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Abstract: The recent discovery of nuclear and perinuclear perlecan in annulus fibrosus and nucleus
pulposus cells and its known matrix stabilizing properties in tissues introduces the possibility that
perlecan may also have intracellular stabilizing or regulatory roles through interactions with nuclear
envelope or cytoskeletal proteins or roles in nucleosomal-chromatin organization that may regulate
transcriptional factors and modulate gene expression. The nucleus is a mechano-sensor organelle, and
sophisticated dynamic mechanoresponsive cytoskeletal and nuclear envelope components support
and protect the nucleus, allowing it to perceive and respond to mechano-stimulation. This review
speculates on the potential roles of perlecan in the nucleus based on what is already known about
nuclear heparan sulphate proteoglycans. Perlecan is frequently found in the nuclei of tumour cells;
however, its specific role in these diseased tissues is largely unknown. The aim of this review is
to highlight probable roles for this intriguing interactive regulatory proteoglycan in the nucleus of
normal and malignant cell types.

Keywords: nucleus; heparan sulphate; heparan sulphate proteoglycan; perlecan; syndecan; glypican;
tensegrity

1. Introduction

Aims of this study.
This review highlights recent observations of perlecan in the nucleus and perinu-

clear regions of intervertebral disc (IVD) cells and poses questions regarding its putative
functions as a nuclear heparan sulphate proteoglycan (HS-PG) (Figure 1).

1.1. Intracellular Perlecan—What Does It Do?

The observation of intracellular perlecan in IVD cells as discrete nuclear foci [1], and
perinuclear vesicular deposits, possibly destined for transportation out of the cell, poses
some intriguing questions.

(1) Is the structure of nuclear-associated perlecan similar to the perlecan that occurs in
the pericellular and extracellular environment?

(2) What are the specific functional roles of nuclear-associated and perinuclear perlecan?
(3) What, if any, are perlecan’s interactive ligands within the nucleus and perinuclear

regions of the cell?
(4) How do (1)–(3) relate to disease processes such as those occurring in tumour development.
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Experimental studies are warranted to answer these important questions; however,
these have yet to be undertaken. Important clues as to perlecan’s potential roles in the
intracellular environment can nevertheless be deduced to some extent from the substantial
literature existing on nuclear HS-PGs in a number of cell types in health and disease [2–9].
Hopefully, the speculations we raise will stimulate researchers to answer some of these
intriguing questions.

1.2. Biosynthesis of Perlecan

Like all proteoglycans (PGs), the biosynthesis of the perlecan core protein occurs in
the rough endoplasmic reticulum (RER), and it is then transported to the Golgi apparatus
where post-translational addition of glycosaminoglycan (GAG) chains occurs [10–12].
Perlecan is then exported out of the Golgi in vesicles to the extracellular environment or
it is translocated to the nucleus or perinuclear regions. The perinuclear (Golgi) region
of the chondrocyte is the major site of radio-sulphate incorporation [13,14] and of PG
localization [11,15–19]. Addition of xylose to the PG core protein linkage region occurs in
the Golgi apparatus [20], followed by step-wise addition of two galactose residues and a
GlcA residue to complete the Xyl-Gal-Gal-GlcA linkage tetrasaccharide, which then acts as
an acceptor molecule for the assembly of HS and CS chains through the sequential action
of sulpho- and glycosyl transferases and addition of GlcA and GluNAc in HS or GlcA and
GalNAc in CS [21,22]. Nuclear/perinuclear perlecan thus appears to represent a proportion
of the endogenously produced perlecan, with the majority undergoing vesicular transport
out of the cell to the PCM and ECM, where its roles have been extensively examined. Cell
surface HS-PGs such as the syndecan family, however, can be translocated from the cell
surface to the nucleus under certain circumstances. It is not known if cell surface perlecan
can also be translocated to intracellular regions by a similar mechanism—its large size may
argue against this possibility.

Heparan Sulphate Is a Highly Interactive Molecule

Heparan sulphate (HS) is assembled from 12 variably sulphated GlcNAc-GlcA disac-
charides [23] that also undergo acetylation/deacetylation, and epimerization and structural
inversion of D-GlcA to L-IdoA in variable regions along the HS GAG chain and O-2 sul-
phation of IdoA. O-3 sulphation also occurs in HS; this is relatively rare, but has been
identified as a key interactive component of some HS sequences that regulate proteins
such as antithrombin. HS chains contain areas that are highly modified and separated
by regions of low modification. The diverse sulphated HS disaccharide presentations
are complex and, along with acetylation/deacetylation, provide a high level of structural
complexity and charge heterogeneity in HS, and consequently it has a biodiverse range
of interactive ligands [24] (Tables 1 and 2). HS is the most heterogeneous GAG. Listings
in the HS interactome demonstrate that HS binds >400 bioactive proteins [25]. A murine
study of acute pancreatic disease, however, recently identified 786 HS-binding proteins;
thus, the HS-interactome needs to be updated [26–28]. Such HS binding proteins include
growth factors, cytokines, morphogens, ECM proteins, cell adhesion molecules, proteases,
and protease inhibitors [29]. A bioinformatics analysis of mammalian proteins expressing
a heparin/HS-binding motif associated with the immune system identified 235 candidate
proteins, with the majority of these being intracellular proteins [30,31]. Physical interactions
of neurexins with leukocyte common-antigen-related receptor tyrosine phosphatases act
as synaptic organiser proteins that are regulated by HS-PGs in many neural cell types,
contributing to synaptic plasticity and cognitive learning [32,33].

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a collection of databases
covering all aspects of genomes, biological pathways, diseases, drugs and chemical sub-
stances. KEGG is used in bioinformatics and data analysis in the areas of genomics,
metagenomics, metabolomics, and omics studies dealing with molecular modelling, and
simulation systems biology and translational research in drug design and developmen-
tal applications. The KEGG PATHWAY database core wiring diagram encompasses a
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collection of pathway maps that integrate data from genes, proteins, RNAs, chemical com-
pounds, glycans and chemical reactions, and can include inputs from disease-associated
genes and drug target data held in other arms of the KEGG database collection. The
KEGG PATHWAY MAP can include data from metabolism, gene information processing
covering transcription, translation, replication, and repair, environmental processing infor-
mation (membrane transport, signal transduction), cellular processes (cell growth, death
and membrane functions), organ systems (immune, endocrine, nervous systems), human
diseases and drug development. The Gene Ontology (GO) arm of the KEGG database is a
major bioinformatics initiative designed to represent all gene and gene product data across
all species [25,35].

Table 1. Biodiverse processes and HS binding protein pathways, modified from.

A. Go Biological Process Terms Enriched in the Heparin/HS Interactome.

Term Name Count * % *

GO: 0009611 Response to wounding 120 27.8
GO: 0042330 Taxis 55 12.8
GO: 0006935 Chemotaxis 55 12.8
GO: 0006954 Inflammatory response 73 16.9
GO: 0006952 Defence response 91 21.1
GO: 0007626 Locomotory behavior 62 14.4
GO: 0006955 Immune response 91 21.1
GO: 0042060 Wound healing 51 11.8
GO: 0016477 Cell migration 57 13.2
GO: 0007610 Behavior 71 16.5
GO: 0051674 Localisation of the cell 58 13.5
GO: 0048870 Cell motility 58 13.5
GO: 0042127 Regulation of cell proliferation 90 20.9
GO: 0006928 Cell motion 70 16.2
GO: 0032101 Regulation of response to external stimulus 43 10.0
GO: 0001568 Blood vessel development 51 11.8
GO: 0001944 Vascular development 51 11.8
GO: 0051605 Protein maturation by peptide bond cleavage 33 7.7
GO: 0007267 Cell–cell signaling 76 17.6
GO: 0016485 Protein processing 36 8.4

B. KEGG Pathways Enriched in the Heparin/HS Interactome.

Term Name Count * % *

hsa04610 Complement and coagulation cascades 42 9.7
hsa04060 Cytokine-cytokine receptor interaction 63 14.6
hsa04512 ECM-receptor interaction 35 8.1
hsa04510 Focal adhesion 43 10.0
hsa05200 Pathways in cancer 52 12.1
hsa05218 Melanoma 22 5.1
hsa04062 Chemokine signaling pathway 34 7.9
hsa05020 Prion diseases 15 3.5
hsa04810 Regulation of actin cytoskeleton 33 7.7
hsa04350 TGF-β signalling pathway 18 4.2
hsa04672 Intestinal immune network for IgA production 13 3.0
hsa05322 Systemic lupus erythematosus 18 4.2
hsa04010 MAPK signalling pathway 30 7.0
hsa04640 Hematopoietic cell lineage 14 3.2
hsa04621 NOD-like receptor signaling pathway 11 2.6
hsa05219 Bladder cancer 9 2.1
hsa05310 Asthma 7 1.6
hsa05222 Small cell lung cancer 12 2.8

