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Abstract

Background: Drug side effects are one of main concems in the drug discovery, which gains wide attentions. Investigating
drug side effects is of great importance, and the computational prediction can help to guide wet experiments. As far as we
known, a great number of computational methods have been proposed for the side effect predictions. The assumption
that similar drugs may induce same side effects is usually employed for modeling, and how to calculate the drug-drug

similarity is critical in the side effect predictions.

Results: In this paper, we present a novel measure of drug-drug similarity named “linear neighborhood similarity”, which is
calculated in a drug feature space by exploring linear neighborhood relationship. Then, we transfer the similarity from the
feature space into the side effect space, and predict drug side effects by propagating known side effect information
through a similarity-based graph. Under a unified frame based on the linear neighborhood similarity, we propose
method “LNSM” and its extension “LNSM-SMI" to predict side effects of new drugs, and propose the method
“LNSM-MSE" to predict unobserved side effect of approved drugs.

Conclusions: We evaluate the performances of LNSM and LNSM-SMI in predicting side effects of new drugs,
and evaluate the performances of LNSM-MSE in predicting missing side effects of approved drugs. The results
demonstrate that the linear neighborhood similarity can improve the performances of side effect prediction, and
the linear neighborhood similarity-based methods can outperform existing side effect prediction methods. More
importantly, the proposed methods can predict side effects of new drugs as well as unobserved side effects of

approved drugs under a unified frame.
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Background

A drug is a chemical substance which can treat, cure or
prevent diseases, but all drugs can may have unexpected
effects. In this paper, side effects refer to adverse effects of
drugs. According to the reports of Food and Drug Ad-
ministration (FDA), many drugs were withdrawn from
markets because of fatal side effects. Identifying side ef-
fects of candidate drug molecules is critical for the success
of drug discovery [1-6]. For drug safety, the investigation
of side effects should be conducted before marketing new
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drugs. Since wet methods are usually time-consuming and
labor-intensive, researchers developed the computational
methods to predict drug side effects.

For a long time, researchers defined preclinical drug-
induced effect patterns to investigate the structure-
response relationships or structure-property relationships
[7-11], and then utilized them to identify drug side effects.
However, these methods have to analyze data case by case,
and are not suitable for complicated data. In recent years,
the machine learning technique becomes more and more
popular, and has been introduced to predict drug side
effects. In general, machine learning-based methods are
designed to complete two tasks. As demonstrated in Fig. 1,
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Fig. 1 Predicting side effects of new drugs (a) and predicting missing side effects of approved drugs (b)
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one task is to predict side effects of new drugs (abbreviated
“SEND”), and the other task is to predict missing side ef-
fects of approved drugs (abbreviated “SEAD”).

As far as we know, many methods have been proposed
for the SEND task, and they usually predict drug side
effects from their structures or related features. Huang
[12] considered drug targets, protein-protein interaction
networks and gene ontology annotations, and adopted
two types of classifiers: support vector machine (SVM)
and logistic regression, and then built prediction models.
Pauwels [13] explored chemical substructures of drugs,
and utilized k-nearest neighbor classifier, support vector
machine, ordinary canonical correlation analysis and
sparse canonical correlation analysis to construct predic-
tion models respectively. Yamanishi [14, 15] adopted the
sparse canonical correlation analysis to build models
based on drug substructures and drug targets. Liu [16]
merged five types of drug feature vectors, and respect-
ively utilized logistic regression, naive Bayes, k-nearest
neighbor classifier, random forest and SVM to build pre-
diction models. Huang [17] combined protein-protein
interaction networks and drug substructures to build
prediction models by using SVM. Zhang formulated the
side effect prediction as the multi-label learning, and
adopted the multi-label KNN to make predictions [18].
There are also several methods designed for the SEAD
task. Cheng [19] utilized the resource allocation method
to infer missing side effects from the known side effect-
based network. Zhang formulated the original problem
as the recommender systems, and utilized the resource
allocation method, the restricted Boltzmann machine
method and the collaborative filtering method to predict
unobserved side effects [20]. In general, most existing
methods were developed for either SEND task or SEAD
task, but few methods can be used for both tasks.

In related studies, researchers usually assumed that
similar drugs may induce same side effects, and then
built side effect prediction models based on the assump-
tion. The assumption is established on the biological
common sense, and similarity-based models have good
performances in the side effect prediction. Clearly, the
drug-drug similarity is the key to the development of
similarity-based models. In previous work [21], we

considered a new measure named “linear neighborhood
similarity” to calculate drug-drug similarity, and built
prediction models to predict side effect of new drugs. In
this paper, we present a unified frame based on linear
neighborhood similarity to predict side effects of new
drugs (SEND task) as well as unobserved side effects of
approved drugs (SEAD task).

