ℓ 2 {1, 2, . . ., 45} for a EFEIOD with n = 100, λ0 = 1, λi = 1, αi = 0,

for all i, q = 0.01 and r = 1/q.

https://doi.org/10.1371/journal.pone.0267858.g007
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developing a better understanding and analyzing the factors that can affect this dynamical pro-

cess of translation.

4 Ribosome flow model with extended objects and ribosome drop-

off

The synthesis of protein as directed by the mRNA template consisting of codons is carried out

by ribosome and the process is referred to as translation [40]. The process broadly takes place

in three steps: initiation where ribosomal complex assembles at the start codon of an mRNA

chain; elongation where it moves along the mRNA in a forward series of steps forming a poly-

peptide chain of amino acids, and termination where it releases the chain that folds into func-

tional protein and unbinds from the mRNA. Translation is a fundamental cellular process that

occurs in all living beings at all times [41] and is known to consume most of the cell’s energy

[42]. Therefore, it is crucial to understand its dynamical aspects through mathematical model-

ing [43–46].

It is known from previous studies that the footprint of the ribosome on the mRNA is 10 to

20 codons [47–49]. Many ribosomes can simultaneously move on the same mRNA template,

blocking the movement of other ribosomes behind it [50], resulting in traffic-like movement

on the template, and these “traffic jams” are more severe in genes that are lowly expressed [51].

The ribosomes that initiate translation of mRNA sequence may not successfully complete it

Fig 8. The steady-state mean reader density ρ as a function of ℓ 2 {1, 2, . . ., 45} for a EFEIOD with n = 100, λ0 = 1,

λi = 1, αi = 0, for all i, q = 0.01 and r = 1/q.

https://doi.org/10.1371/journal.pone.0267858.g008
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and hence fails to produce a full-length protein product [52, 53]. Hence, there are translational

errors that can disrupt cellular fitness and can cause diseases [54]. Such errors can have multi-

ple causes like ribosomal traffic jams, reading frameshifts [55], non-availability of tRNAs [56],

misreading of codon, premature stop codons [57–59], etc. These errors often result in ribo-

some dissociating from the mRNA before reaching the stop codon called ribosome drop-off

event, resulting in incomplete or incorrect peptides that are mostly non-functional, possibly

toxic to the cell. The translational error due to premature translation termination seems to rep-

resent more than two-thirds of the overall errors and thus have a strong impact on protein for-

mation [60, 61]. Therefore, modeling mRNA translation with ribosome drop-off is important

in analyzing the effect on the translation phenomena as it leads to a reduction in the rate of

protein production.

To gain insights into these dynamical aspects of translation, we consider a special case of

our model when q = r = 1 and we refer to this case as the ribosome flow model of extended
objects with drop-off effect (RFMEOD). In this model, mRNA is treated as a one-dimensional

lattice of length n, where n denotes the number of sites (codons) and every ribosome covers 1

� ℓ� n sites. The site 1 and n represents the start and stop codon respectively. The position of

the ribosome along the mRNA is denoted by the site covered by the leftmost end of it. At any

time t, if the leftmost edge of the ribosome is at site i, it means the reader is located at site i and

the ribosome is translating site i and sites i, . . ., i + ℓ − 1 are covered by this ribosome.

Fig 9. The steady-state output rate R as a function of λ0 for a EFEIOD with n = 6, ℓ = 2, λ0 = 1, λi = 1, except λ4 =

0.1, αi = 0, for all i, q = 7 and r = 1/7.

https://doi.org/10.1371/journal.pone.0267858.g009
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Ribosomes move unidirectionally from left to right by only one site on the template and no

two ribosomes can occupy or cover the same site simultaneously.

The dynamics of RFMEOD is given by:

_x1 ¼ l0ð1 � y‘Þ � l1x1ð1 � y‘þ1Þ � a1x1;

_x2 ¼ l1x1ð1 � y‘þ1Þ � l2x2ð1 � y‘þ2Þ � a2x2;

..

.

