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Adult height is associated with increased risk of ovarian
cancer: a Mendelian randomisation study
Suzanne C. Dixon-Suen et al.

BACKGROUND: Observational studies suggest greater height is associated with increased ovarian cancer risk, but cannot exclude
bias and/or confounding as explanations for this. Mendelian randomisation (MR) can provide evidence which may be less prone to
bias.
METHODS: We pooled data from 39 Ovarian Cancer Association Consortium studies (16,395 cases; 23,003 controls). We applied
two-stage predictor-substitution MR, using a weighted genetic risk score combining 609 single-nucleotide polymorphisms. Study-
specific odds ratios (OR) and 95% confidence intervals (CI) for the association between genetically predicted height and risk were
pooled using random-effects meta-analysis.
RESULTS: Greater genetically predicted height was associated with increased ovarian cancer risk overall (pooled-OR (pOR)= 1.06;
95% CI: 1.01–1.11 per 5 cm increase in height), and separately for invasive (pOR= 1.06; 95% CI: 1.01–1.11) and borderline (pOR=
1.15; 95% CI: 1.02–1.29) tumours.
CONCLUSIONS: Women with a genetic propensity to being taller have increased risk of ovarian cancer. This suggests genes
influencing height are involved in pathways promoting ovarian carcinogenesis.

British Journal of Cancer https://doi.org/10.1038/s41416-018-0011-3

INTRODUCTION
Observational studies have reported a positive association
between adult height and ovarian cancer risk.1–4 However, these
studies were subject to the biases inherent in conventional
observational studies, including selection bias, differential and
non-differential reporting bias and confounding. The degree to
which these factors could account for the observed association is
uncertain. Mendelian randomisation (MR) uses genetic markers as
proxies for environmental exposures and, due to the singular
qualities of genotype data, can provide complementary evidence
by overcoming many biases affecting conventional studies.5 We
used MR to examine the relationship between height and ovarian
cancer risk in the Ovarian Cancer Association Consortium (OCAC),6

aiming to provide more certainty about the relationship between
height and ovarian cancer risk. We hypothesised that greater
genetically predicted height would be associated with increased
risk.

MATERIALS AND METHODS
Study population and outcomes
We pooled data from 16,395 genetically European women with
primary ovarian/fallopian tube/peritoneal cancer and 23,003
controls from 39 OCAC studies (Table 1; Supplementary Table 1).
The data set and methods have been described previously.7

Participants were genotyped via the Collaborative Oncological
Gene-Environment Study.8 Twenty-two studies provided height

data (16 provided parity, oral contraceptive (OC) use, education
and age at menarche information) for >50% of their participants.
We first considered all cases, then stratified by tumour behaviour.
Secondary analyses stratified by histologic subtype/behaviour.

Genetic risk score
The Genetic Investigation of ANthropometric Traits (GIANT)
Consortium had previously identified 697 single-nucleotide
polymorphisms (SNPs) significantly associated with height.9 In
our sample, 92 of these SNPs had been genotyped and the
remainder were imputed using 1000 Genome Project data.8, 10

After excluding poorly-imputed SNPs (quality r2 < 0.6), 609
remained (92 genotyped/517 imputed) (Supplementary Table 2).
In controls, minor allele frequencies (MAFs) were >5% (except for
16 SNPs, MAFs 1.7–4.9%).
We constructed a weighted genetic risk score (GRS) for height

by summing height-increasing alleles across the 609 SNPs (‘GRS-
609’/‘the GRS’), weighting alleles by β-coefficients for their
association with height reported by GIANT. The score represents
predicted additional height conferred by these variants, compared
to having no height-increasing alleles. We report results for 5 cm
increments.

