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1  | INTRODUC TION

Understanding the large-scale geographic patterns of species diver-
sity and the forces driving these patterns is a central topic in ecol-
ogy and biogeography (Gaston, 2000; James & Mark, 2000; Ornelas 
et al., 2015; Santos et al., 2011). Investigating such patterns, can pro-
vide important information for regional species protection and man-
agement (Chesson, 2000; Gaston, 2000; Leibold & McPeek, 2006; 
Stanley et al., 2014).The distribution pattern of species richness has 
been investigated at large spatial scale (Brown, 1984; Gaston, 2000; 
Santos et al., 2011) for plants (Freestone & Inouye, 2006; Matthews 

et al., 2019; Qian & Song, 2013), birds (Hawkins et al., 2006; Kissling 
et al., 2012), mammals (Chen et al., 2017; Lin et al., 2015; Marcelo 
& Douglas, 2004), insects (Shen et al., 2016; Zhang et al., 2018), 
and bacteria (Fuhrman et al., 2008). Latitude was the most common 
and significant factor influencing species diversity (Gaston, 2000; 
Rosenzweig, 1992). However, exceptions were found, for example, 
species distribution patterns varied with area and in different groups 
(Noah & Jackson, 2006; Silva & Brandao, 2014; Wang et al., 2019).

Hypotheses on the factors shaping large-scale species di-
versity have been proposed (Brown et al., 2004; Hubbell, 2001; 
Palmer, 1994). The environmental heterogeneity hypothesis based 

 

Received: 14 March 2020  |  Revised: 27 August 2020  |  Accepted: 1 September 2020

DOI: 10.1002/ece3.6911  

O R I G I N A L  R E S E A R C H

Geographic patterns of Lucanus (Coleoptera: Lucanidae) 
species diversity and environmental determinants in China

Dan Chen1  |   Li-Jun Cao2 |   Jin-Ling Zhao3 |   Xia Wan1 |   Shu-Jun Wei2

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1School of Resources and Environmental 
Engineering, Anhui Province Key Laboratory 
of Wetland Ecosystem Protection and 
Restoration, Anhui University, Hefei, China
2Institute of Plant and Environmental 
Protection, Beijing Academy of Agriculture 
and Forestry Sciences, Beijing, China
3National Engineering Research Center 
for Agro-Ecological Big Data Analysis & 
Application, Anhui University, Hefei, China

Correspondence
Xia Wan, School of Resources and 
Environmental Engineering, Anhui Province 
Key Laboratory of Wetland Ecosystem 
Protection and Restoration, Anhui 
University, Hefei, China.
Email: wanxia@ahu.edu.cn

Funding information
National Natural Science Foundation of 
China, Grant/Award Number: 31872276 and 
31572311

Abstract
Clarifying the geographic patterns of species diversity and the determinant factors 
can provide essential information for species conservation and management. Stag 
beetles (Coleoptera: Lucanidae) of Lucanus are important saproxylic insects and can 
be used for biomonitoring forests. Most of Lucanus species are facing conservation 
concerns due to their limited distribution and fragmented habitats, particularly in 
China, which has the richest species diversity of this genus. The distribution patterns 
of species diversity of Lucanus at large spatial scales remain portly understood. We 
studied the distribution patterns of Lucanus and its environmental and geographic 
determinants in China. Distribution data for 72 species and subspecies were exam-
ined. All these species are distributed in southern China except for Lucanus macu-
lifemoratus dybowskyi, which is mainly distributed in north China. The hotspot for 
Lucanus in China is southeastern Tibet. Our study indicated that the species richness 
of Lucanus in China was shaped by the precipitation of the wettest and driest month, 
net primary productivity, digital elevation model, and latitude at a large scale. These 
variables collectively explained 56.2% of the variation in species richness; precipita-
tion contributed the most (44.1%). Our results provide valuable insights to improve 
the conservation of Lucanus and can contribute to furthering our understanding of 
the biogeography of stag beetles in China.
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on climatic factors suggests that higher environmental heterogeneity 
promotes a number of habitat types and enhances species diversity 
(David, 1991; Lin et al., 2013; Stein et al., 2014; Tews et al., 2004). 
Increasingly, studies have found that geographic distance was the 
primary factor driving species diversity (Freestone & Inouye, 2006; 
Legendre et al., 2005; Leigh et al., 2004; Murphy et al., 2016). 
However, studies on leaf beetles (Coleoptera: Chrysomelidae) indi-
cated that the effects of environment and geographic position were 
similar (Baselga & Jiménez-Valverde, 2007).

