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INTRODUCTION

Spectral‑domain optical coherence tomography  (SD‑OCT) 
is a rapidly developing noninvasive cross‑sectional 
imaging modality which allows to investigate the 
presence of choroidal neovascularization activity defined 
as the appearance of subretinal fluid, intraretinal cysts, 
intraretinal fluid, subretinal pigment epithelium  (RPE) 
fluid, or a combination thereof to assist the diagnosis 
and management of neovascular age‑related macular 
degeneration.[1] The intraretinal fluid spaces reduced retinal 
reflectivity than the surrounding tissues and can cause 
increased retinal thickness. Cyst regions can be manually 
segmented using SD‑OCT,[2] but the manual segmentation 
of these regions from the large amount of imaging data 
produced in an SD‑OCT volume may not be feasible and 
is time‑consuming and extremely laborious. A  number of 
segmentation algorithms have been proposed to identify 
fluid‑filled regions.[3‑5] However, these methods are not fully 
automatic and rely on manual initialization in each B‑scan to 
segment the volume of cystoid regions. Furthermore, OCT 
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images suffer from speckle noise which causes difficulty in 
the actual detection of retinal layers  [Figure  1][6] and the 
shape of structural features such as drusens, macular holes, 
macular edema, nerve fiber atrophy, and cysts, that can be 
used as markers in clinical investigation and diagnostics of 
retinal diseases. Hence, before segmentation of this region 
in OCT images, the development of algorithmic approaches 
to provide noise suppression must be performed. In recent 
years, some approaches have been heavily investigated for 
speckle noise reduction, such as anisotropic diffusion‑based 
methods,[7‑9] wavelet–based methods,[10] dual‑tree complex 
wavelet transformation,[11] curvelet transform,[12] contourlet 
transform,[13] sparsity‑based denoising,[14,15] dictionary 
learning‑based methods.[16,17]
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Here, a novel speckle noise reduction algorithm is used,[18] 
which is optimized to reduce speckle in an OCT image while 
maintaining strong edge sharpness. For this purpose, we first 
apply recursive Gaussian filter to the noisy image and zero 
possible pixels are approximated from surrounding pixels then 
we introduce K‑SVD dictionary learning in curvelet transform 
domain for speckle noise reduction of three‑dimensional (3D) 
OCT images. As the noise more affected low scale of curvelet 
coefficients and to take advantage of this sparse multiscale 
directional transform, we introduce a new scheme in 
dictionary learning and take curvelet transform of noisy 
image then denoise and modify each noisy coefficients matrix 
in each scale with predefined initial 3D sparse dictionary. 
The 3D initial dictionary for every scale in each rotation is 
independently selected from thresholded coefficients in the 
same scale and rotation of logarithmic transformation of image 
and does not need any high‑SNR scans (averaged versions of 
repeated scans) for dictionary learning. After denoising 3D 
OCT images pixels in image are adjusted and thresholded to 
segment possible fluid space candidate pixels. Then nerve 
fiber layer  (NFL) and RPE layer are extracted in each B‑scan 
by the use of graph theory.[19] Identification of these lines is 
used to define our retinal regions of interest  (ROI) in each 
B‑mode image. Finally, the possible false positives  (FPs) are 
eliminated based on standard deviation and morphology of 
extracted candidate pixels.

The organization of this paper is as follows. Section 2 
discusses the 3D curvelet based dictionary learning denoising 
algorithm, and section 3 shows an implementation of the 
algorithm for candidate cystoid space determination as well 
as our generalized method for removing missed extracted 
pixels, and results are presented in section 4. Finally, we 
conclude and give some perspectives for future work.

MATERIALS AND METHODS

Image Data

We implemented the proposed method on four 3D‑OCT 
volumes obtained from Spectralis SD‑OCT  (Heidelberg 

Engineering, Heidelberg, Germany) system that each 
contained 49, 512 × 496 B‑scans. The database containing 
retinal cysts together with manually labeled cystoid 
spaces were provided by the OPTIMA cyst segmentation 
challenge.

Optical Coherence Tomography Denoising

Although the direct analyzing of 3D data as a volume 
and also considering the 3D geometrical nature of the 
data is computationally expensive, but it has been shown 
that 3D analysis of 3D data outperforms 2D slice‑by‑slice 
analyzing.[20] 3D curvelet elements are plate‑like shapes of 
2−j/2 in two directions and width about 2−j in the orthonormal 
direction which are smooth within the plate and oscillates 
along the normal direction of the plate. The parabolic 
scaling, direction, tightness, and sparse representation 
properties of this 3D multiscale transform, provide new 
opportunities to analyze large data sets in medical image 
processing. In this paper, we used a new implementation 
of the 3D fast curvelet transform  (3DFCT)[21,22] that has 
a reduced redundancy factor than the wrapping‑based 
implementation as proposed in CurveLab Toolbox[23,24] with 
the strong directional selectivity property at the finest 
scale.