In this paper, we present the linear neighborhood
similarity to calculate drug-drug similarity in a drug
feature space, and then transfer the linear neighbor-
hood similarity from the feature space into the side
effect space. Therefore, we can predict drug side
effects by propagating known side effect information
through a similarity-based graph. We propose method
“LNSM” and its extension “LNSM-SMI”, which re-
spectively make use of single features and multiple
features to predict side effects of new drugs (SEND
task); we propose the method “LNSM-MSE” which
can predict unobserved side effect of approved drugs
based on known side effects (SEAD task). The com-
putational experiments show that the linear neighbor-
hood similarity can produce better performances than
other similarity measures in our models. When evalu-
ated by cross validation, the proposed methods can
produce high-accuracy performances for both SEND
task and SEAD task, and outperform benchmark
methods.

Methods

Datasets

Motivated by studies on big data, researchers have con-
structed several databases to facilitate the computational
works about drugs. SIDER database [22] contains
approved drugs and their reported side effects, which
were extracted from public documents and package in-
serts. PubChem Compound Database [23, 24] contains
experimentally validated information about substances,
especially their structures. DrugBank database [25-28]
contains FDA-approved small molecule drugs, biotech
drugs, nutraceuticals, experimental drugs and their re-
lated non-redundant protein (drug target, enzyme, trans-
porter, carrier) sequences. KEGG DRUG database [29] is
a comprehensive database for approved drugs in Japan,
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USA, and Europe, providing chemical structures, targets,
metabolizing enzymes and etc.

Various features about drugs can be extracted from
above databases. The drug chemical substructures pro-
vide direct information related with side effects, and are
available in PubChem Compound Database. Drug targets
may play roles in the particular metabolic or signaling
pathway, and thus incur side effects; transporters are
responsible for drug absorption, distribution and excre-
tion in tissues; enzymes affect the metabolism to activate
drugs, and may be associated with side effects. The path-
ways and indications are usually considered as the direct
factors that induce drug side effects. The information
about targets, transporters, enzymes and pathways are
available in DrugBank database. Drug indications are
provided in SIDER database.

From above data sources, Pauwels et al. [13], Mizutani
et al. [14] and Liu et al. [16] compiled several benchmark
datasets, and used them for the drug side effect predic-
tion. In our previous work [18], we also compiled a data-
set, and we named it “SIDER 4 dataset” [18]. Table 1
detailedly describe above mentioned datasets. The data-
sets contain drugs and their side effects, and include
drug-related features as well. The features in different
datasets are introduced. Pauwels’s dataset has only one
drug feature: substructure, and Mizutani’s dataset has
two features: substructures and targets; both Liu’s data-
set and SIDER 4 dataset has six drug-related features.
Numbers in Table 1 represent the number of corre-
sponding descriptors for a feature. For example, 881
types of substructures are defined in PubChem, and the
feature “substructure” has 881 descriptors because of
881 types of substructures.

Linear neighborhood similarity

As introduced above, we usually have different features
to describe the chemical or biological characteristics of
drugs. Since one feature is actually a set of descriptors, a
drug can be described by a subset of descriptors in the
feature, and thus represented as a binary feature vector,
whose dimensions means the presence or absence of de-
scriptors by using the value 1 or 0. When we have differ-
ent features, we can represent a drug as feature vectors
in different feature spaces.

Table 1 Details about benchmark datasets
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A drug can be considered as a data point in the feature
space. How to calculate drug-drug similarity in a feature
space is of the most importance for the drug side effect
prediction. As far as we know, researcher have proposed
several measures to calculate the similarity between data
points in the feature space, and popular similarity mea-
sures are Jaccard similarity, Cosine similarity and Gauss
similarity. Here, we present a novel similarity measure
“linear neighborhood similarity” for the side effect pre-
diction, and introduce them as below.

Roweis et al. [30] revealed that the locally linear patch
of the manifold in a feature space can be described by
data points and neighbor data points; Wang et al. [31]
discovered that each point in the high-dimension space
may be reconstructed by its neighbors.

Let X; denote the p-dimensional feature vector of
drugs d; in a feature space, i=1,2, ---N. By considering
feature vectors as data points in the feature space, we as-
sume that a data point X; approximate to the linear
combination of neighbor data points, and write the ob-
jective function, which minimizes the reconstruction
error,

2
& = 1 Xi=2; Xy eN(Xo) wi X |I” + Nlwil|?