* Count = number of HS binding proteins, % = percentage of the identified proteins.
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Figure 1. Immunolocalisation of perlecan and type VI collagen in a 3D surface rendered image of an ovine IVD chondron
(a) and perlecan in a z-stacked image (b) and on 0.5 µm z-stacks at specific levels through additional cells (c–h). Fluorescently
labelled inner AF cells were scanned on a Leica TCS SP2 AOBS laser scanning confocal microscope (Leica, Heidelberg,
Germany) using 40× and 63× oil immersion objectives. Samples were scanned sequentially for DAPI (Ex max: 359; Em.
Max: 461; blue nuclear fluorescence) and Alexa 594 (Ex max 594; Em max: 618; red perlecan fluorescence) or DAPI, Alexa
594 and Alexa 488 (Ex max 488 nm; Em max 510 nm; green type VI collagen fluorescence). Z-stacks of 8-bit ‘optical sections’
(512 × 512 pixels) were taken at 0.5 µm increments using Leica Confocal Software (Leica, Heidelberg, Germany). Confocal
image datasets were also imported into Imaris for Cell Biologists software (Bitplane, Oxford Instruments) for 3D processing
and fluorescent localisations. To conceptualise the fluorescent labelling patterns in 3D space, Z-stacks were modelled using
maximum intensity and surface coding reconstruction algorithms [34]. A surface rendered image depicting type VI collagen,
DAPI and perlecan are shown in a chondron (a). The inset depicts blebbing of the plasma membrane showing a vesicle
containing perlecan being secreted from the cell. In (b), perlecan is immunolocalised in a z-stacked confocal image of a
chondron. Perlecan is prominent in the PCM and type VI collagen capsule surrounding the cell and in vesicles throughout
the chondron. In the inset image, perlecan is localized in the nucleus (n) in focal deposits in a non-stacked 0.5 µm confocal
images. These deposits of perlecan are not evident in the stacked image in (b) due to overlying tissue. Perlecan is localized
in (1) the type VI collagenous capsule, (2) pericellular matrix, (3) nucleus and (4) chondron surrounding the cell in (b). In
single z-stacks (c–h), perlecan localization in the perinuclear region is labelled with an asterisked arrow, and in the nucleus
and surrounding cell regions by an unlabelled arrow. The scale bar in (e) applies to all images in (e–h). Cell nuclei are
stained with DAPI (blue) and perlecan with an anti-perlecan monoclonal domain IV antibody (MAb A7L6) and NovaRed
substrate. Type VI collagen in (a) is labelled with a type VI collagen-FITC Ab. Images reproduced from [1] with permission.

Table 2. Examples of cell interactive HS binding proteins.

Protein Reference

Growth factors

EGF family [36,37]
FGF family [38–44]

VEGF [45,46]
HGF [47,48]

PDGF [49]
TGF-β superfamily [50,51]
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Table 2. Cont.

Protein Reference

Cytokines/Chemokines/Morphogens

BMPs [52]
CCL2 [53,54]
PF-4 [55]
HH [56]
Wnt [57,58]

2. Perlecan’s Roles in Vascularised, Tensional and Weight Bearing
Shear-Loaded Tissues

Perlecan is a modular, multifunctional HS-proteoglycan (HS-PG), with roles in ECM
stabilisation and organisation, cellular proliferation and differentiation, which sequesters a
number of growth factors including the FGF family, PDGF, VEGF, BMP-2 and BMP-4 and
presents these to and activates their cognate receptors to promote tissue expansion and
ECM remodelling processes in tissue repair and in development [59]. Perlecan is active
in vascular and poorly vascularised tensional and weight-bearing cartilaginous tissues
and during endochondral ossification resulting in expansion of the axial and appendicular
skeleton [60]. Perlecan has been proposed to be a cell-signalling hub co-ordinating the
action of a number of growth factors in tissue development and morphogenisis. Perlecan
attached to the lumenal surfaces of blood vessels acts as a flow sensor signalling to the
endothelial and vascular smooth muscle cells (SMCs) to regulate vasodilation, blood
pressure and vasculogenesis [61]. Perlecan domain II binds LDLs and aids in the clearance
of lipids from the circulation. Binding of LDL to SMC perlecan may also lead to membrane
depolarization, vasoconstriction and a lowering of cGMP levels with attendant effects on
SMC cell signalling.

While perlecan promotes endothelial cell proliferation, it has an opposing effect on
SMCs [62–66]. From Table 1A,B, a number of GO terms are associated with HS, displaying
an increased occurrence of HS in the search category, the term HS is enriched in the
following biological process categories: locomotory behaviour (entry 6), cell migration
(entry 9), cell motility (entry 12), regulation of cell proliferation (entry 13), Regulation of
response to external stimulus (entry 15), cell–cell signalling (entry 19). In Table 1B, KEGG
pathways enriched in the HS interactome include cytokine–cytokine receptor interaction
(entry 22), focal adhesion (entry 24), pathways in cancer (entry 25), regulation of the actin
cytoskeleton (entry 29) and MAPK signalling pathway (entry 33).

Perlecan also acts as a flow sensor in the lacuno-canalicular space, acting as an os-
teocyte mechanosensor that detects external loading through solute fluxes in the lacuno-
canalicular space [67,68]. Osteocytes are bone mechanosensors with roles in the regulation
of bone homeostasis through Ca2+ transit through calcium channels, and interactions with
G-protein coupled mechanoreceptors [69]. Perlecan also has cytoprotective roles in the
type VI collagen matrices that make up the chondron surrounding chondrocytes, interver-
tebral disc and meniscal cells through its ability to modulate the biomechanical loading
experienced by these cell types in their weight bearing environments [70]. The activity
that perlecan displays is dependent on the tissue context and the form of perlecan present
in specific tissue niches and cellular environments. Post-translational modifications to
perlecans HS chains or proteolytic degradation of its core protein can both significantly
impact on perlecan’s functional properties in situ. Perlecan also contains a number of
matricryptic modules which when released by proteases can also impact on tissue re-
pair, angiogenesis [45,71] and inhibition of angiogenesis depending on the matricryptic
module that is released [72]. These perlecan fragments influence cell adhesion, invasion,
and angiogenesis; however, it is not known to what extent these perlecan fragments are
active intracellularly, but this remains a distinct possibility. In the tumour environment,
protease-mediated changes in perlecan have been proposed to represent a molecular switch
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whereby an environment hostile to tumour development is transformed to one which
promotes tumourigenesis [73].

Perlecan domain V (LG1LG2LG3) promotes tissue repair and angiogenesis and can
act as a proteoglycan in its own right, while the LG1LG2 and LG3 fragments of perlecan
domain V inhibit endothelial, α2β1 integrin and VEGFA interactions required for blood
vessel formation, and these fragments are of interest as anti-tumour therapeutic agents [74].
It is paradoxical that intact perlecan promotes the development of a vascular supply that
supports the proliferation of tumour cells and the development of a number of cancers
while bioactive perlecan fragments inhibit tumour development by targeting its vascular
supply [75–77].

3. Mechanosensory Processes in Tensional and Weight Bearing Tissues Effect the
Nucleus and Impact on Gene Expression

The tensegrity theory, originally proposed by Ingber and colleagues in the 1990s [78,79],
suggested that mechanical forces in tissues experiencing weight-bearing, tension and
shear stresses could be transmitted from the ECM through to the PCM, and then to the cell
cytoskeleton [80], and could be sensed by the nucleus with resultant effects on gene expres-
sion, and morphological development through mechanotransductive effects on cell sig-
nalling. Such intracellular mechanical forces alter the structure of the cytoskeleton [81–84]
and regulate cell growth, migration, and tissue patterning during morphogenesis [84–86].
Since these earlier studies, the nucleus has been proposed as a mechanosensor [87,88].
Mechanical transductive effects [89] modulate cytoskeletal structures such as microtubules,
microfilaments and the actin cytoskeleton [90–95]. Such cytoskeletal remodelling has been
proposed to contribute to how early cellular life evolved [96], providing a means of altering
cell shape and a means of modulating focal adhesion complexes required to allow cells
to adhere to ECM components and undergo cell migration essential for tissue develop-
ment [97,98]. Perlecan also has modulatory biomechanical roles in the ECM and PCM of
tissues subjected to weight bearing, tension and shear forces [99]. Alterations in the ionic
balance of lipid bilayers and the evolution of membrane polarization was also a means
whereby the control of cellular behaviour evolved [100]. Cell membrane-associated GAGs
and PGs have important roles to play in determining the resting potential of cells and the
membrane polarization that initiates physiological cellular processes.