Statistical analysis
Statistical methods have been described previously.7 Briefly, we
used individual-level OCAC data for two-stage predictor-substitu-
tion MR 11, 12: first, we predicted height from the weighted GRS for
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all participants using coefficients from linear regression in 17,649
controls with height data; second, within each study, we used
logistic regression to model disease status on GRS-predicted
height. Models adjusted for age and five principal components for
population structure.8 We combined study-specific estimates
using meta-analysis,13 generating pooled odds ratios (pOR) and

95% confidence intervals (CI) for the trend in risk per 5 cm increase
in predicted height. We had 97% power to detect an OR of 1.10
(mRnd tool).14

Sensitivity analyses included removing 16 SNPs with MAFs <5%,
and restricting to SNPs with imputation r2 ≥ 0.9 (‘GRS-363’), SNPs
representing distinct loci9 (‘GRS-377’), and directly-genotyped

Table 1. Characteristics of 39 OCAC studies and 39,398 participants of European ancestry included in the Mendelian randomisation analysis

Study
acronyma

Country Diagnosis
(years)

Median (range) age at
diagnosis/interview

Invasive cases
(N)

Borderline cases
(N)

All cases
(N)b

Controls (N) Mean (SD)
height (cm)c

AUS Australia 2002–2006 58 (19–80) 859 1 860 977 163 (6.9)

BAV Germany 2002–2008 58 (24–83) 96 5 102 143 164 (5.8)

BEL Belgium 2007–2010 46 (19–87) 275 0 275 1347 —

DOV USA 2002–2009 57 (35–74) 904 327 1231 1487 166 (6.5)

GER Germany 1993–1998 57 (21–75) 189 24 213 413 163 (6.0)

GRR USA 1981–2012 48 (21–83) 125 0 125 0 —

HAW USA 1993–2008 56 (27–87) 60 20 80 157 163 (6.6)

HJO Germany 2007–2011 54 (18–88) 261 13 290 273 —

HMO Belarus 2006–2011 45 (22–76) 142 0 143 138 —

HOC Finland 1975–1999 46 (18–86) 210 8 239 447 —

HOP USA 2003–2009 58 (25–94) 567 71 723 1464 163 (6.8)

HSK Germany 2000–2007 58 (18–81) 147 9 156 0 165 (5.6)

LAX USA 1989–2008 58 (31–88) 278 0 278 0 —

MAL Denmark 1994–1999 57 (31–80) 440 138 578 828 166 (6.1)

MAY USA 2000–2010 61 (20–93) 699 79 778 743 165 (6.3)

MCC Australia 1990–2008 65 (45–79) 66 0 66 66 159 (7.0)

MDA USA 1997–2009 62 (23–88) 375 0 375 384 —

MSK USA 1997–2010 57 (18–89) 450 0 450 593 —

NCO USA 1999–2008 57 (20–75) 722 171 896 792 163 (6.4)

NEC USA 1992–2003 52 (21–78) 654 232 904 1009 163 (6.7)

NJO USA 2002–2009 60 (25–88) 169 0 169 181 163 (6.9)

NOR Norway 2001–2010 51 (18–86) 236 12 248 371 —

NTH Netherlands 1997–2008 55 (18–83) 292 3 295 323 167 (6.0)

ORE USA 2007–2011 58 (22–86) 55 9 65 0 —

OVA Canada 2002–2009 58 (19–80) 640 161 801 748 —

POC Poland 1998–2008 55 (23–82) 423 0 423 417 —

POL Poland 2000–2004 56 (24–74) 236 0 236 223 162 (5.6)

PVD Denmark 2004–2009 63 (30–88) 168 0 168 0 165 (6.5)

RMH UK 1993–1996 52 (26–73) 148 7 155 0 —

SEA UK 1998–2011 57 (19–78) 1447 76 1530 6004 162 (6.3)

SOC UK 1993–1998 62 (22–92) 268 20 288 0 —

SRO UK 1999–2001 59 (34–84) 158 0 158 0 —

STA USA 1997–2002 50 (20–64) 251 10 261 313 165 (6.7)

TOR Canada 1995–2007 58 (26–85) 603 0 605 440 163 (7.1)

UCI USA 1993–2005 56 (18–86) 277 141 418 367 165 (6.6)