2
= Zx[jxikEN(Xi)WiJ/Gi/vikwiaik + AZX:‘, GN(XL')(WZ‘J/)
= WiT(Gi + )\I)Wl

5~t-le/€N(Xi)Wt,i, = 17 Wi’i,.ZO

(1)

where N(X) are the set of K nearest neighbors of X;. I is
the identity matrix of order Now; = (w; 1, Wi 2, ***, Wi 1) T G
= (Gya) - If Xy, Xy eN(X)), Gy = (Xi-X;)" (Xi=X,) 5
otherwise, G;;, = 0;i;=1,2, - K, ixr=1,2, -, K w;;, de-
scribe how to construct X; from X, and be approximately
taken as the similarity between two drugs. The first term
of (1) is the reconstruction error; the second term of (1) is
for regularization, and X is the hyper parameter.

The parameter N is very important for the
regularization form of (1). Here, we discuss how to set
the parameter. Since le; eN(Xi)w; =1, 0< Iwl?<1,

Dataset #drug #side effect #substructure #target #transporter #tenzyme #pathway # indication
Pauwels's dataset 888 1385 881 N.A N.A N.A N.A N.A
Mizutani's dataset 658 1339 881 1368 N.A N.A N.A N.A

Liu's dataset 832 1385 881 786 72 m 173 869

SIDER 4 dataset 1080 2260 881 1050 9 160 268 2537

N.A means unavailable information
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and then ”Xi_zi/‘Xi/-eN(Xi)Wi.i/Xi/”2 = ”Zz‘i_Xi/eN(Xi)
wii, (Xi=X3) |l 2<p. p is the dimension of feature vectors in
the feature space. Clearly, p > 1, and we can let A\=1 to
make sure that the error term is greater than the
regularization term in (1).

We can adopt the standard quadratic programming
technique to solve (1) for each data point X;, i=1,2, -+,
N. The pairwise similarities between N drugs can be
written as a Nx N similarity matrix W= (wy, wy, -,
wa) L. We notice that the regularization term is not used
if A =0. Therefore, we can calculate the linear neighbor-
hood similarity which we name “LN similarity” if A =0,
and calculate the regularization form of linear neighbor-
hood similarity which we name “RLN similarity” if A = 1.

By using linear neighborhood similarity, we can de-
velop prediction methods for the SEND task and SEAD
task, which are described in Fig. 2. Methods for SEND
task are introduced in section 2.3, and the method for
SEAD Task is introduced in section 2.4.

Linear neighborhood similarity-based methods for SEND
task

In this section, we propose methods for the SEND task
by using the linear neighborhood similarity. One method
named “LNSM” is to make predictions based on single
features about drugs; the other named “LNSM-SMI” is
the extension of LNSM, which can make predictions by
integrating multiple features about drugs.

Linear neighborhood similarity method (LNSM)
Given N drugs, these drugs represented as feature vec-
tors X;, X5, -, Xy in a p -dimensional feature space,
where X; = (X1, X, -, X;,) . Suppose we want to predict
M types of side effects for drugs, the presence or ab-
sence of side effects for N drugs can be represented as
M-dimensional vectors named side effect profiles Y7, Y5,
,YN Yi:(Yila Yi27 RN YiM): where Yijzl, if the

ith drug has the jth side effect; else, Y;;=0,i=1,2, --'N,
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dataset for training models. We respectively concentrate
X1, Xo, -+, Xy and Y7, Yy, -+, Yy row by row, and obtain
two matrices and Y. In the feature space, we can easily
calculate linear neighborhood similarities between N
drugs, which are denoted by a similarity matrix W.
Then, we describe how to build LNSM models.

First of all, we construct a directed graph, which
uses N given drugs as nodes and drug-drug similar-
ities as edge weights. We consider a side effect term
as a type of label, and a node has the label if the
drug has the side effect. The ith column of Y re-
sponse to the labels for N nodes in terms of ith side
effect term. Label information is propagated on the
graph, by following the rule that a node absorbs la-
bels of neighbors with the probability a and retain
the initial labels with the probability 1 - a. Consider-
ing all side effect terms simultaneously, we can for-
mulate the update equation in the matrix from,

YPH = qWYP + (1-a)Y° (2)

Where Y° is the matrix for initial label information,
and Y = Y°. Y is matrix representing the updated labels
for N nodes. The iteration will converge to

Y = (1-a)(l-aw) 'Y’ (3)

Where [ is the identity matrix of order N. Y is final la-
bels for N nodes.