_xn� ‘þ1 ¼ ln� ‘xn� ‘ð1 � ynÞ � ln� ‘þ1xn� ‘þ1 � an� ‘þ1xn� ‘þ1;

_xn� ‘þ2 ¼ ln� ‘þ1xn� ‘þ1 � ln� ‘þ2xn� ‘þ2 � an� ‘þ2xn� ‘þ2;

..

.

_xn ¼ ln� 1xn� 1 � lnxn � anxn:

ð21Þ

The term λi−1xi−1(1 − yi+ℓ−1) represents the reader flow from site i − 1 to site i. The flow

increases with density level of readers at site i − 1 and decreases with coverage density yi+ℓ−1 =

xi + xi+1+. . .+ xi+ℓ−1. The term αixi represents the detachment of particles from the site i to the

Fig 10. The steady-state output rate R as a function of λ0 for a EFEIOD with n = 6, ℓ = 2, λ0 = 1, λi = 1, except λ4 = 0.1,

αi = 0, for all i, q = 1 and r = 1.

https://doi.org/10.1371/journal.pone.0267858.g010
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cell environment. Also, the equations describing the last n − ℓ + 2 equations are linear, as a

ribosome reading the last ℓ codons is the last particle and hence it move without any hindrance

towards the last(stop) codon.

The output rate from site n at any time t, which is the protein production rate is given by

RðtÞ ¼ ðln þ anÞxnðtÞ: ð22Þ

4.1 Analysis of the steady-state

The RFMEOD Eq (21) can be written as

_xi ¼ fi� 1ðxÞ � fiðxÞ � giðxiÞ; i ¼ 1; 2; . . . ; n; ð23Þ

where

f0ðxÞ ≔l0ð1 � y‘Þ;

fiðxÞ ≔lixið1 � yiþ‘Þ; i ¼ 1; . . . ; n � 1;

fnðxÞ ≔lnxn;

giðxiÞ ≔aixi:

ð24Þ

Fig 11. The steady-state output rate R as a function of E for a EFEIOD with n = 3, ℓ = 1, λ0 = 1, λi = 1, αi = α, for

all i and r = 1/q.

https://doi.org/10.1371/journal.pone.0267858.g011
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Also, yi = 0 for all i� n + 1. At steady state, the left-hand side of the Eq (23) is zero, so

fi� 1ðeÞ ¼ fiðeÞ þ giðeiÞ; i ¼ 1; 2; . . . ; n: ð25Þ

Let R = (λn + αn)en denote the steady-state output rate. From Eq (25), we get

R ¼ fnðeÞ þ gnðenÞ ¼ fiðeÞ �
Xn� 1

k¼iþ1

gkðekÞ; i ¼ 0; 1; . . . n � 1: ð26Þ

This yields the following set of n + 1 equations in the n + 1 unknowns: e1, . . ., en, R:

en ≔
R
ln
;

ei ≔
Rþ

Pn� 1

k¼iþ1
gkðekÞ

lið1 � yiþ‘Þ
; i ¼ n � 1; . . . ; 1;

and also

y‘ ≔
l0 � R �

Pn� 1

k¼1
gkðekÞ

l0

:

ð27Þ

Solving Eq (27) is in general non-trivial. Nevertheless, it can be solved in closed form in

some special cases. Note that when αi = 0 for all i, RFMEOD gets reduced to RFMEO [29].

Fig 12. The steady-state output rate R as a function of E for a EFEIOD with n = 3, ℓ = 2, λ0 = 1, λi = 1, αi = α, for

all i and r = 1/q.

https://doi.org/10.1371/journal.pone.0267858.g012
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Example 11 Consider a RFMEOD with dimension n and with particle size ℓ = n. Consider

homogeneous rates; λi = λ, for i = 0, 1, . . ., n and αi = α, i = 1, 2, . . ., n. We have,

R ¼
l

1þ
l

lþ a
þ

lþ a

l

� �
Xn� 1

i¼1

Xn� i� 1

j¼0

n � i � 1

j

 !
a

l

� �j
 !