For this purpose and taking curvelet coefficients:
1.	 Cartesian coronization is performed that decomposes 

the object into dyadic coronae based on concentric 
cubes. Each corona is subdivided into trapezoidal 
regions conforming the usual parabolic scaling as 
shown in Figure 2

2.	 The 3D coefficients are obtained by applying an 
inverse 3D FFT to each wrapped wedge as shown in 
Figure 1, that appropriately fits into a 3D rectangular 
parallelepipeds of dimensions ~ (2j, 2j/2, 2j/2) centered 
at the origin.

Since the curvelet coefficients have a sparse distribution, 
we have only a few large coefficients that show the main 
structure of image and the remained coefficients tend to 
zero.[23] This transform maps signals and noise into different 

Figure  1: A cross-sectional, of a normal human retina with the layers 
identified

Figure  2:   3D rendering of curvelet atom in frequency  (a), and discrete 
frequency tiling (b), the shaded area separates three‑dimensional wedge

ba
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areas, and signal’s energy is concentrated in a limited 
number of coefficients in curvelet domain.

OCT denoising can improve the image quality for 
the accurate analysis of image information, such as 
intra-retinal layers and boundaries of pathology that 
the results of accurate detection of these features are 
fully dependent on image enhancement through image 
denoising.[25,26] For this purpose in our selected dataset, all 
zero value corrupted pixels are determined from 5 × 5 × 5 
surrounding pixels based on recursive Gaussian filter.[27] 
After removing zero pixels, we used a novel speckle noise 
reduction algorithm that was previously implemented on 
3D, SD-OCT, Bioptigen imaging systems.[18] Our curvelet-
based approach consists of first transforming the noisy 
image using the 3DFCT, and taking curvelet coefficients, 
then in curvelet domain for each scale and rotation, the 
coefficient matrix is independently denoised based on 
K-SVD dictionary learning. A fundamental consideration in 
employing the KSVD dictionary learning is the selection of 
the start dictionary D. While some popular class of sparsity-
based denoising algorithms exploits the information of 
the noisy image itself to define the dictionary,[14] however, 
the high-level of noise in the SDOCT images negatively 
contend with the learning process, degrades the quality of 
the trained dictionary. An alternative (ideal) approach is to 
learn the dictionary from the noiseless with high SNR image. 
Since in practice, such an ideal image is not available, so 
we select the initial dictionary from thresholded curvelet 
coefficients in same scale and rotation of logarithmic 
transformation of the noisy image [Eq. 1].

The hard threshold Tj, l is applied to each curvelet coefficients 
such that:

C
C if C T
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The threshold Tj, l is selected based on so‑called k‑sigma 
method,[28] in which Tj, l  =  k × σ1× σ2, where k is an 
adjustable parameter, σ1 is the standard deviation of noise 
from a background region in the image data, and σ2 is the 
standard deviation of noise in the curvelet domain at a 
specific scale j and orientation l.[28]

After finding the appropriate 3D initial dictionary, D, for 
each scale and orientation, the noisy curvelet coefficient 
matrixes of the noisy image in same scale and rotation are 
despeckled based on K‑SVD dictionary learning.[19]

Since the curvelet transform is successful in dealing with 
edge discontinuities, it is a good candidate for edge 
enhancement. Hence, to enhance the contrast of intra‑retinal 
layer boundaries, denoised curvelet coefficients, before 
taking 3D inverse discrete curvelet transform  (3D‑IDCUT), 
can be modified to enhance edges in an image.[29,30] 

A function must be defined which modifies the values of the 
curvelet coefficients by kc (Cj, l, p) as follows:
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In Eq. 2 N  =  0.2 M, here M is the maximum curvelet 
coefficient of the relative band. Then we reconstruct the 
enhanced image from the denoised and modified curvelet 
coefficients by applying IDCUT. The outline of the whole 
denoising process is shown in Figure 3.

Candidate Cystoid Space Determination

In this section, we present a new candidate detection 
algorithm to separate the dark spaces from the rest of the 
image. During this process, each pixel f (i, j, k) in despeckled 
image is adjusted as follows:

g i j k f i j k f Max f
Min fW

W

W

( , , ) ( , , ) .
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+
0 5

80

1
� (3)

where f
–
w, Max (fw) and Min (fw) are the mean, maximum 

and minimum intensity value of the image within a window 
W of size 3 × 3 × 3, respectively. The dark cystoid spaces 
in adjusted image is trending to zero and is extracted by 
applying simple threshold (t = 5).