When we have a new drug X,,,,, for prediction, we take
the drug as out-of-sample data, and calculate the simi-
larities between X, and N known drugs in the feature
space. The similarities are represented by a vector W,
= (Woew, b Whew,2 "> Wnew, N)- Lhus, we can predict the
side effects of X,

Ynew=Whew x Y

According to the above discussion, LNSM predicts

=1,2, --M. Therefore, {(X;,,Y;)}Y, are annotated side effect of new drugs from single drug features.
N

Linear Neighborhood Linear Neighborhood Similarity

SEND Task— Similarity —  Method with Similarity Matrix

Method(LNSM) Integration(LNSM-SMI)
Linear Neighborhood
Similarity
Linear Neighborhood Similarity
SEAD Task— Method for Missing Side
Effects(LNSM-MSE)
Fig. 2 A unified frame of predicting side effects of drugs by using linear neighborhood similarity
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Linear neighborhood similarity method with similarity
matrix integration

In order to predict side effects of new drugs, researchers
usually collect various drug features, and construct the re-
lationship between features and their side effects. When
we have multiple drug features, we have to face the chal-
lenges of integrating features to make predictions. For the
purpose, we propose the linear neighborhood similarity
method with similarity matrix integration (LNSM-SMI) by
extending LNSM.

Given N drugs, we have K features to describe char-
acteristics of drugs. Let X¥ denote the feature vector
based on kth feature for the ith drug, and Y; denotes
the side effect vector for the ith drug. In K feature
spaces, we calculate similarities between N drugs, and
represent them as similarity matrices. K features can
produce K similarity matrices Wi, Wy, -+, Wx. Then,
we describe how to build models based on multiple
features.

First of all, the study in [31] proved the label propaga-
tion on the graph shown in (2) is equivalent to a convex
optimization problem,

miny a(tr( Y (1-W)Y)) + (1-o) [ Y-Y[; @)

When we have similarity matrices W3, W, -+, Wi
based on K features, we consider the linear sum of these

matrices ZfilﬁiWi. By replacing W in (4) with Z{;ei
W, we can obtain the optimization problem,

min, , a(tr(YTZ,.K ) e,-(/—W,-)Y)> +(1-a) [ Y-Y°[| + [le]
(5)
K
sty 8 =1;Vi,620
i=1

where §(>0) is hyper parameter for the regularization
term 161>

The matrix Y°=[Y3,Y,, -+, Yal” represents observed
side effects for N known drugs, and we can set ¥ = Y°
and rewrite (5) as

mind a(tr( (') " 6,(1-w)Y°) ) + 56

K
sty 6= 1;Vi,20

i=1

We introduce the Lagrange Multiplier terms A and #
= (1,12 )" to solve the optimization problem,
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L(6,\,n) =808"6 + aC'6-A(e70-1)-n" 7)

Where ¢;= tmce((Yo)T(I— W)Y, C=(cy,cp CK)T,
ande=(1,1, -, 1)%. The KKT condition is,

VolL(8,\,n) =260 + aC-Ae-n =0
e’6-1=0 (8)
r]iZO?efZOa nief = O:I: 17 7K

In (8), L(a, A, 1) =280, +ac,— A -y;=0 and 7; =250,
+ac;— A, and thus we know that 6,(260; + ac; - 1) =0.
Since 0<6;<1, we can know that 6,=0 if A -—ac;<0;
otherwise, 6;= (1 - ac;)/(26). We reorder ¢y, ¢y, -+, cx as
¢1 ¢y < - £ ¢k, and then the corresponding weights 6, 2
0,>:->26,>0;,1="=0xg=0. Therefore, we can ob-
tain the solution for the optimization problem in (5),

I = max{n \ézgzzzl(ck—ci)7n =1,2K}

=1 (28 +a), 0)

26+ oY (ck—C)
a 216

6; 7ni:07i:17“'7/

6 = 0.n; % (a7, (G-00-28)i= 1+ 1, K

©)

Let ¢qx = max {cy, ¢, -+, ¢3. Clearly, the free param-
eter § determine the number of nonzero weights. In
order to guarantee 625} (cx—c;), we can set § =%
S i1 (max—cx). Therefore, we can estimate weights in a
simple form,

O = —p U =12, K
Zkzl (Cmax_ck)

When we have a new drug X, described by K fea-
tures, we can calculate similarities between the new drug
X,ew and known drugs, represented by K vectors W' _ ,
i=1,2,--,K. Thus, we can predict the side effects of
X,.ew based on K features,

Yoow = (31 0Wieu ) ¥°

Clearly, LNSM-SMI is the extension of LNSM to make
use of multiple features for prediction.

(10)

Linear neighborhood similarity method for SEAD task
In this section, we propose the method “LNSM-MSE” to
predict missing or unobserved side effects of approved
drugs by using the linear neighborhood similarity.