4. Membrane Polarization, Evolution of Membrane Energetics and Roles for GAGs in
Motive Proton Gradients

Cellular activity powered by proton gradients has ancient roots [101] linked to the
origins of life [101,102]. The harnessing of electrochemical ion gradients that traverse mem-
branes to drive metabolic processes are as universally conserved as the genetic code [103].
Proton gradients are used by mitochondria to drive the synthesis of ATP, a molecule
fundamental to energy production in higher animals. GAGs evolved through natural
selection processes over a 500 million-year period of vertebrate and invertebrate evolu-
tion to develop proton detection and electroconductive capability [104] generating signals
through interactions with protons to form the machinery of cell-signalling [105,106]. Proton
gradients evolved as essential regulatory components of lipid bilayers and the origin of
membrane bioenergetics [107] essential to the functional properties of cell membranes in
higher animals [108,109]. Membranes become polarized through attainment of a positive
charge on the outside of the cell and a negative charge in the inner aspect of the lipid
bilayer. This is achieved by controlling the movement of ions passively and by gated ion
channels to create action potentials central to cell–cell communication. Co-ordination of
the opening and closing of voltage-gated ion channels controls the influx and efflux of
ions (Ca2+, H+, Na+, K+), regulating membrane polarization. These processes are highly
evolved in neurons which harness these processes in signal transductive neural networks,
but all cells utilize similar processes in cell signalling to some degree during proliferation,
migration and cell adhesion.
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Phosphatases/Kinases and HATs/HDACs in Cell Signaling and Gene Regulation

Protein kinases and phosphatases catalyse the formation or hydrolysis of phosphate
groups, the transfer of phosphate groups to proteins or the hydrolysis of ATP to produce
energy, and are fundamental to life processes. Both of these enzyme classes act as phos-
photransferases, but have opposing modes of action. Kinase genes constitute only 2% of
the human genome but they phosphorylate >30% of all human cellular proteins [110,111].
Phosphorylation is a ubiquitous regulatory mechanism mediating signal transduction
in development, transcription, immune responses and in metabolic energy generation,
apoptosis, and cell differentiation. Several classes of protein kinases act specifically on
serine/threonine or tyrosine residues in proteins during cell signalling. Phosphorylation
of biomolecules by protein kinases is a fundamental aspect of cell signalling in higher
animals. Comprehensive cataloguing of the protein kinases of the human genome (the
protein kinase kinome) was completed in 2002, with the identification of 518 protein kinase
genes [112]. The human and murine kinomes have undergone proteomic analysis and
these data are now listed on the UniProtKB/Swiss-Prot protein database [113]. Histone
acetyl transferase (HAT)/histone deacetylase (HDAC) enzyme systems are also important
regulatory enzymes that operate at the gene level and, as with phosphatases/kinases, are
tightly regulated, since their aberrant regulation is implicated in many disease processes.
GAGs inhibit HATs, resulting in the compaction of the chromatin structure and a reduction
in transcription factor access to DNA. HS is the most active GAG inhibitor of the HATs [114].
Nuclear perlecan located in precise foci may act in conjunction with the HATs/HDACs
to regulate chromatin structure, transcription factor activity and gene regulation. The
importance of HS in these processes is exemplified by nuclear heparanase activity which
mediates loss of nuclear Sdc-1, enhancing HAT activity and promoting the expression of
genes that drive an aggressive tumourigenic phenotype [115].

5. Inhibition of Histone Acetyl Transferases and the Use of HDACs as
Therapeutic Agents

GAGs are potent inhibitors of p300 and pCAF HAT activities in vitro, with heparin and
HS-PGs being the most potent inhibitors [114]. Histone acetylation involves the addition
of an acetyl moiety to the terminal ε-amino lysine residues of the tails of core histones,
neutralizing the histones’ positive charge, lessening electrostatic interaction between DNA
and histones, and forming a more open chromatin structure accessible to transcription
factors. HDACs have an opposite mode of action to HATs resulting in the compaction
of chromatin, reducing access to DNA for transcription factors. HDACs have roles in
cartilage homeostasis [116] but may also be tumourigenic, leading to the development
of therapeutic HDAC inhibitors [117,118]. Modification of proteins by HATs/HDACs is
important in the regulation of gene expression, and dysregulation of this process is linked
to malignant transformation and certain diseases [119]. The recent discovery of nuclear
perlecan in IVD cells along with HDACs suggests that these act in concert to regulate
chromatin compaction, gene regulation and positively contribute to tissue homeostasis [1].

Histone acetylation/Deacetylation of Chromatin Effects Nucleosomal Structure and Impacts on
Chondrocyte Regulation

Control of acetylation/deacetylation by HATs and HDACs affects important physi-
ological and pathological cellular processes [120,121]. Acetylation of histones regulates
gene expression through influencing chromatin architecture, regulating gene expression by
opening or closing the chromatin structure to allow transcriptional access in cell cycle pro-
gression, proliferation and differentiation. Mounting evidence shows that nuclear HS and
HS-PGs have regulatory functions impacting on the cell cycle, proliferation and transcrip-
tion through their ability to influence chromatin structure in many cell types [8]. Nuclear
HS-PGs also inhibit DNA topoisomerase I activity, regulating DNA removal from super-
coils during transcription and DNA replication, re-annealing of DNA strands following
strand breakage during re-combination and chromosomal condensation, and in the dis-
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entanglement of intertwined DNA strands during mitosis [122,123]. HS charge-mediated
interactions regulate chromatin structure, nucleosomal function and gene expression [114].
It has yet to be ascertained what specific roles perlecan plays in such processes.

HDAC4 represses the attainment of chondrocyte hypertrophy, preventing endochon-
dral bone development by inhibiting the function of myocyte-specific enhancer factor
2C (MEF2C) and runt-related transcription factor 2 (RUNX2) [124]. HDAC4 is the most
extensively characterized member of the HDAC class IIa deacetylase enzyme family, which
regulates signalling networks, affecting cartilage maturation. HDAC4 promotes chromatin
condensation, reducing access of transcriptional factors to DNA and repressively regulating
chondrocyte maturation and hypertrophy, and the deletion of HDAC4 results in premature
calcification of cartilage [125]. HDAC4 null mice have squat runt-like frames—shortened
growth plate hypertrophic zones, enhanced vascular invasion and cartilage mineralization.
MMP-13, Runx2, OPG, CD34 and Wnt5a are also down-regulated and type X collagen
elevated in HDCA4 null mice. Adenoviral-mediated transduction of HDAC4 ameliorates
disease progression in a rat OA model [126], lowering the MEF2C and RUNX2 activity
that contributes to cartilage degeneration [127,128]. Increased HDAC2 activity in OA pa-
tients enhances cartilage degradation and represses cartilage-specific gene expression [129].
MicroRNAs that inhibit HDAC2 and HDAC3 [129–131] also downregulate ADAMTS-4
and 5 expression in IL-1β-mediated catabolism of human articular cartilage [129]. Based
on the above information, future studies on the role of nuclear perlecan which could act
in concert with the HDACs are warranted. Evidence from chondrocyte and cancer stud-
ies [132] indicate that this area of cell regulation may represent a new route of therapeutic
intervention [119,133–135].

6. Cytoskeleton Mediated Spatial Re-Organisation of Cellular Components in
Pre-Motile Cells

For cell migration to proceed, cellular polarization occurs in the leading and trailing
edges of the cell, the nucleus is also re-positioned towards the back of the cell and the
Golgi apparatus and centrosomes are moved toward the leading edge of the cell [136]. An
asymmetrical Ca2+ gradient is also created from the back to front of the cell to regulate
assembly of focal adhesions and promote migration. The polarized distribution of Sdc4
during cellular migration has clear roles in the migratory process, since Sdc4 KO cells
exhibit decreased movement.

The establishment of cell polarity in migrating fibroblasts is essential for cell mi-
gration and precise spatiotemporal coordination of signalling pathways producing an
asymmetrical profile with the nucleus re-located to the rear of the cell. Microtubule-
mediated central re-positioning of the nucleus and the migrating cell edge establishes
front-rear polarity and directional migration. The nuclear axis also requires alignment with
the axis of cell migration for motility to occur. This re-orientation of the nucleus occurs
through physical interconnections between the nucleus and cytoskeleton, termed a linker
of the nucleoskeleton–cytoskeleton complex (LINC) [136], and is mediated by activation
of GTPase Rho, integrin, focal adhesion kinase (FAK), Src, and p190RhoGAP signalling
pathways. Spatial induction of integrin signalling at the leading edge of the cell and FAK
and p190RhoGAP activation drives cell migration and is influenced by intracellular HS-PGs
(Figure 2). As already noted, Sdc-4 has roles in these processes; however, perlecan also
has multifunctional interactive properties (Tables 1 and 2), suggesting that it may also
participate in such processes.