; ð28Þ

and

ei ¼

Xn� i� 1

j¼0

n � i � 1

j

 !
a

l

� �j

1þ
l

lþ a
þ

lþ a

l

� �
Xn� 1

i¼1

Xn� i� 1

j¼0

n � i � 1

j

 !
a

l

� �j
 ! : ð29Þ

In case of totally homogeneous rates λ = α we have,

R ¼
2 l

2nþ1 � 1
; and ei ¼

2n� i

2nþ1 � 1
: ð30Þ

Eq (26) can be used to prove various theoretical results. The next result shows that increas-

ing any of the αis, i 6¼ n, decreases R. In other words increasing any of the internal detachment

rate decreases the steady-state protein production rate.

Fig 13. Trajectories of PEFEIOD in Example 10 as a function of time (t). Here, xi(t) and yi(t) are the trajectories of

PEFEIOD corresponding to initial conditions [0, 0, 0] and [0.2, 0.2, 0.2] respectively.

https://doi.org/10.1371/journal.pone.0267858.g013
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Proposition 5. Consider a RFMEOD with dimension n and with particle size ℓ. Then (@/@αi)
R< 0, for all i = 1, 2, . . ., n − 1.

The next result shows that increasing any of the λi s increases R. In particular, increasing

the initiation rate always leads to an increase in protein synthesis rate. This result is consistent

with a proposed canonical model of eukaryotic translation exhibiting a relation between initia-

tion rate and protein expression [62].

Proposition 6 Consider a RFMEOD with dimension n and with particle size ℓ. Then (@/@λi)
R> 0, for i = 0, 1, 2, . . ., n.

Consider the case where all λi = λ and αi = α. In this case, we can say more about steady-

state densities.

Proposition 7 Consider a RFMEOD with dimension n and with particle size ℓ and λi = λ and
αi = α (6¼0). Then

ei ¼
lþ a

l

� �n� i

en; for i ¼ n � ‘þ 1; . . . ; n; ð31Þ

e1 > e2 > . . . > en� ‘þ1 > en� ‘þ2 > . . . > en; ð32Þ

and

y‘ > y‘þ1 > � � � > yn: ð33Þ

This implies that the steady-state reader densities decrease between sites 1 and n and last ℓ
sites reader density is given by Eq (31). The next example demonstrates this.

Example 12 The steady-state reader densities of the RFMEOD with dimension n = 16, for

three particle sizes ℓ = 2, 4, 8 and λ0 = 1, λi = 1 and αi = 0.1, are depicted in Fig 14. It may be

observed that steady-state reader densities monotonically decrease along the mRNA.

It have been seen that for fixed rates, the steady-state protein production rate in the

RFMEO with ℓ> 1 is always less than the steady-state protein production rate with ℓ = 1 [29].

We also observed and investigated through simulations that this seems to hold true even in the

case of the presence of drop-off phenomenon. The next example demonstrates that for fixed

rates, steady-state output rate in the RFMEOD with ℓ> 1 is less than the steady-state output

rate in the RFMEOD with ℓ = 1.

Example 13 Consider a RFMEOD with n = 300 sites, ribosome size ℓ and rates λ0 = 0.8, λi =

1, αi = 0.01, for all i. It can be seen that in Fig 15 that R monotonically decreases with ℓ.

4.2 RFMEOD with positive feedback

In eukaryotes, mRNA molecules sometimes form circular structures which promote recycling

of the ribosomal subunits [63–65]. Therefore, it is biologically evident to include the fact that

the translation initiation rate is affected by the premature and complete translation termina-

tion rate. This model can be used to fine tune the rate of protein production by ribosome-recy-

cling in the case of changing ribosomal availability due to environmental stress [66]. We

analyze the behavior of the RFMEOD as a control system after closing the loop from the out-

put of ribosomes to input with positive linear feedback.
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Consider the RFMEOD with feedback:

_x1 ¼ ðk1 þ k2ðlnxn þ
Xn

i¼1

aixiÞÞð1 � y‘Þ � l1x1ð1 � y‘þ1Þ � a1x1;

_x2 ¼ l1x1ð1 � y‘þ1Þ � l2x2ð1 � y‘þ2Þ � a2x2;

..

.

_xn� ‘þ1 ¼ ln� ‘xn� ‘ð1 � ynÞ � ln� ‘þ1xn� ‘þ1 � an� ‘þ1xn� ‘þ1;

_xn� ‘þ2 ¼ ln� ‘þ1xn� ‘þ1 � ln� ‘þ2xn� ‘þ2 � an� ‘þ2xn� ‘þ2;

..