Given N Drugs and M side effect terms, we known
that these drugs have observed side effects. By linking
drugs and induced side effects, relations between drugs
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and induced side effects can be formulated as a bipartite
network. The bipartite network can be described by an
N x M association matrix A, where A4; = 1 if the drug i in-
duces side effect j and A;; = 0 otherwise. For each drug d;, i
=1,2, -+, N, the associate profile of d; is the vector A(j, :)
=(A;1, App, -, Aipg), which represents the known side ef-
fects of the drug. The drug-side effect bipartite network
and the association matrix are demonstrated in Fig. 3.

Then, we calculate linear neighborhood similarities W
between drugs based on their association profiles, and
construct the directed graph which uses drugs as nodes
and use similarities as edge weights. The known side ef-
fect information is propagated on the graph as described
in section 2.2.2, and the update will converge. Thus, we
can predict missing side effects of N approved drugs,

Y= (1-a)(l-aw)'A

If A;; =0, the entry Y; indicates the probability of drug
d; inducmg the jth s1de effect. Therefore, LNSM-MSE
predict missing side effects of approved drugs based on
their known side effects.

Results and discussion

Evaluation metrics

In the paper, we evaluate prediction models by using
five-fold cross validation (5-CV). The five-fold cross val-
idation in the SEND task randomly splits all drugs into
equal-sized subsets. In each fold, four subsets of drugs
are used as the training set, and other drugs are used as
the testing set. The models are constructed on training
set with annotated features and side effects, and then
predict side effects of drugs in the testing test from fea-
tures. In the SEAD task, the five-fold cross validation
splits all known side effects into equal-sized subsets. We
construct the prediction models based on all drugs and
known side effects in the training set, and apply the
model to predict unobserved side effects for all drugs.

In the SEND task, the side effect prediction is a multi-
label learning task [18]. Therefore, we adopt several
evaluation metrics for the multi-label classification to
evaluate models, i.e. Hamming loss, one-error, coverage,
ranking loss and average precision. In addition, we use
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the area under ROC curve (AUC) and the area under
the precision-recall curve (AUPR). The smaller scores of
one-error, coverage, ranking loss and hamming loss indi-
cate better results, and the smaller scores of AUC and
AUPR mean better results.

For the SEAD task, we adopt several binary classifica-
tion metrics to evaluate the performances of models, in-
cluding specificity (SP), sensitivity (SN), accuracy (ACC),
F-measure (F), recall, precision, AUC and AUPR,

For all drugs and all side effect terms, the associated
drug-side effect pairs which indicate that drug induces
the side effect are much more than other pairs. Since
data is imbalanced, we adopt the AUPR as the primary
metric to evaluate the models in both SEND task and
SEAD task.

Performances of linear neighborhood similarity methods
for SEND task

By using the linear neighborhood similarity, we present
the linear neighborhood similarity method (LNSM) and
the linear neighborhood similarity method with similar-
ity matrix integration (LNSM-SMI). LNSM uses single
drug features to make predictions; as the extension of
LNSM, LNSM-SMI integrates multiple features for pre-
dictions. In this section, we evaluate LNSM and LNSM-
SMI based on Liu’s dataset.

Performances of LNSM
LNSM can build the prediction models based on the sin-
gle features. Liu’s dataset has a variety of features, and
we respectively construct prediction models based on
the different features, and evaluate their usefulness.
LNSM calculates drug-drug similarity in a feature
space, and then predict side effects of new drugs. There
are two parameters in LNSM: the absorbing probability
a and the neighbor number K. Liu’s dataset has 832
drugs, and thus the five-fold cross validation has about
665 training drugs in each fold. Therefore, the neighbor
number K should be less than 665 in our study. To test
the impact of parameters on LNSM, we consider a in
{0.1,0.2, ---0.9} and K in {200,400,600} to build prediction
models. In addition, we consider different similarities:
Jaccard similarity, Cosine similarity and Gauss similarity

Drug1 Drug2 Drug3 Drug4 .. DrugN

w99 7 ) 9

& & & &

& =
sm SE2 SE3 .. SEM

Side Effects

Fig. 3 Drug association profiles defined on known side effects
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Fig. 4 AUPR scores of different similarity-based models based on Liu's data under different conditions. a~f demonstrate the performances of models
based on different drug features in Liu's data. LN-200: the models based on the LN similarity and 200 neighbors

Treatment

to compare with the linear neighborhood similarity (LN)
and regularized linear neighborhood similarity (RLN).
Figure 4 demonstrates AUPR scores of all prediction
models evaluated by five-fold cross validation.