UKO UK 2006–2010 63 (19–89) 718 0 718 1104 162 (6.7)

UKR UK 1991–2009 54 (24–77) 47 0 47 0 —

USC USA 1992–2010 57 (22–82) 693 152 845 1047 165 (6.8)

WOC Poland 1997–2010 44 (20–81) 201 2 203 204 —

All participants were of >90% European ancestry according to genetic markers of ancestry. aOCAC is an international collaboration of largely case–control
studies. See Supplementary Table 1 for study names and references. To maximise power, nine case-only studies were grouped for analysis with case–control
studies from the same region: HSK combined with GER; GRR with HOP; PVD with MAL; RMH, SOC, SRO, UKR with SEA and UKO (‘UK group’); ORE with DOV; LAX
with UCI. bCases had primary ovarian (n= 15,636), fallopian tube (n= 180) or peritoneal (n= 552) cancer or ovarian/tubal/peritoneal tumours of undetermined
site (n= 27). cUsual adult height. Height is summarised for 22 studies (20 case–control studies) where >50% participants had data available (AUS, BAV, DOV,
GER, HAW, HOP, HSK, MAL, MAY, MCC, NCO, NEC, NJO, NTH, POL, PVD, SEA, STA, TOR, UCI, UKO, USC). Sixteen of these 22 studies were also used in conventional
height analyses, as they provided data on potential confounders (age, parity, use of oral contraceptives, education, and age at menarche) for >50% of
participants (AUS, DOV, GER, HAW, HOP, MAL, NCO, NEC, NJO, NTH, POL, STA, TOR, UCI, UKO, USC). OCAC Ovarian Cancer Association Consortium, SD standard
deviation
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SNPs (‘GRS-92’). We examined whether potential confounders of
the association in observational studies were associated with the
GRS. To assess robustness to pleiotropy (where SNPs may
influence risk via pathways not mediated through height), we
conducted MR-Egger regression15 and assessed smaller GRSs
excluding SNPs with the highest probability of acting via other
pathways from GRS to outcome (SNPs associated with ovarian/
other hormonal cancers (breast, prostate), hormone levels and in/
near tumour initiation/growth genes). We identified these
potentially pleiotropic, pathway-specific SNPs via the NHGRI
GWAS Catalog,16 the UCSC Genome/Table Browsers17, 18 and
from lists of SNPs nominated for iCOGS genotyping by ovarian,
breast and prostate cancer researchers (to capture SNPs of interest
unpublished at the time of analysis).
Secondary analyses defined cases by histologic subtype/

behaviour. Among 16 studies with height/confounder data, we
conducted conventional analysis (adjusted for parity, OC use,
education, menarche age; stratified by study, 5-year age group)

and compared results with MR-estimates among the same
women.
Analyses were performed using SAS 9.2 (SAS Institute Inc., Cary,

NC) and Stata 13.0 (StataCorp LP, College Station, TX). This work
and each contributing study was approved by the appropriate
institutional review board/ethics committee. All participants
provided informed consent.

RESULTS
Population characteristics
We included 16,395 cases (14,549 invasive tumours, 1691 border-
line, 155 of unknown behaviour) and 23,003 controls (Table 1). The
median diagnosis year was 2003, with 74% diagnosed post-2000.
Participants were aged 18–94 (median 56) years at diagnosis/
interview. Mean height ranged from 159 to 167 cm across
22 studies with data, and was 163 (standard error (SE)= 0.05)
cm for controls and 164 (SE= 0.06) cm for cases (p < 0.0001).