In polarized motile fibroblasts, stress fibres have specific 3D orientations. Ventral
stress fibres attach to focal adhesions at both ends on the basal side of the cell, while dorsal
stress fibres, transverse actin arcs, and perinuclear actin fibres attach to the cell migration
front [137]. Perinuclear actin fibres induce rotational movement of the nucleus, aligning
it with the direction of migration. This network of dorsal fibres, transverse arcs, and
perinuclear fibres transfers mechanical signals between the focal adhesions and nuclear
envelope to regulate nuclear reorientation in polarizing cells. HS-PGs contribute to this
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process, with Sdc4 displaying specific localisations in migratory polarized cells linked to
these re-positioning processes mediated by cytoskeletal components.
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cytoskeleton that provide mechanical support to the nucleus. The nuclear envelope is a double
membrane which contains proteins that attach the membranes to one another. These include the
Sun 1/2 proteins, emerin, LAP2, and BAF, which also interact with LAM A/C nuclear proteins. The
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are also present in the nuclear envelope and allow entry of proteins in and out of the nucleus. The
NPCs are massive complex multi-protein complexes containing proteins arranged in an octameric
arrangement around a central pore.
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7. Structural Organisation of the Nucleus
7.1. Nuclear HS-PGs

Nuclear HS-PGs have previously been demonstrated in a number of cell types [138–141]
and correlated with cell proliferation [138]. Nuclear glypican (Gpc) has been found in
neurons and glioma cells, syndecan-4 (Sdc-4) in cardiomyocytes [142], Sdc-1 in fibrosar-
coma cells [143], and Sdc-2 in the nucleus of tumour cells in osteochondromas [144]. The
function of nuclear Sdc-1 is unclear; however, it may inhibit histone acetyltransferase,
leading to compaction of chromatin, decreasing DNA accessibility to transcription factors,
affecting cell cycle control, decreasing proliferation and reducing protein transcription
and transport to the nucleus. HS-PGs display shuttling properties for protein kinase C-
dependent nuclear translocation of FGF-2 in corneal trauma [139]. Nuclear HS-PGs inhibit
DNA topoisomerase I, affecting the removal of DNA supercoils during transcription and
DNA replication, regulating the re-annealing of DNA strands following strand breakage,
re-combination and chromosomal condensation; and disentanglement of intertwined DNA
strands during mitosis [122,123]. HS has previously been shown to modify the chromatin
structure in the nucleosome and have potential effects on gene expression mediated by
transcription factors.

7.2. Nuclear Heparanase Regulates HSPG Structure and Modulates Gene Activity

Degradation of nuclear Sdc-1 by heparanase enhances histone acetyltransferase activ-
ity and promotes expression of genes that aggressively drive the attainment of a tumour
phenotype. Prolyl-4-hydroxylase controls the transactivation of NF-κB/p65 [145] and
enhances the catabolic effects of inflammatory cytokines on cells in the NP. HIF-1 and HIF-2
control the expression of the prolyl hydroxylases (PHDs) in NP cells [146].

7.3. HS-Proteoglycan Mediated Interactions with the Cytoskeleton

Sdcs have roles in many disease processes, including the spread of tumours, inflam-
matory disorders, and arthritis [7]. The cytoplasmic domains of the cell surface Sdcs have
interactive properties with the actin cytoskeleton and can bind and activate cell signalling
molecules, thus the Sdcs, besides acting as cell surface PGs, are also receptors that initiate
cell signalling [147]. Members of the Sdc family are also translocated to the nucleus [4,7,9].
Sdc-4 binds to the cytoskeleton through α-actinin and regulates signalling through protein
kinase C and the RhoA and Rho kinases [148,149]. Sdc-4 may have tension-sensing roles,
detecting changes in the cytoskeleton in wound contraction, interactions between tumours
and surrounding stromal tissue, tissue fibrosis, cellular adhesion and pre-motile changes in
cells [148,150]. Sdc-4 participates in cytoplasmic interactions that orchestrate adhesion and
growth factor receptor signalling [151]. Sdc-4 modulates cell polarity and cell migration by
influencing the positioning of the centrosome in pre-motile cells [136] and the reorientation
of cell nuclei prior to establishment of front-rear polarity in migratory cells [152]. Sdc-4′s
interactions with dorsal stress fibres, transverse actin arcs, and perinuclear actin fibres
form an interconnected network that induces nuclear movement in polarizing pre-motile
fibroblasts [137]. Dynamin II interacts with Sdc-4 to regulate focal adhesion and stress fibre
formation in migratory cells [153]. The cytoplasmic domain of the cell surface Sdcs consists
of two conserved regions (C1, C2) and a variable region (V). Contractin interacts with the
C1 region, regulating formation of the cytoskeleton, protein secretion, GTPase-mediated
cell signalling and cellular migration [154]. Src, proto-oncogene tyrosine protein kinase,
a non-receptor protein tyrosine kinase, also interacts with the C1 domain and promotes
cell signalling pathways that control gene transcription, immune responses, cell adhe-
sion, cell cycle progression, apoptosis, migration, and cellular transformation [155]. Sdcs
also have roles in Wnt signalling cascades [156]. Syndesmos interacts with the variable
region of the cytoplasmic domain of Sdc-4, altering cytoskeletal structure and mediating
cell spread [157]. The members of the α-actinin protein family interact with the variable
region of the Sdcs, affecting actin cross-linking and promoting cytokinesis, cell adhesion
and cell migration [158]. Synectin interacts with the C2 domain of Sdc-4 and inhibits cell
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migration [159]. Syntenin, a multifunctional Sdc binding adaptor protein, interacts with the
C2 region, regulating cell signalling including the Wnt pathway [160,161]. The peripheral
plasma membrane protein CASK, a multifunctional scaffolding protein, interacts with the
C2 region, regulating neural synaptic activity. Synbindin is a cytoskeletal neuroregulatory
C2 binding protein in Sdc-2 [162]. It is not known if the C1, C2 and V regions of cytoplasmic
Sdcs interact directly with genes or with adaptor proteins or in a similar manner to cell
membrane Sdcs (Figure 3).
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Figure 3. The cytoplasmic domain of the syndecan family and its interactive proteins. Amino acid sequences in the
cytoplasmic domains of Sdc 1–4 contain conserved C1 and C2 regions and a variable region (V) interactive with a number of
proteins. (a) Cortactin regulates protein secretion and activation of Rho-GTPases in vesicular trafficking, exocytosis, GTPase
signalling, and transcription to regulate cell migration. Cortactin activates the actin-related protein 2/3 (Arp2/3) complex,
and is regulated by post-translational modifications, including phosphorylation and acetylation [154]. (b) Src, proto-
oncogene tyrosine protein kinase is a non-receptor protein tyrosine kinase that is activated following immune responses,
integrin, adhesion, receptor protein tyrosine kinase, G protein-coupled and cytokine receptor mediated interactions in
cell-signalling pathways that control gene transcription, immune responses, cell adhesion, cell cycle progression, apoptosis,
migration, and cellular transformation [155]. (c) Syndesmos is a protein that interacts with the cytoplasmic domain of
syndecan-4 and mediates cell spreading and actin cytoskeletal organization [157]. (d) α-Actinins are a major class of actin
filament cross-linking proteins expressed in virtually all cells assisting in cytokinesis, cell adhesion and cell migration [158].
(e) Synectin is a PDZ protein involved in Sdc-4-dependent interactions and may have a role in the assembly of the syndecan-4
signaling complex and inhibition of cell migration [159]. (f) Syntenin is a multifunctional Sdc binding adaptor protein that
regulates signalling pathways including Wnt signalling and cellular functions [160,161]. (g) The CASK gene is essential
for normal neural development. CASK is a multidomain scaffolding protein that is highly expressed in the mammalian
nervous system targeting neuronal synapses to regulate ion channel signalling [163]. (h) Synbindin is an atypical PDZ Sdc-2
binding protein [162,164].
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7.4. Nuclear Protein Interactions with HS-PGs Effects Cytoskeletal Organization