.

_xn ¼ ln� 1xn� 1 � lnxn � anxn;

ð34Þ

where k1 > 0 and k2� 0.

Here, the parameter k1 represents the diffusion of ribosomes to the start codon of a mRNA

molecule that is not related to recycling of ribosomes. The term k2ðlnxn þ
Pn

i¼1
aixiÞ repre-

sents the feedback due to recycling of ribosomes that have finished (partially or completely)

the process of translating the mRNA as depicted in Fig 16.

Fig 14. The steady-state reader densities as a function of i for a RFMEOD with n = 16, λ0 = 1, λi = 1, αi = 0.1, for

i = 1, 2, . . ., 16, for different values of ℓ.

https://doi.org/10.1371/journal.pone.0267858.g014
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Fig 15. The steady-state output rate R as a function of ℓ 2 {1, 2, . . ., 40} for a RFMEOD with n = 300, λ0 = 0.8, λi = 1,

αi = 0.01, for all i.

https://doi.org/10.1371/journal.pone.0267858.g015

Fig 16. The EFEIOD with feedback where parameters k1 and k2 represents the constant source and recycling rate of ribosomes

respectively. The term y ¼ lnxn þ
Pn

i¼1
aixi denotes the output of ribosomes from the system.

https://doi.org/10.1371/journal.pone.0267858.g016
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This is a generalization of the original RFMEOD as it includes both a term related to initia-

tion rate with and without recycling of ribosomes. The next theorem proves that trajectories

from any initial condition in H will always converge to a unique equilibrium point in H.

Theorem 3 The set H includes a unique equilibrium steady-state density e of the closed loop
system (34). This equilibrium point is globally asymptotically stable in H, i.e. limt!1x(t, a) = e
for any initial condition a 2 H.

Example 14 Consider the closed loop system (34) with dimension n = 3, ℓ = 2, λi = 1, αi =

0.01, k1 = 1 and k2 = 100. Fig 17 depicts trajectories for three different initial conditions [1, 0,

0], [0, 1, 0] and [0, 0, 1] in H.

The next result provides information on the change of e w.r.t. the control parameters k1

and k2.

Proposition 8 Suppose that the λis and αis are fixed. Let e and �e correspond to the control
parameters (k1, k2) and ð�k1;

�k2Þ respectively. If k1 ¼
�k1 then en < �en if and only if k2 <

�k2. If
k2 ¼

�k2 then en < �en if and only if k1 <
�k1.

From a biophysical point of view, the above result inferred the intuitive result that increas-

ing in any of the control parameters leads to an increase in the protein production rate. This

result may be useful in context of biotechnology in order to improve levels of proteins in the

host.

4.3 Validation through Monte Carlo simulations

Since the RFMEOD is a mean-field approximation of TASEP with extended objects and

include an additional detachment rate at every site of the lattice, we ran MATLAB simulations

Fig 17. Trajectories of RFMEOD for three initial conditions given in Example 14 as a function of time. The

equilibrium point is marked by a ellipse.

https://doi.org/10.1371/journal.pone.0267858.g017
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of this process. A simulation begins with an empty chain of dimension n and continues for 108

time steps i.e. total simulation time. Each site can accommodate atmost one particle and a par-

ticle can only hop unidirectionally to a consecutive site if it is empty. The leftmost site that par-

ticle is covering is referred to as the reader. Every site i, i = 1, 2, . . ., n in the chain is associated

with hopping rates λis and detachment rates αis where the next hopping event time tk + �k or

the next detachment event time tk + δk is generated randomly. For site i, �k and δk are random

variables drawn from the exponential distribution with mean rate λi and αi respectively. If hop-

ping time is equal to the simulation time, then the reader at site i hops to site i + 1, provided

site i + ℓ is empty. Similarly, if the detachment event time is equal to the simulation time then

the reader dissociates from site i. The occupancy at each site is averaged throughout the simu-

lations with the first 106 time steps discarded from the calculations to obtain the average

steady-state reader density of each site.