According to the results in Fig. 4, LNSM prediction
models which use LN similarity and RLN similarity pro-
duce robust results for the parameters: the neighbor
number K and absorbing probability a. RLN similarity is
the LN similarity with the regularization term. The
introduction of the regularization term usually enhances
generalization capability of prediction models. One
drawback of LN is that the G’ in the Eq. (1) may be a
singular matrix, and the introduction of the regularization
term can alleviate the singular matrix problem in solving
quadratic programming. Therefore, we have observed that
LNSM models based on RLN similarity can lead to better
experimental results than LNSM models based on LN
similarity under all conditions. In general, the LNSM
models produce the best results when using 400 neighbors
and a of 0.8.

Table 2 5-CV performances of prediction models on Liu's dataset

Figure 4 also demonstrates the results of prediction
models based on different similarities. In fact, the linear
neighborhood similarity and its regularized form calcu-
late the similarity in a feature space by considering linear
relationship of data points, and the similarity can be
transferred into the side effect space and be used by the
label propagation, which is also in a linear form. In con-
trast, other similarities (Jaccard similarity, Cosine simi-
larity and Gauss similarity) calculates the drug-dug
similarity in a nonlinear from. Therefore, the models
based on LN similarity and RLN similarity yield better
AUPR scores than models based on other similarities.

Superiority of LNSM is demonstrated in this section.
The parameters: the neighbor number of 400 and o of
0.8 are used for LNSM in the following experiments.

Performances of LNSM-SMI

When diverse features are available, researchers usually
combine or integrate multiple features in order to
achieve high-accuracy prediction models [18, 20, 32—38].

Data Methods AUC AUPR Hamming Loss Ranking Loss One Error Coverage Average Precision
Enzyme LNSM 0.8898 04187 0.0473 0.0821 0.1659 846.3846 0.4696
Pathway LNSM 0.8886 04273 0.0470 0.0776 0.1647 814.6298 04932
Target LNSM 0.8991 04708 0.0452 0.0690 0.1538 7923726 05216
Transporter LNSM 0.8896 04147 0.0477 0.0817 0.1611 8493161 04762
Treatment LNSM 09013 04836 0.0446 0.0710 0.1262 806.8558 0.5232
Substructure LNSM 0.8944 04538 0.0459 0.0714 0.1490 803.5228 05184
All data LNSM-SMI 0.8986 0.5053 0.0435 0.0670 0.1154 789.8486 0.5476
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Fig. 5 AUPR scores of LNSM-MSE models using different similarities for SEAD task

As discussed above, we have multiple features to de-
scribe chemical and biological characteristics of drugs.
Here, we test the performances of the integration
method: the linear neighborhood similarity method with
similarity matrix integration (LNSM-SMI), which inte-
grate diverse and multiple features.

All prediction models are evaluated based on Liu’s
dataset by using 5-fold cross validation. Table 2 shows
the performances of integration models LNSM-SMI
which use multiple features and LNSM models based on
single features. We respectively build six LNSM models
by using six features, and build a LNSM-SMI model by
integrating six features. As shown in Table 2, the feature
“indication” can produce the LNSM model with best
performances, and the performances of targets, sub-
structures, pathways, enzymes and transporters are
sorted descendingly. Clearly, the data integration model
LNSM-SMI can greatly improve the performances of
LNSM based on indications, achieving the AUPR scores
of 0.5053. The improvements in terms of other evalu-
ation metrics can be observed as well. Therefore,
LNSM-SMI can effectively combine multiple features to
predict side effects of new drugs.

LNSM-SMI has the weights ay, ay, -+, ax for similar-
ity matrices, which are calculated from K different

features. We analyzed how to estimate weights in
LNSM-SMI, and give out the analytical solutions in
(10). Thus, we investigate weights ay, ao, -, ax in
LNSM-SMI models. The weights a3, ay, -+, ax directly
indicate the features’ contributions to the data inte-
gration models, and we can observe that features
which have better performances in LNSM can usually
gain greater weights in LNSM-SMI. We further con-
duct simulation experiments to demonstrate the im-
portance of weights in LNSM-SMI. Here, we
randomly generate 100 sets of weights, and use them
to construct LNSM-SMI models. We analyze the
AUPR scores of these LNSM-SMI models evaluated
by 5-CV, and our statistics is 0.4912 + 0.0104. The re-
sults show that the optimal weights are very
important for LNSM-SMI, and arbitrary weights can-
not yield the superior performances. Clearly, our esti-
mation in (10) can effectively determine the optimal
weights, and produce the satisfying results in the
computational experiments,

Performances of LNSM-MSE for SEAD task

By using the linear neighborhood similarity, we develop
LNSM-MSE to predict missing side effect of approved
drugs.