When shed from the cell surface, the ectodomains of the Sdcs are endocytosed and
they interact with cytoskeletal components [148,149]. Some CD44 isoforms also interact
with cytoskeletal components [165]. Sdc1 regulates signalling pathways that control prolif-
eration and migration of malignant mesothelioma cells and other cancers, translocating to
the nucleus through a tubulin-dependent transport mechanism. Co-immunoprecipitation
experiments with Sdc1 in mesothelioma cells have identified a large number of interactive
proteins [5]. Proteomic analysis focussing on Sdc1 interactive nuclear proteins revealed
pathways regulating cell proliferation, RNA synthesis, splicing and transport. A proteomic
map of Sdc1-nuclear interactive proteins identified a previously unknown role for Sdc1
in RNA biogenesis. Transcriptome and proteomic analysis of fibrosarcoma cells in which
nuclear translocation of Sdc1 occurs has revealed the activation of the TGF-β pathway
and altered expression of early growth response 1 (EGR-1), never-in-mitosis gene a-related
kinase 11 (NEK11), and dedicator of cytokinesis 8 (DOCK8) genes that are coupled with
growth and cell-cycle regulation. Nuclear translocation of Sdc1 also alters the activity of
the transcription factors E2F, NFκβ, and OCT-1. The transcripts and proteins affected by
Sdc1 translocation are thus dominated by effects on protein phosphorylation and post-
translational events due to alterations in intracellular signalling. Addition of exogenous HS
or CS to arginine-rich peptide-DNA polyplexes leads to an increase in their gene delivery
efficiency, improved intracellular routing and nuclear accumulation. This may explain
the occurrence of HS-PGs in the nucleus of multiple cell types [166]. Shed Sdc1 is present
in high levels in many tumour cell types where it shuttles growth factors to the nucleus
by altering histone acetylation in host cells [9]. Heparanase regulates Sdc-1 levels in the
nucleus [2], and reduction in nuclear Sdc-1 levels by heparanase enhances histone acetyl-
transferase activity, inducing aggressive genes that promote tumourigenesis. Dynamin II
interacts with Sdc-4, a regulator of focal adhesion and stress fibre formation [153]. Intra-
cellular ligands also promote nuclear translocation of FGFR1 [167]. Nucleolin is a nuclear
target for the internalisation of Gpc-1 [168].

The nuclear envelope, a double membrane structure, encloses the nucleus and is
punctuated by holes known as nuclear pore complexes (NPCs) [169]. The NPC is a massive
(110 MDa in humans) octameric structure consisting of more than 100 proteins called nucle-
oporins [170], which function as transport routes for ions and macromolecules into and out
of the nucleus and have roles in mitotic events [171,172] and cellular regulation [173–176].
The identification of perlecan, a PG with a 467 kDa core protein, in distinct foci in the
nucleus of IVD cells suggests that the upper limit for entry of macromolecules into the
nucleus through NPCs may be much higher than previously reported [170,177]. The NPC
contains a large central channel, ~7 nm in width and 50 nm in length, which allows entry
into and out of the nucleoplasm. NPCs display morphological and functional plasticity,
adopting various shapes depending on their contextual environment [177].

8. Control of Chromatin Structure and Gene Regulation by HS-PGs

Chromatin is the principal component of the cell nucleus and is a complex arrangement
of DNA and histones (H1-H4) that organise DNA into structural units called nucleosomes.
Two H3 and two H4 proteins initially form a tetrameric structure, to which are attached
two H2A/H2B dimers to form the core histone structure, while ~150 base pairs of DNA
wrap around this to make a nucleosome core particle along with linker histones such as H1.
Histones condense the chromatin structure, resulting in nuclear DNA, becoming wrapped
around histones in the nucleus as chromosomes. Histones are basic proteins that interact
with negatively charged DNA [169], some eight histone octameric complexes of doublet
H2A, H2B, H3, and H4 appear as spools around which the thread-like DNA wraps itself
to form “ beads on a string” structures [178]. The nucleosomes are wrapped into 30 nm
spirals called solenoids containing additional H1 linker histones which maintain chromatin
and the chromosome structure. Exposed N- and C-terminal histone tails in these structures
regulate chromatin organization [178,179]. Nucleosome assembly involves interactions
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between positively charged histone and negatively charged DNA [180]. Neutralization
of positive charges or the introduction of negative charges on histone H3/H4 tails, by
acetylation or phosphorylation or attachment of HS/HS-PGs, weakens the histone–DNA
interaction, leading to relaxation of the chromatin structure and increased accessibility to
transcriptional factors [169]. Interaction of RNA with histone tails also promotes an open
chromatin structure [181]. Control of the chromatin structure is normally highly regulated,
and acetylation/deacetylation are tightly controlled processes. Aberrant control of these
processes can deleteriously affect gene expression and lead to certain diseases including tu-
mour development [182–184], and thus it is important that the correct chromatin structure
is maintained [185]. The presence of nuclear HS-PGs has been demonstrated in many stud-
ies over the last five decades [138–141], and in many cases correlated with cell proliferation,
suggesting that they interact with FGFs and FGFRs to initiate cell signalling [138]. Nuclear
HS-PGs inhibit DNA topoisomerase I activity, which has important roles to play in the re-
moval of DNA supercoils during transcription and DNA replication, in the re-annealing of
DNA strands following strand breakage during re-combination and chromosomal conden-
sation, and in the disentanglement of intertwined DNA strands during mitosis [122,123].
HS charge-mediated interactions represent a potential means whereby the chromatin
structure, nucleosomal function and thus gene expression are regulated.

9. Nuclear FGF-1, FGF-2 and FGFRs

FGF-1 and FGF-2 are major perlecan ligands in the PCM/ECM where they are chon-
droprotective, mechanotransductive agents. Perlecan acts as a low affinity co-receptor
for the FGFs and activates FGFRs, leading to signal transduction and cell signalling. Nu-
clear/perinuclear perlecan may display similar interactive properties with nuclear FGF-1,
2 and FGFR1, but studies are warranted to confirm this possibility. The nuclei of quies-
cent cells do not contain FGFR1; however, cells treated with FGF-2 display a dose- and
time-dependent increase in nuclear FGFR1. Cell-surface FGFR-1 labelled with biotin is
detected later in the nuclear fraction of FGF-2-treated cells, indicating that nuclear FGFR-1
is translocated from the cell surface [186]. The identification of perlecan as distinct foci in
the nucleus, a mechanosensitive organelle, is an intriguing observation given the known
matrix stabilising properties that perlecan has in tissues and its participation in biomechan-
ical processes and mechanotransductive cell signalling events initiated outside the cell.
However, the localisation of perlecan in the nucleus does not automatically demonstrate
that it has roles in the stabilisation of nuclear architecture. The nucleus has a sophisti-
cated structure containing an interactive nuclear envelope and cytoskeletal proteins with
established dynamic nuclear mechano-supportive roles, and roles for perlecan in such
processes may thus be redundant. Perlecan may have other functional roles in the nucleus
unrelated to its roles in the extracellular environment. Four structurally related intracellular
non-signalling FGFs have been identified that interact with voltage-gated ion channels to
regulate intracellular sodium levels.

The FGF family has 23 members, and these interact with tyrosine kinase receptors
FGFR1-4 to initiate cell signalling. Activated FGFRs phosphorylate specific tyrosine
residues, mediating interactions with cytosolic adaptor proteins in the RAS-MAPK, PI3K-
AKT, PLC, and STAT intracellular signalling pathways. A single FGF2 transcript can
be translated into five FGF2 protein isoforms, an 18 kDa low molecular weight secreted
isoform and four larger 32–34 kDa high molecular weight isoforms [187–189] that are not
generally secreted but have intracellular properties including roles in ion channels and
stem cell renewal [190]. Nuclear FGFR and polypeptide growth factor signalling regulates
skeletal development and disease processes [191,192]. FGFRs can enter the nucleus during
the cellular transition between proliferation and differentiation where they interact with
chromatin remodelling proteins, altering the epigenetic state and transcriptional status
of target genes. The FGFRs are known by several alternative names, illustrating their
biodiverse biological areas of interaction (Table 3).
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Table 3. Alternative names for FGFRs reflects their diverse areas of interest.

HUGO/MGI Symbol Receptor Name Alternative Symbol Explanation of Symbol

FGFR1/Fgfr1 Fgf receptor 1

Flg

Flt2

Cek

KAL2

K-sam

Fms-like gene, ambigiously named since the FLG gene
encodes filaggrin a skin protein

Fms-like tyrosine kinase 2, a gene on chromosome
8p12 encoding FGFR1

Chicken embryo kinase 1, chick cochlea eph class
receptor tyrosine kinase [193]

Kallman syndrome 2, mutated FGFR-1 found in
Kallman syndrome 2 [194]

KATO III cell-derived stomach cancer amplified gene,
sharing homology with FGFR-1 [195]

FGFR2/Fgfr2 Fgf receptor 2
Bek

Cek3
Kgfr

Bacterial kinase, alias for FGFR2
Chicken embryo kinase 3, chick fgfr2
Keratinocyte growth factor receptor

FGFR3/Fgfr3 Fgf receptor 3 Cek2 Chicken embryo kinase 2, chick fgfr3
FGFR4/Fgfr4 Fgf receptor 4 Tkf Tyrosine kinase related to FGFR4

Neuronal Cell-Repair Responses Initiated by FGF-2, FGFR-1 and HS-PGs

In the intact cerebral cortex, FGF-2 and FGFR1 mRNA and protein are constitutively
expressed by astrocytes and neurones, respectively, and FGF-2 protein is localized exclu-
sively to astrocyte nuclei. FGF-2 signals through FGFR-1 using HS-PGs as co-receptors.
Examination of FGF-2, FGFR1, Sdc-2 and -3, Gpc-1 and -2, and perlecan in neurones and
glia in and around adult rat cerebral wounds shows that FGF-2 mRNA is up-regulated
only in astrocytes and FGFR1 mRNA expression increased in glia and neurones. FGF-2
may act as a paracrine autocrine neuron and glial factor. FGF-2 protein localizes to the
cytoplasm and nuclei of injured neurones and glia with weak or no staining of HS-PGs
in normal cerebral glial nuclei, and only a few immunopositive neurones. Differential
co-localization of HS-PGs, trafficked intracellular FGF-2 and FGFR1 after injury indicates
that FGF-2-FGFR1-HSPG complex formation regulates FGF-2 storage, nuclear trafficking
and CNS cell-specific injury responses.