Site
group

Site
group

Site
group

Odds
ratio (95% CI)

Odds
ratio (95% CI)

%
Weight

Odds
ratio (95% CI)

%
Weight

%
Weight

NJO NJO2.26 (1.33, 3.81) 2.26 (1.33, 3.81)
1.54 (0.68, 3.48)
1.35 (0.92, 1.99)
1.32 (0.73, 2.39)
1.25 (0.79, 1.97)
1.18 (0.94, 1.48)
1.17 (0.85, 1.61)
1.16 (0.87, 1.55)
1.15 (0.85, 1.56)
1.13 (0.91, 1.39)
1.12 (0.91, 1.38)
1.08 (0.78, 1.50)
1.07 (0.85, 1.37)
1.06 (0.86, 1.30)
1.05 (0.84, 1.30)
1.04 (0.82, 1.32)
1.04 (0.94, 1.15)
1.03 (0.72, 1.48)
1.00 (0.72, 1.40)
1.00 (0.75, 1.34)
0.99 (0.55, 1.79)
0.98 (0.66, 1.46)
0.96 (0.77, 1.21)
0.95 (0.80, 1.14)
0.91 (0.58, 1.43)
0.88 (0.63, 1.22)
0.82 (0.43, 1.57)
0.79 (0.52, 1.21)
0.66 (0.32, 1.35)
1.06 (1.01, 1.11) 100.00

0.46
1.33
0.56
2.20
1.15
7.52
4.53
1.51
0.68
2.89
2.08
1.80
24.84
4.11
4.90
5.62
4.11
2.21
5.29
5.22
2.55
2.78
2.37
4.73
1.12
0.68
1.58
0.35
0.860.80

3.48 (0.62, 19.47)

3.22 (0.90, 11.50)

1.66 (0.55, 5.01)

1.52 (0.90, 2.59)

1.40 (0.94, 2.08)

1.26 (0.80, 1.96)

1.22 (0.83, 1.79)

1.19 (0.77, 1.83)

1.15 (0.80, 1.66)

1.09 (0.78, 1.50)

1.05 (0.71, 1.57)

1.01 (0.77, 1.32)

0.94 (0.40, 2.24)

0.87 (0.50, 1.49)

0.85 (0.20, 3.62)

0.45 (0.11, 1.81)

1.15 (1.02, 1.29)

0.47

0.85

1.14

4.97

8.67

6.98

9.43

7.42

10.31

13.11

8.86

19.81

1.86

4.74

0.66

0.72

100.00

0.33
1.13
1.51
0.63
2.21
2.59
2.66
5.48
5.58
1.51
4.93
4.39
2.06
4.22
5.10
23.58
1.68
4.46
1.94
2.70
0.63
6.09
8.17
1.17

1.24
100.00

2.15
0.54
0.54

1.54 (0.68, 3.48)
1.41 (0.91, 2.19)
1.33 (0.90, 1.94)
1.31 (0.73, 2.37)
1.17 (0.85, 1.61)
1.16 (0.87, 1.55)
1.16 (0.87, 1.54)
1.15 (0.94, 1.40)
1.13 (0.93, 1.38)
1.13 (0.77, 1.65)
1.12 (0.90, 1.38)
1.11 (0.88, 1.38)
1.08 (0.78, 1.50)
1.07 (0.85, 1.35)
1.05 (0.86, 1.29)
1.04 (0.95, 1.15)
1.01 (0.71, 1.46)
1.01 (0.81, 1.26)
1.00 (0.72, 1.40)
1.00 (0.75, 1.33)
0.99 (0.55, 1.79)
0.98 (0.81, 1.19)
0.96 (0.82, 1.13)
0.90 (0.58, 1.39)
0.88 (0.64, 1.21)
0.82 (0.43, 1.55)
0.81 (0.43, 1.53)
0.79 (0.52, 1.21)
1.06 (1.01, 1.11)
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Fig. 1 Association between increasing genetically predicted height and risks of all, invasive and borderline ovarian tumours. Increasing height
per 5 cm predicted by weighted 609-locus genetic risk score among 39 studies. Risk of a all, b invasive and c borderline ovarian tumours. The
UK grouping includes RMH, SOC, SRO, UKR, SEA and UKO for a and b, and RMH, SOC and SEA for c
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Genetic risk score characteristics
The GRS-609 was normally distributed in controls, ranging from
15.45 to 18.99 (median= 17.23; interquartile range=
16.92–17.54). It explained 13% of variance in height, 17% after
adjusting for age and principal components (partial-R2= 12%;
first-stage regression partial-F-statistic= 2505.8 (df= 1), p < 0.001).
A 1-unit GRS-609 increase was associated with 5.2 cm greater
height. Average height was 6.2 cm greater in the highest vs.
lowest GRS quartile.
Cochran’s I2 and p-values for heterogeneity19 showed no