Stag beetles (Coleoptera: Lucanidae) are saproxylic insects that 
commonly inhabit the lowlands or mountains dominated by broad-
leaf woody plants. They play important roles in the carbon cycle be-
cause their larvae live in and feed on decaying wood, and adults feed 
on tree sap or decaying fruit (Songvorawit et al., 2017; Tanahashi 
et al., 2009). Lucanidae species have been used as forest biodi-
versity indicators in Europe because temperature and deadwood 
significantly affect the presence of European stag beetles (Lachat 
et al., 2012; Thomaes et al., 2008). Climate has been speculated as 
the main driving factor for Colophon (Lucanidae) evolution (Switala 
et al., 2014). Morphological evidence has suggested that the evolu-
tion of mandibles of stag beetles was related to environmental het-
erogeneity rather than genetic differentiation (Huang & Lin, 2010; 
Shingleton et al., 2011). These studies on a limited number of spe-
cies showed that environmental factors are critical to stag beetles. 
Nevertheless, the diversity distribution patterns of stag beetles 
at large scales remain poorly understood. More works are neces-
sary to explore the factors on driving distribution patterns of stag 
beetles. Lucanus is widely accepted as the most typical representa-
tive of Lucanidae. Studies of molecular data indicated that Lucanus 
diverged circa 51.3 mya (95% HPD: 48.7–53.9 mya), and its sister 
group is Prismognathus (Hosoya & Araya, 2005; Kim & Farrell, 2015). 
Species (including subspecies) of Lucanus are particularly abundant 
in the Oriental region, including south and southwest China, India, 
Laos, Vietnam, and Myanmar (Fujita, 2010; Huang & Chen, 2010; 
Lin, 2017; Wan, 2007). In the present study, we examined the dis-
tribution and diversity patterns of Lucanus species in China and 
quantified the relative contribution of environmental conditions and 
spatial factors. The results will help us to understand the species 
diversity and distribution of these stag beetles.

2  | MATERIAL S AND METHODS

2.1 | Collection of species distribution data

Distribution data of Lucanus species in China were retrieved from 
three sources: volumes I–III of “Stag Beetles of China” (Huang & 
Chen, 2010, 2013, 2017); collecting records from 1982 to 2018 of 
Lucanus preserved in the ecological geology specimen room at Anhui 
University (collected insects were not listed as “protected”); collect-
ing records from other museums and universities (Wan, 2007), for 
example, Zoological Museum "La Specola," University of Florence 
(Firenze, Italy), Museum national d’ histoire naturelle (Paris, 

France), Museo Civico di Storia Naturale (Milan, Italy), Natural 
History Museum (London, UK), Museum für Naturkunde (Berlin, 
Germany), Staatliches Museum für Tierkunde (Dresden, Germany), 
Senckenberg Deutsches Entomologisches Institut (Müncheberg), 
Entomological Museum of Hebei University (Baoding, China), 
Institute of Entomology, Chinese Academy of Sciences (Shanghai, 
China), Museum of Insect, Chinese Agricultural University (Beijing, 
China), and the Department of Biology, Shanghai Normal University 
(Shanghai, China). Distribution data were also obtained through lit-
erature surveys, the Global Biodiversity Information Facility (GBIF) 
(GBIF.org 14 January 2020) and Bio-Nica website (http://www.
bio-nica.info/home/index.html). After removing problematic and 
duplicate information, we obtained 1856 distribution records for 
72 species of Lucanus. Although we attempted to obtain available 
records for different species, the sampling effort was inevitably 
uneven.