10. Investigations on Nuclear Interactomes Reveals the Roles of Nuclear HS-PGs

Recent studies evaluating nuclear interactomes represent a potential new gene reg-
ulatory area for therapeutic targeting of cells in disease processes. Proteomic analysis of
the nuclear Sdc-1 interactome of mesothelioma cells identified proteins interacting with
nuclear proteins and associations with pathways related to cell proliferation, RNA syn-
thesis, splicing and cellular transport [196]. The cardiac SDC-4 interactome has also been
evaluated and 21 novel and 29 previously described interaction partners have been identi-
fied, including mechanotransducer muscle LIM domain proteins which regulate myocyte
differentiation and have roles in the conductive properties of cardiac tissues. Assessment
of the RNA polymerase-I RNA interactome showed this to be highly enriched in nucleolar
proteins associated with ribosome biogenesis and RNA binding activity dependent on
RNA polymerase-I activity [142]. The RNA interactome is important in the regulation
of chromatin-nucleosomal organisation. Nuclear HS-PGs have been proposed to have
regulatory roles in nucleosomal modifications that regulate transcription factor activity
and gene regulation. Many of these interactions involve the HS chains of the HS-PGs,
which explains the gene regulatory effects reported for nuclear heparanase [197–201] and
the association of HS-PG expression with tumour development.

11. Changes in Chromatin Structure in the Nucleus—Can Perlecan
Stabilise Chromatin?

The nucleus of mammalian cells is surrounded by a nuclear envelope containing two
membranes and nuclear pores, an aqueous channel for bidirectional transport of ions and
macromolecules between the nucleus and the cytoplasm [170,177]. Chromatin’s structure
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is highly sensitive to its ionic microenvironment. In order for DNA to fit into the limited
space of the cell nucleus and maintain its dynamic accessibility for transcription, replica-
tion, repair and recombination, it exists as a complex with nuclear histones, facilitating
folding, compaction and DNA accessibility in the nuclear chromatin. Ionic environments
influence the compaction of chromatin under physiological conditions. K+, Mg2+ and Na+

are the main cytoplasmic cations. In the presence of Mg2+, Na+ ions promote folding of
beads-on-a-string nucleosomal arrays into 30 nm fibres, whereas K+ and Mg2+ abrogate this
process, demonstrating the complexity of the regulation of dynamic chromatin compaction
in vivo [202]. The GAG chains of HS-PGs such as perlecan carry counter-ions and thus
may act as ion reservoirs in discrete locations in the nucleus, and thus may regulate the
nuclear ionic microenvironment. Chromatin fibres stabilise nucleosomes under torsional
stress [203]. HS-PGs counter tensional and shear stresses in connective tissues, and thus
their localisations in precise regions of the nucleus may also safeguard chromatin from ex-
cessive supercoiling during DNA replication through interactions between basic chromatin
and negatively charged GAG chains on perlecan [204].

12. Nuclear Mechanosensory Properties: Dynamic Interplay of Proteins in the
Nucleoskeleton, Nuclear Envelope and Cytoskeleton Provide Mechanical Support to
the Nucleus

The cell nucleus is surrounded and protected by the nucleoskeleton, a large network
of physically interconnected structural nuclear proteins attached via cytoskeletal filaments
to adhesion molecules as an integrated scaffold equipping the nucleus with an ability to
cope with mechanical stress (Figure 2). This network also has mechanotransductional
properties that allow the nucleus to perceive and respond to mechanical stress. Biophysical
microenvironmental stimuli significantly impact on cell function and behaviour. The nu-
cleus is surrounded by a nuclear envelope consisting of outer and inner nuclear membranes
separated by a perinuclear space that has roles in the regulation of nucleoplasm–cytoplasm
communication, and it also provides a scaffold for chromatin attachment, regulates chro-
matin dynamics during cell division and has roles in mechanotransduction [205,206]. The
cell nucleus is the largest and stiffest organelle, and is connected to the cytoskeleton by
the LINC complex [206]. The nucleus, nuclear envelope and associated cytoskeleton have
roles in mechanotransduction pathways that regulate cellular activity [96]. Cell nuclei
are mechanosensitive organelles that allow cells to perceive and respond to mechanical
stimuli [207,208].

Nesprin1-4 (nuclear envelope spectrin repeat proteins) are a family of intracellular
scaffolding proteins that are found primarily in the outer nuclear membrane [209–211]; they
form part of the LINC complex connecting the nucleo- and cyto-skeleton through the nu-
clear envelope [206]. The LINC complex is a multi-protein structure involving interactions
between emerin, lamin A/C, SUN1, SUN2, nesprin-1 and nesprin-2 in the nuclear envelope
and with actin filaments and type B lamins. Since the LINC complex has roles in signalling
pathways and gene regulation, aberrant assembly of the LINC complex or mutations in
any of its many component proteins can lead to a number of human diseases [212]. The
SUN-domain family of nuclear envelope proteins interact with KASH-domain partners to
form SUN-domain bridges across the inner and outer nuclear membranes, physically con-
necting the nucleus to every major component of the cytoskeleton [213,214]. SUN-domain
proteins are multifunctional mechanical adaptors and nuclear envelope receptors that have
diverse roles in the positioning of the nucleus and its re-orientation during cell polarization
prior to cell migration, the localization of centrosomes, telomere positioning and apoptosis.
Barrier-to-autointegration factor (BAF) interacts with double-stranded DNA, chromatin,
histones and nuclear envelope proteins, protects genomic DNA and has essential regulatory
functions in cellular replication [215–217] (Figure 2).

The LINC complex has a broad range of functions besides the maintenance of nuclear
architecture, nuclear orientation and migration during cell polarization, and also has modu-
latory effects on gene expression. SUN-domains also have roles in the positioning of the nu-
cleus during the cell polarization preceding cell migration [213,214]. Kinesin Eg5 is a motor
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protein involved in the establishment of a bipolar spindle and is one of 45 kinesins encoded
in the human genome. The mitotic spindle is a microtubule-based assembly that sepa-
rates the chromosomes during cell division [218]. The lamin-A/C-LAP2α-BAF1 protein
complex regulates mitotic spindle assembly and positioning [219]. Cytoskeletal actin has
well-known structural roles controlling cell shape, but also participates in many processes
in the nucleus [211]. Monomeric and polymeric actin occur in the nucleus, monomeric actin
regulates gene expression through transcription factors, chromatin regulating complexes
and RNA polymerases. Nuclear proteins, such as emerin, regulate actin polymerization in
the nucleus, and polymeric actin has roles in nuclear organisation and maintenance of ge-
nomic integrity. Dynein is an anchorage protein that aids in the generation of traction forces
transmitted through microtubules that facilitate the central positioning of centrosomes in
cells [220]. Intermediate filaments resist tensile and compressive forces in cells [221]. They
are crosslinked to each other and to actin filaments and microtubules by desmin, filamin
C, plectin, and lamin (A/C) [222]. Formation of cytoplasmic and nuclear networks by
intermediate filaments provide cells with mechanical strength, while abnormalities in the
structure of these assemblies leads to cell fragility in a number of genetic diseases. Anchor-
age of intermediate filament networks to the nuclear envelope and the actin and tubulin
cytoskeleton occurs through the cytolinker protein plectin. Emerin has diverse functions,
including the regulation of gene expression, cell signalling, nuclear structure, chromatin
tethering and chromatin architecture and mechanotransduction. Relatively little is known
about many of the component proteins of the nucleoskeleton; however, emerin is one of a
few nuclear membrane proteins where extensive knowledge on its biochemistry, interactive
partners, functions, localizations, posttranslational regulation, roles in development and
links to human disease is available [223,224]. Barrier-to-autointegration factor (BAF) inter-
acts with double-stranded DNA, chromatin, histones and nuclear envelope proteins [215].
BAF appears to protect the genome and enables cell division [216]. LAP2 (thymopoetin), a
lamin- and chromatin-binding nuclear protein, occurs as three alternatively spliced ubiqui-
tously expressed cellular proteins of 75 kDa (alpha), 51 kDa (beta) and 39 kDa (gamma).
LAP2 is the mouse homologue. LAP2 regulates nuclear architecture by binding lamin B1
and chromosomes. LAP2 interacts with BAF [217,225] and mediates membrane-chromatin
attachment and lamina assembly [217,225]. As shown in Tables 1 and 2 and as already dis-
cussed, perlecan interacts with a large number of ligands through specific core protein and
HS interactions. Thus, while specific interactions for perlecan in the nuclear, perinuclear
or cytoskeletal regions other than with chromatin have yet to be identified, it is highly
probable that perlecan will interact with some of these components.