evidence of inter-study heterogeneity in the relationship between
either the GRS-609 (I2= 34%, p-heterogeneity= 0.07) or the
simplified GRS-363 (I2= 32%, p-heterogeneity= 0.08) and height
among controls (Supplementary Figure 1a, b). The GRS-609 was
not associated with most potential confounders of the height-
ovarian cancer association in observational studies, including age,
parity, OC use and education (Supplementary Table 3). The GRS
was marginally positively associated with age at menarche (p=
0.03), consistent with known genetic overlap between these
traits.20

Primary outcomes
Women with greater genetically predicted height had a modestly
increased risk of developing ovarian cancer (pOR= 1.06, 95% CI:
1.01–1.11 per 5 cm) (Fig. 1a; Table 2) with a greater magnitude of
association for borderline (pOR= 1.15; 95% CI: 1.02–1.29) than
invasive tumours (pOR= 1.06; 95% CI: 1.01–1.11; Fig. 1b, c;
Table 2). No significant inter-study heterogeneity was noted
(Fig. 1a–c). GRS-363 (pOR= 1.06, 95% CI: 1.00–1.11, all tumours)
and GRS-377 (OR= 1.07; 95% CI: 1.01–1.12) results were similar to
the GRS-609. The association was stronger when we restricted to
92 genotyped SNPs (pOR= 1.14; 95% CI: 1.04–1.25). Estimates
from analyses excluding low-MAF SNPs, excluding case-only
studies, or adjusting for age at menarche, were similar to primary
analyses. When we sequentially excluded SNPs associated with
ovarian or other hormonal cancers, hormone levels and tumour
development, estimates were similar or stronger than GRS-609
results. MR-Egger suggested minimal bias from pleiotropy (p= 0.1;
MR-Egger beta= 0.163 corresponded to an OR per 5 cm of 1.13
(95% CI: 1.02–1.25), confirming a significant positive association).

In contrast, for women with height and confounder data
(16 studies), the conventional analysis suggested no association
(adjusted-OR= 1.01, 95% CI: 0.99–1.04 per 5 cm). Conducting MR
within the same 16 studies yielded results similar to overall
analyses (OR= 1.06, 95% CI: 1.00–1.13) (Supplementary Table 4).

Secondary outcomes
After stratifying by subtype/behaviour, the strongest associations
were seen for clear cell (OR= 1.20, 95% CI: 1.04–1.38) and low-
grade/borderline serous cancers (OR= 1.15, 95% CI: 1.01–1.30)
(Table 2). However, CIs were wide and overlapping due to lower
statistical power in these subgroup analyses. The estimate for clear
cell cancers was also significantly elevated in our conventional
analyses (Supplementary Table 4).

DISCUSSION
We used a 609-SNP GRS to examine the relationship between
height and ovarian cancer risk for women of European ancestry.
Our data indicate a modest positive association between
genetically predicted height and ovarian cancer risk, which may
be stronger for borderline cancers. Height may be relevant to
cancer risk as a marker for lifetime growth-factor levels (e.g. IGF-1)
and/or early-life exposures (socio-economic/environmental/nutri-
tional).3, 21, 22

Observational studies are subject to biases (reverse causality,
selection bias, differential/non-differential reporting, confounding)
which cannot be ruled out as possible explanations for observed
associations. By using genotype, the MR technique can overcome
some of these biases, given three assumptions. We confirmed the
two verifiable assumptions: the GRS was associated with height,
and not with most known confounders. The GRS-menarche age
association is unlikely to explain the observed association,
because age at menarche is only weakly associated with ovarian
cancer, and women with later menarche have if anything lower
ovarian cancer risk, so if this affected our results, we would expect
the true effect to be at least as strong as the reported association.
Also, removing hormone-related SNPs, or adjusting for menarche
age, did not attenuate estimates. Owing to the limited current
biological understanding of all 609 SNPs, we could not