2.2 | Environmental and geographic data

To analyze the association between species diversity and environ-
mental and geographic factors, we studied 24 variables (Table S1): 19 
bioclimatic variables including temperature and precipitation; two 
vegetation variables: normalized difference vegetation index (NDVI) 
and net primary productivity (NPP); and three geographic factors: 
digital elevation model (DEM), latitude (LAT), and longitude (LON). 
Data for 19 climate variables were obtained from WorldClim version 
2 with a spatial resolution of 5 min (Fick & Hijmans, 2017). NDVI 
(Xu, 2018), NPP, and DEM data were obtained from the Resource 
and Environment Data Cloud Platform (http://www.resdc.cn). LAT 
and LON were transformed from species distribution information.

We extracted raster data in ArcGIS 10.2, including reprojection 
using Lambert conformal conic projection, resampling, extracting 
the value by distribution point, and calculating the value in each cell 
(500 × 500 km2). Among them, 19 bioclimatic variables were char-
acterized by the range (maximum minus minimum) of values of all 
distribution points in each cell. Similarly, NPP, NDVI, LAT, and LON 
were characterized by the mean of values; DEM was characterized 
by the standard deviation of values.

2.3 | Statistical analysis

Species accumulation curves (SAC) were widely used to assess the 
completeness of sampling effort or sampling completeness (Colwell 
et al., 2004; Mongombe et al., 2019). To estimate the sampling 
completeness of Lucanus species in China at 500 × 500 km2, we 
constructed SACs based on the number of samples (each grid rep-
resented a sample). The function “specaccum” in the package vegan 
(Oksanen et al., 2013) in R 3.6.1 (R-Core-Team, 2019) was used to 
find the SAC with the classic method "random," which adds grids 
in a random order. The number of permutations was set to 100. 
To eliminate the effect of the square of the study area on species 
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richness, we used an equal-area grid cell size of 500 × 500 km2 (Ding 
et al., 2006; Marcelo & Douglas, 2004). We overlapped all species 
distributions with the 500 × 500 km2 fishnet and then counted the 
number of species present within each grid as the species richness 
values for each grid. Drawing fishnets and calculating species rich-
ness were carried out in ArcGIS 10.2.

We filtered the 24 variables through Pearson's correlation anal-
ysis (|r| > 0.8) to eliminate the strong correlation between envi-
ronmentally heterogeneous variables (Garg & Tai, 2012). Pearson's 
correlation analysis was performed in IBM SPSS Statistics v24. To 
assess the relationship between species richness and environmen-
tal variables, we applied generalized linear modeling (GLM) with 
Poisson regression and negative binomial regression as those mod-
els are typically used for count data. We validated the models by 
applying the log-likelihoods test and the null hypothesis to compare 
the Poisson and negative binomial GLMs. Regression models and 
model validation were carried out in R; Poisson GLMs were con-
structed by the function “glm” in the vegan package; negative bino-
mial GLMs were constructed by the function “glm.nb” in the MASS 
package (Venables & Ripley, 2002); model selection process was by 
the function “drop1,” all variables being significant at the 5% level 
suggested that the model selection was finished; model validation 
was conducted by the function “odTest” in the pscl package (Zeileis 
et al., 2008).

3  | RESULTS

3.1 | Distribution of species diversity

The SAC illustrates trends in species richness with changing number 
of samples. As the number increases, the SAC increases sharply at 
first and then slowly, indicating sufficient sampling for data analysis 
(Figure 1).