13. Nuclear HS-PGs and Tumour Development

The prominent localisation of HS-PGs in the nucleus of tumour cells promotes the
development of many tumour cell types (Table 4). HS-PGs are also found in normal cell
nuclei, indicating they also have cell regulatory roles in normal tissues. Snail signalling
contributes to prostate cancer progression [226] and metastasis through nuclear transloca-
tion of the intracellular domain of Sdc-1 in prostate cancer cells. In order to metastasize,
cancer cells often transition from an epithelial to a mesenchymal phenotype through an
EMT transition, and modify the ECM, facilitating escape into the circulation and avoiding
immune surveillance. Eventually, they migrate and adhere to distantly located tissue sites
and form secondary tumours. Cell surface Sdc-1 on normal keratinocytes interacts with
the LG4/LG5 domain of laminin-322, promoting cellular migration; similar interactions
also operate in tumour cells [227]. Sdc2 promotes the invasive properties of lung adenocar-
cinoma cells—this effect is mediated by syntenin-1 [228]. Syntenin-1, mda-9 (melanoma
differentiation-associated gene-9) is a multifunctional adaptor protein containing tandemly
repeated PDZ domains that facilitate cytoskeletal attachment of Sdcs, regulating transmem-
brane receptor trafficking and tumour cell metastasis [229–231]. Syntenin-1 also promotes
the metastasis of lung adenocarcinoma cells, colorectal tumour cells and glioma cells by
promoting the generation of exosomes to propagate tumour cell development [232,233].
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Nuclear translocation of Sdc-1 hampers the proliferation of fibrosarcoma cells by interfering
with the cell cycle; however, proteolytic generation of a C-terminal fragment of Sdc-1 by
ADAM 17 inhibits lung tumour cell migration but promotes lung epithelial tumour cell
migration and metastasis [171] Shed Sdc-1 mediates tumour–host cell communication in
myeloma cells by shuttling growth factors to the nucleus and by altering histone acety-
lation [9]. The importance of the HS chains of Sdc-1 in the prevention of tumour spread
is exemplified by the heparanase-mediated loss of HS in Sdc-1, which enhances histone
acetyltransferase activity and results in gene expression to drive an aggressive tumour
cell phenotype. Colon cancer cells transfected with the syntenin-1 gene display increased
migratory activity [228]; however, interaction of syntenin-1 with the cytoplasmic domain
of Sdc-2 abrogates this migratory activity.

Table 4. Nuclear HS and HSPGs identified in a number of tumour cell types and in normal cells.

Tumour Type HS or Proteoglycan Identified Reference(s)

Bladder carcinoma HS [234]
Breast carcinoma SDC-1 [235]

Glioma HS, GPC-1 [6]
Chondrosarcoma SDC-2 [144]

Hepatocyte carcinoma HS [236,237]
Lung cancer, Adenocarcinoma HS, SDC-1 [235]

Melanoma HS [238]
Mesothelioma SDC-1 [204,235]

Monocytic leukemia HS [239]
Myeloma SDC-1 [2,115]

Neuroblastoma SDC-1 [235]

Nuclear HS and HSPGs identified in normal mammalian cell nuclei

Cell type HS or Proteoglycan Reference

Astrocytes HS, GPC-2, SDC-2, SDC-3 [240]
Neurons HS, GPC-1, SDC-2, SDC-3 [6]

Corneal fibroblasts
Corneal endothelial cells HS, HSPG [114,241–243]

Esophageal keratinocytes HS [244]
Intervertebral disc cell Perlecan [1]

14. Perlecan’s Contributions to the Malignant Phenotype
14.1. Perlecan-FGF-FGFR Interactions

Abnormalities in nuclear morphology and architecture are commonly observed in
aged and senescent cells and can lead to apoptotic changes and cell death [245]. In cancer,
there is extensive re-organisation of nuclear structure and dynamic changes in genomic
organisation which may lead to nuclear stabilisation and the ability of the cancer cell to
avoid apoptotic changes and remain in a highly proliferative state. A total of 18 receptor
tyrosine kinases (RTKs) are known to be trafficked from the cell surface to the nucleus,
including FGFR1-3 [246].

Many of these nuclear RTKs, including FGFR1-3, are overexpressed in cancer. There
are also many cases where HSPGs have been shown to stabilise nuclear structure or regulate
gene expression [247]. Cell membrane FGFR has well-known cell-signalling properties
that regulate cell proliferation and differentiation during development and homeostasis.
However, nuclear FGFRs also have critical roles to play in cell proliferative processes [3].
Full-length FGFRs internalized by endocytosis or arising from de novo synthesis enter
the nucleus by means of a β-importin-chaperone-dependent mechanism. Once inside the
nucleus, FGFRs interact with chromatin remodelling proteins to alter the epigenetic state
and transcriptional status of target genes. A large number of studies have demonstrated the
translocation of FGFR1 from the cell surface to the nucleus [248]. FGFR-1 and its binding
partner, cyclic amp-response element binding protein (CREB), act as a nuclear regulatory
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complex, interacting with and regulating numerous genes and diverse developmental
signals [248].

Perlecan has well-known roles as a FGF co-receptor and also interacts with and
activates FGFRs. The presence of perlecan in small nuclear foci is highly suggestive
of a regulatory role in FGF–FGFR interactions that promote cell proliferation. This is
in agreement with the properties of perlecan in the extracellular environment, where it
promotes cellular proliferation and differentiation. There is a strong likelihood that nuclear
perlecan also promotes FGF–FGFR interactive processes that induce cell proliferation, a
hallmark of cancer, which may explain the association of perlecan with a large number of
cancer types (Table 4).

14.2. Perlecan-HS Interactions with Histones

The sulphated GAGs of the CS and HS side chains of perlecan have interactive prop-
erties with the basic lysine and arginine residues of histones, which are extremely basic
proteins and thus display a positive charge, explaining how electrostatic interactions with
the negatively charged GAG chains of perlecan can mediate strong interactions with
histones. In myoblasts, HSPGs modulate FGF-2 activity and regulate skeletal muscle
differentiation [249]. In vitro binding assays have demonstrated that histone H1 binds
specifically to perlecan. Immunofluorescence microscopy demonstrated an extracellu-
lar pool of histone H1 colocalized with perlecan in the ECM of myotube cultures and
in regenerating skeletal muscle. Histone H1 in the ECM strongly stimulates myoblast
proliferation via a HS-dependent mechanism. This is consistent with the cell proliferative
roles attributed to perlecan in tumour development.

14.3. Perlecan-VEGF-2 Interactions Promote Vascularisation of Tumours

Perlecan also interacts with VEGF2 and promotes angiogenesis and the blood supply
that is so critical to tumour development and metastatic spread [45].

14.4. Perlecan Contributes to Cancer Promoting Processes Proposed by Hanahan and Weinberg

Hanrahan and Weintrub [9] proposed that all cancer cells (i) require an ability to evade
apoptotic changes, (ii) have a sufficient store of growth factors, (iii) display sustained angio-
genesis, (iv) have limitless proliferative capacity, and (v) display tissue invasive metastatic
properties that promote tumour development. Perlecan could potentially support all of
these processes.