Table 2. Association between increasing height (per 5 cm)—predicted by a weighted 609-locus genetic risk score—and risk of ovarian cancer,
stratified by study

Histologic subtypea N studies N controls N cases Odds ratios (95% CI)b

Primary outcomes

All ovarian cancers 39 23,003 16,395 1.06 (1.01–1.11)

Invasive 39 23,003 14,549 1.06 (1.01–1.11)

Borderlinec 20 16,463 1680 1.15 (1.02–1.29)

Secondary outcomes, by histologic subtype and behaviour

Serous

High-graded 39 23,003 7933 1.05 (0.99–1.11)

Invasive low-grade and borderline 32 21,131 1408 1.15 (1.01–1.30)

Mucinous (invasive and borderline) 38 22,410 1567 1.08 (0.96–1.21)

Endometrioid (invasive) 39 23,003 2059 1.05 (0.95–1.16)

Clear cell (invasive) 35 22,051 948 1.20 (1.04–1.38)

Weights applied were β-coefficients for the relationship between each SNP and height as reported in the meta-analysis of genome-wide association studies
conducted by the Genetic Investigation of ANthropometric Traits (GIANT) Consortium.9 On the basis of the additive SNP effects suggested by GIANT, the score
summed alleles across the 609 SNPs. For the 92 genotyped SNPs, where values were missing (<2.5% per SNP), we used imputed probabilities. aIncludes studies
with >5 cases. bPooled study-specific odds ratios are reported for primary outcomes; odds ratios stratified by study are reported for secondary outcomes
(secondary analyses used single models stratified by study to maximise power). cOf the 1691 borderline tumours included in the all-case analysis, 1680 were
from 20 studies with >5 cases each. dIncludes all invasive serous cancers except low-grade (G1) (n= 469) as well as invasive serous cancers of unknown grade
(n= 1957) and primary peritoneal cancers of unknown behaviour (n= 44), because in both instances the majority would be high-grade serous. CI confidence
interval
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conclusively exclude the presence of alternate pathways from
height genes to ovarian cancer (assumption three). However, MR-
Egger and sensitivity analyses excluding pathway-specific SNPs
provided some evidence for their absence, minimising the
likelihood that our observed association is explained by pathways
separate from height/growth. Although height data were not
available for the entire population, this is unlikely to have affected
our results as we used these data only to refine the height
predictions from the GRS, and there is no reason to believe the
GRS-height relationship would be different for women with and
without height data. Further strengths of our analysis include the
large number of SNPs and power to detect modest differences.
Despite potential limitations of conventional observational

studies, our MR-estimate is almost identical to previously reported
associations, suggesting previous estimates were not appreciably
biased. The World Cancer Research Fund/American Institute for
Cancer Research meta-analysis of 24 prospective studies, and a
study pooling 47 prospective/case–control studies, both reported
a significant 7–8% increase in risk (combining invasive/borderline
cancers) per 5 cm height increase.3, 4 The lack of association seen
in the OCAC conventional height analysis reflects the greater
potential for bias in case–control studies and illustrates the value
of MR in overcoming these biases. Few previous studies have
examined borderline cancers separately, a strength of our analysis.
Previous observational studies have not reported consistent
patterns by histologic subtype2, 4, 23; our secondary analyses
were under-powered to resolve this question.
Using MR, we have established that the previously observed

association between height and ovarian cancer risk is unlikely to
have been explained by bias, and that genetic factors influencing
height play roles in ovarian cancer development. Height could
therefore be used, with other risk factors, to identify women at
elevated risk. Further research should continue to explore
mechanisms underpinning this association.
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