In China, the distribution range of Lucanus is 18–43°N and 
85–127°E. Seventy-two species of stag beetle species were found 
(Figure 2). Species richness of the Lucanus species differed sig-
nificantly between the south (Oriental) and north (Palaearctic) of 
China. All Lucanus species were distributed in the Oriental realm 
of China except for Lucanus maculifemoratus dybowskyi. This spe-
cies is distributed across the south and north, but is mainly dis-
tributed in the north and northeast of China. Based on grids of 
500 × 500 km2, we revealed southeastern Tibet as a hotspot area 
where the highest species richness of Lucanus was observed (26 
species). Fewer grids had high species richness, and many species 
were only distributed in one or two grids, presenting a narrower 
distribution. For instance, eight species (L. datunensis, L. formosa-
nus, L. kanoi, L. kurosawai, L. m. taiwanus, L. miwai, L. ogakii, and L. 
swinhoei) were endemic to Taiwan, and L. datunensis only occurred 
at Datunshan within the Yangmingshan National Park; L. fanjing-
shanus only occurred at Fanjingshan; eight species were endemic 
to Yunnan; and 18 species were endemic to south Tibet (mainly 
distributed in southeast Tibet).

3.2 | Environmental and spatial associations

Nine variables selected through the correlation analysis, namely, 
annual mean temperature, temperature seasonality, precipitation 
of wettest month (PWM), precipitation of driest month (PDM), 
NDVI, NPP, LAT, LON, and DEM (Table S2). Further model selection 
of Poisson GLMs only retained five variables (Table 1). All of these 
terms in the model were significant (p < .01). The output of the nega-
tive binomial GLM was similar to the Poisson GLM output (Table 2), 
except that the corresponding significance level was lower, and the 
AIC was slightly higher. The chi-square test statistic was equal to 
1.5972, and the p-value was equal to .1031 (p > .05), which did not 
support the null hypothesis. Hence, there was strong support for the 
Poisson GLM.

To further quantify the contribution of different variables to spe-
cies richness, we classified these five variables into four matrixes: 
precipitation (PWM, PDM), NPP, LAT, and DEM for conducting vari-
ation partitioning. The variation partitioning results showed that the 
total contribution of these five variables was 56.2%; precipitation 
(PWM, PDM) independently explained 44.1% (Figure 3), which was 
much higher than that of several other variables; NPP independently 
explained 7.5%; DEM independently explained 0.5%; LAT inde-
pendently explained less than zero (−0.18%).

4  | DISCUSSION

China is the main distribution center of Lucanus species, but many 
species of this genus present a narrow distribution, which may be 
due to a weak dispersion ability or specific habitat needs, or even the 
different ecological effects caused by environmentally heterogene-
ous habitats (Tews et al., 2004; Thomaes, 2009; Tini et al., 2017). 
For example, the species distributed in Taiwan are endemic. Only L. 
m. dybowskyi occurs in north China. This is related to the strong dif-
fusion ability of this species and its unique adaptability to the cold 

F I G U R E  1   Sample-based species accumulation curves of 
Lucanus species in China
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environment and limited broad-leaved forests (Fang & Yoda, 1991; 
Qiao et al., 2015).

At large spatial scales, previous studies tended to report spe-
cies richness showing a certain pattern along the latitude gradient 
(Archibald et al., 2016; Dunn et al., 2009; Stegen et al., 2012). In 

our study, due to the limited number of species and a large propor-
tion of endemic species, we only considered the species distribution 
patterns at a large scale (500 × 500 km2). Although there was no 
obvious pattern along latitude, this factor still has an important ef-
fect on species richness according to the results of the regression 

F I G U R E  2   Species richness of Lucanus 
in 500 × 500 km2 grid cells in China. 
Different colors indicate the range of 
species richness

Estimate SE z value P (>|z|)
Signif. 
codes

(Intercept) 2.589568 0.665381 3.892 9.95E−05 ***

PWM 0.008224 0.001121 7.339 2.16E−13 ***

PDM −0.01479 0.002864 −5.164 2.42E−07 ***

NPP 0.000137 4.13E−05 3.31 0.000935 ***

DEM 0.00119 0.000359 3.317 0.000909 ***

LAT −0.06731 0.025237 −2.667 0.007649 **

Note: Signif. codes: “***” indicated that 0 < p < .001; “**” indicated that 0.001 < p < .01; Null 
deviance: 122.152 on 22 degrees of freedom; Residual deviance: 33.894 on 17 degrees of freedom; 
AIC: 125.78.