® Enzyme
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Fig. 6 AUPR scores of models based on different features for SEAD task (neighbor number = 600)
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Fig. 7 The visualization of parameters and AUPR scores of LNSM-MSE

LNSM-MSE calculates drug-drug similarity based on
the drug side effect association profiles, which are
defined on the known side effects of approved drugs,
and then build models. First of all, we consider different
similarity measures, including Jaccard similarity, Cosine
similarity, Gauss similarity, LN similarity and RLN simi-
larity for the purpose of comparison. We consider the
neighbor number K 200,400 and 600 for LN similarity
and RLN similarity. The probability « 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8 and 0.9 are considered for the label
propagation. Figure 5 demonstrates AUPR scores of dif-
ferent models. The results indicate that LN similarity
and RLN similarity also outperform other similarities in
predicting missing side effects of approved drugs (SEAD
task). Since LN similarity has similar performances as
RLN similarity in the SEAD task, we use RLN similarity
to construct LNSM-MSE in the following study.

Since we have multiple features about drugs in Liu’s
dataset, we can calculate drug-drug RLN similarities
based on different features, and build the prediction
models which are similar to LNSM-MSE. Here, we
respectively use different features to construct LNSM-
MSE models, and compare different features. As shown
in Fig. 6, the results demonstrate that the association
profile can have significantly better performances than

other features. Clearly, association profiles of drugs can
bring critical information for modelling, and LNSM-
MSE can produce the AUPR score greater than 0.65 by
only using the association profile.

Finally, we consider greater ranges for parameters
neighbor number K and the absorbing probability a, and
determine the optimal parameters for the LNSM-MSE,
which utilizes the association profile and RLN similarity.
For neighbor number K, we consider 100, 200, ...., 800;
we consider the absorbing probability a 0.1,0.2,...0.9. We
try different parameter combinations, and AUPR scores
of LNSM-MSE models based on different parameter
values are visualized in Fig. 7. LNSM-MSE can produce
the best results when K =800 and a = 0.3, and these par-
ameter values are used for final LNSM-MSE models in
following experiments.

Comparison with benchmark methods

As we mentioned, lots of methods have been pro-
posed to predict drug side effects, and some methods
which provided source codes and datasets are usually
used as benchmark methods for comparison. These
benchmark methods we consider are Pauwels’s
method [13], Mizutani’s method [14], Cheng’s method
[19], Liu’s method [16], RBMBM [20], INBM [20] and

Table 3 Performances of our methods and other state-of-the-art methods

Dataset Method AUC AUPR Hamming Loss Ranking Loss One Error Coverage Average Precision
Pauwels's dataset Pauwels's method 0.8827 0.3883 0.0577 0.0827 0.1779 832.7827 04616
LNSM 0.8941 04491 0.0444 0.0713 0.1633 790.9471 0.5126
Mizutani's dataset Mizutani's method 0.8665 04107 0.0557 0.0888 0.1854 8629757 04795
LNSM 0.8946 04624 0.0499 0.0746 0.1581 805.8875 0.5170
Liu's dataset Liu's method 0.8850 02514 0.0721 0.0927 0.9291 837.4579 02610
FS-MLKNN 09034 04802  0.0524 0.0703 0.1202 795.9435 05134
LNSM-SMI 0.8986 0.5053 0.0435 0.0670 0.1154 789.8486 05476




Zhang et al. BMC Systems Biology 2017, 11(Suppl 6):101

Table 4 Performances of different methods in the independent test
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Method AUC AUPR Hamming Loss Ranking Loss One Error Coverage Average Precision
Liu's method 08772 0.1766 0.0421 0.1150 0.9870 1587.5663 0.1816
FS-MLKNN 08722 03109 0.0373 0.1038 0.1851 1535.9223 0.3649
LNSM-SMI 0.8786 0.3465 0.0291 0.0969 02013 1488.2977 0.3906

FS-MLKNN [18]. In this paper, we present a unified
frame to handle two side effect prediction tasks by
using linear neighborhood similarity. However, these
benchmark methods are usually designed for either
SEND task [13, 14, 18] or SEAD task [19, 20]; only
on method: Lius method is suitable for both tasks.
Therefore, we compare our proposed methods with
benchmark methods respectively in two tasks.

Comparison with benchmark methods for SEND task

For the SEND task, we adopt Pauwels’s method, Liu’s
method, Mizutani’s method and FS-MLKNN as bench-
mark methods for comparison. We replicate these
methods by using their publicly available source codes
or following details in publications. We respectively con-
struct our prediction models by using the same datasets
which were ever used for benchmark methods. Since
only one feature “substructure” in Pauwels’s dataset and
Mizutani’s dataset was usually used for modeling, we
build LNSM models on these datasets to compare with
corresponding methods. Liu’s dataset has multiple fea-
tures, and were ever used by Liu’s method and FS-
MLKNN, and thus we build LNSM-SMI models based
on multiple features to make the comparison. Table 3
shows results of all methods evaluated by 5-fold cross
validation. Clearly, the proposed methods outperform

benchmark methods under the same experimental
conditions.