Figure 3: The outline of the proposed method for despeckling



Esmaeili, et al.: 3D cyst segmentation using three‑dimensional curvelet based K‑SVD

Journal of Medical Signals & Sensors

Vol 6  | Issue 3  |  Jul-Sep 2016 169

Removing Miss Extracted Pixels

To improve the specificity, we reject FP pixels by extracting 
NFL and RPE layer in each B‑scan by the use of graph 
theory.[31] We use these extracted lines to define the upper 
and lower bounds as retinal ROI in which we segment the 
cystoid fluid. Then we define and calculate the F ratio[32] and 
remove every connected component in ROI that has F > 4. 
This selection removes each connected component that 
has line shape structure belonging to dark regions between 
outer plexiform layer and outer nuclear layer. Figure  4 
depicts the evaluation of F.

F
m m

M M
i j

i j

=
max ( , )

min( , ) � (4)

Where, Mi  =  max  (width of a connected component 
in direction i) and Mj  =  max  (width of a connected 
component in direction j) with mi  =  max  (i)  –  min  (i), 
mj = max (j) – min (j).

The distribution of pixel intensity in cystoid spaces are also 
uniform[4] so final cystoid volumes are extracted by rejecting 
regions with a standard deviation greater than an empirically 
determined value of 30. Figure 5 shows the results of this 
algorithm after removing miss extracted connected pixels 
that have F > 4 and regions with a standard deviation >30.

EXPERIMENTAL RESULTS

This study has focused on OCT images obtained from 
Spectralis SD‑OCT  (Heidelberg Engineering, Heidelberg, 
Germany) system provided by the OPTIMA laboratory for 
the cyst segmentation challenge hosted at MICCAI 2015. To 
evaluate the performance of this automated method, the 
method was applied on four 3D‑OCT images each contain 
49 B‑scans, and the dice coefficients[33] of the segmented 
cystoid regions entire 3D volume, were compared against 
the two manually labeled grader. Figure 6 shows the results 
of our proposed algorithm.

The dice coefficient for each of the evaluated volumes and 
also the dice coefficient within central 3  mm diameter 
obtained for each volume are summarized in Table 1. We 
also computed the dice coefficients between the automated 
method and the intersection of the two readers for 
comparison.

DISCUSSION

This paper presented a new method for segmentation and 
quantification of the total volume occupied by intraretinal 
cystoid fluid from 3D OCT image. We tested our algorithm 
on four 3D Spectralis SD‑OCT  (Heidelberg Engineering, 
Heidelberg, Germany) images, each containing 49 B‑scans. 
In this paper, we use the graph theory for extraction of NFL 
and RPE, the upper and lower bounds as retinal ROI, to 
increase the accuracy of detected bounds. A limitation of 
our work is that in the presence of epiretinal membrane, 
a fine piece of scar tissue that grows on the surface of the 
retina, some FPs are extracted that should be distinguish 
from intraretinal cysts. However, the proposed method 
revealed promising results, but further validation studies 
with larger samples are needed. The performance of the 
proposed method will be investigated on OCT images 
obtained by other scanners such as Topcon and Cirrus in 
future steps.

CONCLUSION

This paper presented a new algorithm to detect and segment 
the retinal cysts in an SDOCT volume. The calculation 
of F-ratio that uses the shape information of detected 
candidate regions removes each connected component that 
has line shape structure and will increase the accuracy of 
our proposed method. Although the proposed method can 
accurately detect the obvious cysts, it is not sensitive to 
the very small cysts, and the small cystoid regions that may 
be connected to the dark regions between outer plexiform 
layer and outer nuclear layer may not be detected accurately. 
Other possibilities can be studied to improve the proposed 

Table 1: Evaluation of proposed method on against the two 
manually labeled grader
Evaluation using Grader 1 Grader 2 intersection of 

Graders 1 and 2

Dice coefficient (s)
Spectralis‑1 0.7140 0.6817 0.7181
Spectralis‑2 0.4549 0.4581 0.4501
Spectralis‑3 0.6954 0.6501 0.6846
Spectralis‑4 0.7115 0.7255 0.7307

Dice coefficient within 
central 3 mm diameter

Spectralis‑1 0.8173 0.7792 0.7918
Spectralis‑2 0.7775 0.7769 0.7493
Spectralis‑3 0.7563 0.7823 0.7652
Spectralis‑4 0.7528 0.7732 0.7710Figure 4: The evaluation F
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algorithm by detecting vessel shades to reduce the number 
of Fps.
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