In the example below, we show that simulations supports the modeling of dynamical

aspects of translation using RFMEOD.

Example 15 Consider the RFMEOD with dimension n = 15, particle size ℓ = 3, rates λ0 =

0.1, λi = 1, for i = 1, 2, . . ., n − 1, λn = 0.8 and αi = 0 except for α8 = 0.01. Fig 18 depicts steady-

state reader density e and ρ for RFMEOD and TASEP-detachment respectively.

Fig 18. Steady-state reader density as a function of site number i given in Example 15.

https://doi.org/10.1371/journal.pone.0267858.g018
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5 Discussion

In many biological processes like translation, cellular transport, gene transcription and many

more, ‘particles’ move along one-dimensional “tracks”. We studied a deterministic model

called EFEIOD for the flow of particles along an ordered lattice of sites that encapsulates

important cellular properties like detachment of particles from any site, nearest-neighbor

interactions and the fact that most particles cover more than one site along the lattice. We ana-

lyzed this model using tools from systems and control theory, in particular contraction theory.

We proved that the EFEIOD converges to a unique steady-state density for any set of feasi-

ble parameters. In other words, EFEIOD is robust to the initial conditions. Moreover, we

prove that if one or more of the parameters are time-varying periodic functions with a com-

mon period T, then the steady-state densities also converge to a periodic solution with period

T. We demonstrate through simulations of the EFEIOD several useful observations. For exam-

ple, increasing the particle size may sometimes lead to an increase in the output rate in the

presence of weak repulsions. Surprisingly, we also show that increasing the detachment rate

does not always decrease the output rate as elucidated in [28]. It is also important to note that

several known models like RFM with positive feedback [19], RFMEO [29] and the model used

in [67] for mRNA translation are special cases of the proposed model.

We also rigorously analyze a special case of the EFEIOD when q = r = 1 and called it

RFMEOD to analyze the effects of ribosome drop-off on the translation process. The ribosome

drop-off is important to study as it could significantly deteriorate the fitness of the host. We

proved that increasing any one of the transition (detachment) rates of the RFMEOD always

increases (decreases) the steady-state protein production and that in the homogeneous case,

i.e. when all the transition rates are equal and all the detachment rates are equal, the reader

density monotonically decreases along the lattice. We also modeled the observed phenomenon

that many eukaryotic ribosomes may translate mRNA in multiples by including positive linear

feedback in the RFMEOD.

The results reported can shed light on many biophysical properties of intracellular transport

and may prove useful for applications in synthetic biology. One may consider to integrate

another realistic feature of the cellular transport such as attachment of biological particles at

different sites along the tracks in our model. Another research topic is studying the networks

of EFEIOD and considering various phenomena like competition of resources in the network.

We believe that the EFEIOD can be generalized to model and analyze more natural and artifi-

cial processes. Examples include coordination of large groups of organisms, traffic control and

more.

6 Appendix

Proof of Proposition 1 and 2: The fact that H is an invariant set of the dynamics and have a

repelling boundary follows from the equations from the EFEIOD. Let

ZiðtÞ≔lið1þ ðq � 1Þziþ‘þ1Þð1þ ðr � 1Þzi� ‘Þ; i ¼ 0; 1; . . . ; n ð35Þ

and

diðtÞ≔aið1þ ðr � 1Þziþ‘Þð1þ ðr � 1Þzi� ‘Þ ð36Þ

with the zis defined in Eq (2). Therefore, EFEIOD can be written as

_x1 ¼ Z0ðtÞ ð1 � w‘Þ � Z1ðtÞ x1ðtÞ ð1 � w‘þ1Þ � d1 x1 ð37Þ
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and

_xi ¼ Zi� 1ðtÞ xi� 1ðtÞ ð1 � wiþ‘� 1Þ � ZiðtÞ xiðtÞ ð1 � wiþ‘Þ � di xi i ¼ 2; 3; . . . ; n: ð38Þ

with the wis defined in Eq (3).

Note that for r, q> 0 all the time-varying transition rates ηi(t) are uniformly separated from

zero and uniformly bounded and all the time-varying detachment rates are non-negative and

uniformly bounded. Now, the proof of proposition follows from the results in [29, 68].