We further implement the independent experiments
to evaluate the practical capability of our methods. Here,
we adopt Liu’s method and FS-MLKNN for comparison,
for they usually have good performances on different
datasets. The SIDER 4 dataset covers 1080 drugs, which
have 771 drugs overlapped with Liu’s dataset and 309
newly added drugs. In independent experiments, we
train prediction models based on 771 drugs, and then
make prediction for 309 new drugs. Table 4 demon-
strates results of all models, and LNSM-SMI has signifi-
cant advantages on the AUPR scores.

For each testing drug, we respectively consider top
100 and top 200 predicted side effect terms, and investi-
gate how much known side effects can be found out.
We calculate recall scores for drugs one by one, and
conduct statistics on the results. By evaluating top 100
predictions, the statistics on AUPR scores of Liu’s method,
FS-MLKNN and LNSM-SMI are 0.4161 +0.0239, 0.5157
+0.0293, 0.5421 + 0.0334; the statistics in evaluating top
200 predictions are 0.6261 +0.0262, 0.6605 + 0.0263,
0.6840 + 0.0285. LNSM-SMI has identified about 54%
known side effects on average when checking up top 100
predicted side effects out of 2260 side effect terms, and
has identified about 68% known side effects on average

Table 5 Performances of LNSM-MSE and benchmark methods evaluated by 5-CV

Dataset Methods AUPR AUC SN SP Precision Accuracy F
Pauwels's dataset Liu's method 0.345 0.920 0.643 0.950 0400 0934 0493
Cheng’s method 0.588 0922 0.587 0975 0.547 0.955 0.566
RBMBM 0612 0.941 0.605 0.977 0.579 0.958 0.592
INBM 0.641 0934 0.608 0979 0.605 0.961 0.607
LNSM-MSE 0671 0.948 0629 0.980 0625 0.963 0.627
Mizutani's dataset Liu's method 0.366 0918 0.637 0.948 0418 0.930 0.505
Cheng’s method 0.599 0.923 0.593 0973 0.560 0.951 0576
RBMBM 0619 0.939 0614 0.974 0.581 0.954 0.597
INBM 0.646 0932 0616 0.976 0.605 0.956 0611
LNSM-MSE 0676 0.944 0.627 0.979 0.635 0.959 0.631
Liu's dataset Liu's method 0.278 0.907 0.669 0.930 0.341 0.917 0452
Cheng's method 0.592 0922 0.589 0.974 0.550 0.954 0.569
RBMBM 0616 0.941 0.608 0.976 0.581 0.957 0.594
INBM 0.641 0934 0.607 0.979 0.606 0.959 0.606
LNSM-MSE 0673 0.948 0631 0.979 0.624 0.962 0.628
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when checking up top 200 predictions. Therefore, LNSM-
SMI is effective for predicting side effect of new drugs.

Comparison with benchmark methods for SEAD task

We propose LNSM-MSE to predict missing side effects
of approved drugs from known side effects. In predicting
missing side effects of approved drugs, we adopt Cheng’s
method [19], Liu’s method [16], INBM [20] and REBMBM
[20] for comparison. Liu’s method makes use of multiple
features for predictions, and other methods only use the
known side effects to predict missing ones. Therefore,
we construct LNSM-MSE and benchmark methods on
benchmark datasets, and use 5-fold cross validation to
evaluate models.

The performances of all methods are shown in Table 5.
Clearly, LNSM-MSE can outperform the benchmark
methods on the benchmark datasets, and significantly
improve the AUPR score from 0.64 to 0.67. Moreover,
LNSM-MSE has the better performances in terms of
other evaluation metrics. Therefore, LNSM-MSE is use-
ful and suitable for the SEAD Task.

Conclusions

This paper presents a novel similarity measure named
“linear neighborhood similarity” to calculate drug-drug
similarity, and develop a unified frame of predicting side
effects of new drugs (SEAD task) as well as missing side
effects of approved drugs (SEND task). Therefore, we
propose the method “LNSM” and its extension “LNSM-
SMI” to predict the side effects of new drugs; we propose
the method “LNSM-MSE” to predict missing side effects
of approved drugs. In computational experiments, pro-
posed methods can produce good results, and outperform
benchmark methods in two tasks. The proposed methods
have great potential in predicting drug side effects.
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