TA B L E  1   Regression analysis results 
for environmental variables regressed 
against species richness with Poisson 
general linear models

Estimate SE z value Pr(>|z|) Signif. codes

(Intercept) 2.55E+00 7.89E−01 3.234 0.00122 **

PWM 8.03E−03 1.48E−03 5.415 6.12E−08 ***

PDM −1.46E−02 3.58E−03 −4.062 4.86E−05 ***

NPP 1.23E−04 5.49E−05 2.249 0.02449 *

DEM 1.28E−03 4.52E−04 2.825 0.00473 **

LAT −6.68E−02 2.90E−02 −2.302 0.02131 *

Note: Signif. codes: “***” indicated that 0 < p < .001; “**” indicated that 0.001 < p < .01; “*” 
indicated that 0.01 < p < .05; Null deviance: 82.949 on 22 degrees of freedom; Residual deviance: 
23.774 on 17 degrees of freedom; AIC: 126.18.
Abbreviations: DEM, digital elevation model; LAT, latitude; NPP, net primary productivity; PDM, 
precipitation of driest month; PWM, precipitation of wettest month.

TA B L E  2   Regression analysis results 
for environmental variables regressed 
against species richness with negative 
binomial general linear models
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model. However, the results of variation partitioning indicated neg-
ative explained variances. This situation could arise when certain 
relationships are present in the data, and no solution is available to 
meaningfully remove them (Peres-Neto et al., 2006).

The other four factors included in the regression model all had 
positive independent contributions to the variation in species rich-
ness. Among them, precipitation contributed the most. Precipitation 
could have indirect effects that influence the species richness of 
Lucanus because larvae of these stag beetles live in and feed on dead 
wood (Songvorawit et al., 2017). Wood decay is correlated with mois-
ture content (Crockatt & Bebber, 2015; Herrmann & Bauhus, 2013). 
Therefore, moderate water content enhances the occurrence and 
abundance of larval stag beetles (Songvorawit et al., 2017). Huang 
(2014) reported that climate change may threaten the survival of 
Lucanus species due to their specific habitat preferences. However, 
our model did not include temperature, which is unexpected.

Lucanus inhabit mature deciduous forests, especially oak wood-
land, and feed on dead wood (Bardiani et al., 2017). NPP was also one 
of the major factors in our model, which is an important manifesta-
tion of vegetation productivity. The species richness of Lucanus can 
be directly affected by vegetation. NPP was positively correlated 
with Lucanus species richness, which means that high vegetation 
productivity can provide more resources, indicating that more 
species can be accommodated. Furthermore, studies revealed that 
plant cover has a significant effect on the diversity of many other 
groups, such as ladybugs (Coleoptera: Coccinellidae) (Sushko, 2018), 
stink bugs (Heteroptera: Pentatomidae) (Reisig et al., 2015), and 
small mammals (Keller & Schradin, 2008). However, plant diver-
sity is under increasing threat due to human activities (Bardiani 
et al., 2017; Sharrock et al., 2011). Therefore, we suggest that strate-
gies for conserving Lucanus should focus on protecting habitats. An 
interesting example included the use of artificial habitats comprised 
of rotten woodpiles and buckets with rotten deciduous leaves for 

larvae provides us with references (New, 2005). Besides, studies 
on the distribution patterns of ants (Hymenoptera: Formicidae) 
and ground beetles (Coleoptera: Carabidae) in China reported that 
changes in altitude could be a key factor affecting the distribution 
of species diversity (Shen et al., 2016; Yang et al., 2017). This result 
is consistent with our results, but the independent contribution of 
DEM was low.

With global climate change and large-scale deforestation, many 
species of Lucanus are facing problems from habitat fragmentation 
and loss. These species must be urgently protected. L. datunensis is 
the only species that is currently protected in China, and there are no 
protection measures or threat level assessments for the others. The 
distribution information for Lucanus in China is lacking. Therefore, 
our research can attract the attention of relevant researchers to un-
dertake more effective monitoring and protection plans. Our anal-
ysis only found part of the relevant factors, and more factors (e.g., 
percentage of broad-leaved forest) and smaller scales should be ex-
plored in the future.
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