Proof of Proposition 3: Let,

ciðtÞ≔ZiðtÞ
ð1 � wiþ‘ðtÞÞ
ð1 � xiþ1ðtÞÞ

; i ¼ 0; 1; . . . ; n � 1 ð39Þ

and

cnðtÞ≔ZnðtÞ ð1 � wnþ‘ðtÞÞ: ð40Þ

Now, combining the representations in Eqs 39 and 40 with the Eqs 37 and 38, we get

_x1 ¼ c0 ð1 � x1Þ � c1 x1ð1 � x2Þ � d1 x1; ð41Þ

_xi ¼ ci� 1 xi� 1ð1 � xiÞ � ci xið1 � xiþ1Þ � di xi; i ¼ 2; . . . ; n � 1; ð42Þ

_xn ¼ cn� 1 xn� 1ð1 � xnÞ � cn xn � dn xn: ð43Þ

Proposition 1 and the equations above imply that that EFEIOD can be interpreted as time-

varying MFALK system with no backward and attachment dynamics with the well defined

rates for all t> 0. Write the time-varying MFALK as _x ¼ f ðx; tÞ with transition rates ψi(t) and

detachment rates δi(t). A calculation shows that the Jacobian of f is J(t, x) = L(t, x) + D(t),
where L is the matrix,

J1 ¼

� c1ð1 � x2Þ c1x1 0 . . . 0

c1ð1 � x2Þ � c1x1 � c2ð1 � x3Þ c2x2 . . . 0

0 c2ð1 � x3Þ � c2x2 � c3ð1 � x4Þ . . . 0

..

.

0 0 . . . cn� 1ð1 � xnÞ � cn� 1xn� 1

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

and D is the diagonal matrix

D ¼ diagð� c0 � d1; � d2; . . . ; � dn� 1; � cn � dnÞ: ð44Þ

Hence Proposition 2 and the results in [21, 68] imply that the EFEIOD is SOST on H and

this completes the proof.

Proof of Proposition 4: It follows from the results in [21] and the argument used in the proof

of proposition 3 in [23].

Proof of Proposition 5: Consider two RFMEODs both with same dimension n, particle size

ℓ, rates λi for all i = 0, 1, . . ., n and αi for i = 1, 2, . . ., n except for any one j 2 {1, 2, . . ., n − 1}

such that

aj < �a j: ð45Þ
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Therefore, the first RFMEOD admits a steady-state production rate R and the second one

admits �R. We have to prove that �R < R. We shall prove it by contradiction.

Let us assume that

R � �R ð46Þ

which implies that from equation

en � �en: ð47Þ

From Eqs (46), (47) and (26), we have

en� 1 � �en� 1: ð48Þ

We start with the case j = n − 1. From Eqs (26) and (46)

ln� 2 en� 2 � an� 1 en� 1 � ln� 2 �en� 2 � �an� 1 �en� 1: ð49Þ

Now, Eqs (45) and (49) implies that

ln� 2 en� 2 � �an� 1 en� 1 � ln� 2 �en� 2 � �an� 1 �en� 1 ð50Þ

which implies that

en� 2 < �en� 2: ð51Þ

Continuing this way, we have

ej � �ej for j ¼ n � ‘þ 1; � � � ; n � 2: ð52Þ

This means that

yn < �yn: ð53Þ

Now, from Eqs (26), (45) and (46), we have

ln� ‘ en� ‘ ð1 � ynÞ �
Xn� 1

i¼n� ‘þ1

ai ei � ln� ‘ �en� ‘ ð1 � �ynÞ �
Xn� 1

i¼n� ‘þ1

ai �ei: ð54Þ

Combining this with Eqs (48), (52) and (53), we have

en� ‘ < �en� ‘: ð55Þ

Continuing this way, we have

ej < �ej for j ¼ 1; � � � ; n � 2: ð56Þ

which implies that

y‘ < �y‘: ð57Þ

From Eqs (26) and (45), consider

l0 ð1 � y‘Þ �
Xn� 1

i¼1

ai ei � l0 ð1 � �y‘Þ �
Xn� 1

i¼1

ai �ei: ð58Þ
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From Eqs (47) and (58) we have

y‘ � �y‘: ð59Þ

which is the contradiction to Eq (57) resulting in �R < R in the case an� 1 < �an� 1.