14.5. Perlecan and Potential Antagonism with Histone Transport to the Nucleus

Perlecan could potentially impact on gene expression through antagonising histone
transport into the nucleus. The transport of histones from the cytoplasm to the nucleus
of the cell, through the nuclear membrane, is a regulated cellular process required for the
supply of new histones to the nucleus, essential for DNA replication and transcription [250].
Chromatin contains the core histone proteins H3, H4, H2A and H2B and the linker histone
H1, which need to be transported from the cytoplasm into the nucleus [250]. Histones
finetune the organisation and functional properties of chromatin [251]. Entry of histones
into the nucleus does not occur by passive diffusion, despite the relatively small size of
these proteins, but occurs by complexation of histones with a family of chaperone transport
proteins that accompany the histones through the nuclear pore to the nucleus. These
chaperones also ensure that inappropriate histone interactions with other proteins does
not occur in the cytoplasm. It is interesting to ponder whether perlecan can potentially
regulate or antagonise these histone interactions; if so, this would impact DNA replication
and gene expression. In vitro binding assays have demonstrated that histone H1 binds
specifically to perlecan, and thus there is the potential for perlecan to act as an intracellular
competitive histone binding partner.
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14.6. Electrostatic Interactions between Lysine and Arginine Histone Residues and Perlecan-HS

The interaction of HS with histones is a multi-point electrostatic interaction that
stabilises chromatin structure. Depolymerisation of perlecan’s HS chains by nuclear hep-
aranases or O-6 desulfation of HS by Sulf 1 and 2 would potentially regulate such in-
teractions. Patients expressing high levels of heparanase display elevated expression of
proteins involved in chromatin remodeling and several oncogenic factors compared to
patients expressing low levels of heparanase [247]. This supports a role for heparanase
in driving tumour progression. Heparanase promotes relaxation of chromatin structure
and transcriptional activity. HSPGs also regulate chromatin structure but in an opposite
manner, resulting in condensation and stabilisation of chromatin structure and inhibition
of transcriptional activity [247]. Perlecan has been proposed as a molecular switch, acting
initially to deter tumour development, but when it is modified by MMPs and heparanase
it can be transformed into a tumour-tolerant matrix component [73]. Heparanase is pref-
erentially expressed in neoplastic tissues and associated with histone modifications that
contribute to tumour metastasis and angiogenesis [252].

15. HS Is Involved in Regulatory Processes in Cancer
Histone Acetylation-Deacetylation, HS and Regulation of the Malignant Phenotype

Histones are the main structural proteins of chromatin in mammals. Histone acety-
lation/deacetylation is an epigenetic mechanism whereby regulation of gene expression
is catalysed by histone acetyltransferases (HAT) and histone deacetylases (HDAC) [253].
The alterations in DNA structure that influence the activity of transcription factors, which
induce or repress gene transcription. HATs catalyse acetylation and gene transcription and
promote the transport of newly synthesized histones from the cytoplasm to the nucleus,
whereas HDACs mainly silence gene expression and are promising anti-cancer agents.

Glycosaminoglycans inhibit HAT in vitro, with HS being the most potent inhibitor.
The Sdc-1 ectodomain shed from the cell membrane by proteases can translocate to the
nucleus of tumour cells and inhibit HAT and tumour development; however, this translo-
cation process is blocked by HS [9]. Heparanase can be used to regulate Sdc-1 levels in the
nucleus [2]; however, removal of HS from the nucleus by nuclear heparanase promotes
an aggressive tumourigenic phenotype by enhancing HAT activity, which elevates the
expression of tumour-promoting genes.

16. Potential of HS as a Therapeutic Target in Cancer

HS has emerging roles in oncogenesis of potential therapeutic value for human cancers
as part of a complex HS signalling network [254]. Cell-surface HSPGs of the Sdc and
Gpc families have key roles in the regulation of cell behaviour, cell signalling, and cell
matrix interactions in normal and pathological tissues [255–257]. The soluble Sdc and Gpc
ectodomains shed from cells by proteases act as circulating regulatory PGs for normal
and tumour cells, where they become translocated into the nuclei of these cells [258]. Cell-
surface Sdcs and Gpcs contain bound growth factors that migrate with the shed HSPG to
be taken up by more distant cells where nuclear heparanase releases the bound growth
factors, promoting cell proliferation and differentiation and the pathogenesis of certain
disease processes in cancer and inflammation [259,260]. Key functional aspects of the
HS component of these PGs are thus evident—6-O sulfation in particular is an important
functional determinant of HS. Selective de-sulfation of HS by Sulf-2, a 6-O de-sulfatase
enzyme, modulates ligand interactivity of HS and down-line cell signalling, contributing to
improved survival rates in head and neck squamous cell carcinoma [261]. HS and HSPGs
thus represent key therapeutic targets in the clinical treatment of cancer [262].

17. Conclusions

The observation of perlecan as a nuclear-associated/perinuclear component in normal
cells of the IVD is an intriguing finding and opens up the possibility that perlecan may
somehow modulate nucleosomal organization or effect transcriptional regulation and gene
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function. The presence of perlecan ligands (FGF-1, FGF-2, FGFR1) in nuclear locations
suggests that they may also have roles in these regulatory processes. FGF-3, and FGF-
11-14 are also found in the nucleus. A lot needs to be learnt of the potential roles of
nuclear-associated perlecan, together with its interactive ligands, and thus further studies
are warranted. Chip sequencing may be a useful approach to determine DNA binding
sequences for perlecan. If perlecan directly regulates gene expression, this may represent a
novel therapeutic pathway worthy of further exploration in the treatment of disc disorders
and lower back pain. Nuclear perlecan is also frequently found in many tumour cells and
roles in the aberrant regulation of gene expression in these cases may also be evoked. It is
incongruous that perlecan should have been localised in nuclear and perinuclear locations
in IVD cells that experience biomechanical stimulation. Connective tissue cells also contain
a sophisticated dynamic mechanoresponsive cytoskeleton and nuclear envelope that protect
the nucleus and allow it to perceive and respond to such environmental forces. While
nuclear-associated perlecan has been observed, it cannot be presumed that it provides
mechanical support in the nucleus in a similar manner to how it performs this role in
the pericellular and extracellular environment. Further studies need to be undertaken to
assess this possibility. It may well be that such roles for perlecan are redundant given
the sophisticated dynamic cytoskeletal and nuclear membrane proteins and their roles in
nuclear stabilization. Perlecan may therefore have totally unrelated properties which have
yet to be discovered, in a similar manner to the non-signalling FGFRs, which have roles in
the regulation of voltage-gated ion channels, rather than in growth factor signalling. HS
and perlecan are, however, highly interactive with a wide repertoire of ligands, and the
probability that HS binding proteins are also present in the nucleus and cytoskeleton is
high. Experiments need to be conducted to ascertain this possibility. It is already known
that perlecan HS chains interact with chromatin through electrostatic interactions, and
this may explain its focal localization in the nucleus. Further studies therefore need to be
undertaken to determine the significance of the nuclear localization of perlecan in normal
and malignant cell types.
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Abbreviations

ADAM a disintegrin and metalloproteinase
ADAMTS a disintegrin and metalloproteinase with thrombospondin motifs
BAF barrier-to-autointegration factor
BMPs bone morphogenetic proteins
CASK calcium/calmodulin dependent serine protein kinase
DOCK8 dedicator of cytokinesis 8
E2F a group of genes that encode a family of transcription factors involved in

control of the G1/S transition
EGR-1 early growth response 1
EMT epithelial-mesenchymal transition
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FAK focal adhesion kinase
FGF fibroblast growth factor
GTPase nucleotide guanosine triphosphatase
HAT histone acetyl transferase
HDAC histone deacetylase
HIF-1/HIF-2 hypoxia inducible factor-1/2
KASH Klarsicht, ANC-1, Syne Homology
LAP2 Thymopoetin
LDL low density lipoprotein
LG4/LG5 laminin G like domains 4 and 5
LINC a linker of nucleoskeleton-cytoskeleton complex
MAPK mitogen-activated protein kinase
MEF2C myocyte-specific enhancer factor 2C, MADS box transcription enhancer factor 2
NEK11 never-in-mitosis gene a-related kinase 11
NF-κB/p65 a NF-κB/Rel protein member encoded by the RelA gene
NFκβ nuclear factor kappa-light-chain-enhancer of activated B cells
OCT-1 octamer transcription factor-1
OPG Osteoprotegerin
pCAF HAT p300/CBP-associated factor complex with HAT activity
p300 histone acetylase p300
PDGF platelet derived growth factor
PDZ PDZ, a combined term consisting of the first letter of Post synaptic density

protein, Drosophila post synaptic density protein, and Zonula occludens-1 protein
PHDs prolyl hydroxylases
PI3K-AKT phosphatidylinositol-3-kinase/a serine/threonine protein kinase
PLC phospholipase C
RAS RAS term is derived from two rat sarcoma cancer causing viruses
Rho Rho family of GTP’ases
RTK receptor tyrosine kinase
RUNX2 runt-related transcription factor 2
Src proto-oncogene tyrosine-protein kinase
SMCs smooth muscle cells
STAT signal transducer and activator of transcription proteins
SUN Sad1 and UNC-84
VEGF vascular endothelial cell growth factor
Wnt The term Wnt is derived from a mouse proto-oncogene (Int1, integration-1 protein)

and the Wingless protein identified in Drosophila. The Wnt term is a condensation
of the Int and Wg protein terms and stands for the Wingless-related integration site.
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