Hence, using the same approach for any j 2 {1, 2, . . ., n − 1}, we can conclude that �R < R.

Proof of Proposition 6: The proof is similar to the proof of proposition 4 above and is thus

omitted.

Proof of Proposition 7: From Eq (26), we have

l en� 1 ¼ ðlþ aÞ en ) en� 1 ¼
lþ a

l

� �

en: ð60Þ

Similarly, we have

ej ¼
lþ a

l

� �n� j

en for j ¼ n � ‘þ 1; � � � ; n: ð61Þ

Since (λ + α) > λ, we have

en� ‘þ1 > en� ‘þ2 > � � � > en: ð62Þ

From Eq (26), consider

l en� ‘ ð1 � ynÞ �
Xn� 1

i¼n� ‘þ1

a ei ¼ l en� ‘þ1 �
Xn� 1

i¼n� ‘þ2

a ei ð63Þ

which implies

l en� ‘ ð1 � ynÞ ¼ l en� ‘þ1 þ a en� ‘þ1: ð64Þ

Therefore,

en� ‘ ð1 � ynÞ > en� ‘þ1 ) en� ‘ > en� ‘þ1: ð65Þ

From Eq (62),

en� ‘ > en� ‘þ1 > en� ‘þ2 > � � � > en: ð66Þ

Now, consider

yn� 1 � yn ¼ en� ‘ � en > 0) yn� 1 > yn: ð67Þ

Now, from Eq (26),

l en� ‘� 1 ð1 � yn� 1Þ ¼ l en� ‘ ð1 � ynÞ þ a en� ‘ ð68Þ

which implies

en� ‘� 1 ð1 � yn� 1Þ > en� ‘ ð1 � ynÞ: ð69Þ

From Eq (67), we have

en� ‘� 1 > en� ‘ ð70Þ
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and thus

yn� 2 > yn� 1: ð71Þ

Continuing in this way completes the proof.

Proof of Theorem 3: Clearly, H is an invariant set of the dynamics. Note that this system is

RFMEOD with time-varying initiation rate which is uniformly bounded and uniformly sepa-

rated from zero i.e.

0 < k1 þ k2ðlnxn þ
Xn

i¼1

aixiÞ < M: ð72Þ

Now the proof follows by theorem 1.

Proof of Proposition 8: We have equations for the RFMEOD with feedback at steady-state as

follows:

en ≔
R
ln
;

ei ≔
Rþ

Pn� 1

k¼iþ1
gkðekÞ

lið1 � yiþ‘Þ
; i ¼ n � 1; � � � ; 1;

and also

y‘ ≔1 �
Rþ

Pn� 1

k¼1
gkðekÞ

l0 ðk1 þ k2ðlnen þ
Pn

i¼1
aieiÞÞ

:

ð73Þ

Suppose that k1 ¼
�k1 and k2 <

�k2. We have to prove that en < �en. We shall prove it by con-

tradiction. Assume

�en � en ð74Þ

which implies that

�R � R: ð75Þ

which further implies from Eq (73) that

�ei � ei for all i ¼ 1; 2; � � � ; n � 1: ð76Þ

Therefore,

�y‘ � y‘: ð77Þ

From Eq (73) and simplifying calculations we have,

y‘ � �y‘ ¼ k1 ðln þ anÞ ð �en � enÞ þ ðk2 �
�k2Þ ðln ðln þ anÞ �en þ an ðln þ anÞ en �enÞ

þðk2 �
�k2Þ ððln þ anÞ

Xn� 1

i¼1

ð�ei en þ ei �enÞ þ ð
Xn� 1

i¼1

ai eiÞ ð
Xn� 1

i¼1

ai �eiÞÞ:
ð78Þ

The fact that k2 <
�k2 and Eqs (74) and (78) implies that

y‘ < �y‘ ð79Þ

which is a contradiction to Eq (77) and hence en < �en and the other part follows the same

arguments.
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