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Abstract: The intrinsic dynamic and static nature of the π···π interactions between the phenyl groups
in proximity of helicenes 3–12 are elucidated with the quantum theory of atoms-in-molecules dual
functional analysis (QTAIM-DFA). The π···π interactions appear in C-∗-C, H-∗-H, and C-∗-H, with the
asterisks indicating the existence of bond critical points (BCPs) on the interactions. The interactions
of 3–12 are all predicted to have a p-CS/vdW nature (vdW nature of the pure closed-shell interaction),
except for 2Cbay-∗-7Cbay of 10, which has a p-CS/t-HBnc nature (typical-HBs with no covalency).
(See the text for definition of the numbers of C and the bay and cape areas). The natures of the
interactions are similarly elucidated between the components of helicene dimers 6:6 and 7:7 with
QTAIM-DFA, which have a p-CS/vdW nature. The characteristic electronic structures of helicenes
are clarified through the natures predicted with QTAIM-DFA. Some bond paths (BPs) in helicenes
appeared or disappeared, depending on the calculation methods. The static nature of Ccape-∗-Ccape is
very similar to that of Cbay-∗-Cbay in 9–12, whereas the dynamic nature of Ccape-∗-Ccape appears to be
very different from that of Cbay-∗-Cbay. The results will be a guide to design the helicene-containing
materials of high functionality.

Keywords: ab initio calculations; quantum theory of atoms-in-molecules (QTAIM); nonbonded
interactions; polycyclic aromatic hydrocarbon (PAH)

1. Introduction

Helicenes, which are ortho-fused polycyclic aromatic or heteroaromatic compounds with
all rings angularly arranged to form helically shaped molecules, are of current and continuing
interest. Helicenes are chiral; as a result, they are expected to have specific functionalities.
Recently, helicenes have been widely applied in various fields [1–5], such as organic semicon-
ductors [6–10], asymmetric catalysis [11–16], and molecular recognition [17–22], due to their
diverse functionalities in materials. Many studies have also been reported on self-assembly
phenomena at metal surfaces [23–26] caused by interactions with the π-orbitals of helicenes.
The π-orbitals will cause intramolecular π···π interactions between adjacent aromatic rings
of helicenes, which play an important role in effective interactions. It is crucial to clarify
the nature of π···π interactions for future high-functioning material developments based
on helicenes. The discussion in this paper will be limited to π···π interactions between
the aromatic rings, the nature of which needs to be clarified, since helicenes of the fused
benzene type were chosen as the target.

The noncovalent distances between the aromatic planes in close proximity to the
helicenes were determined as the total effect of the attractive and repulsive forces between
the atoms on the planes. The restoring forces from the deviated planarity in the helicenes
should be a main factor for the attractive and repulsive forces due to π-orbital overlapping
in the helicenes. The noncovalent distances between the planes in close proximity to
the helicenes are defined as the balanced distances of the two factors. The noncovalent
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intramolecular distances between atoms in close proximity to the helicenes must be (much)
shorter than the noncovalent intermolecular distances between the unrestricted nonhelical
aromatic species. The shorter distances in helicenes result from the π···π interactions
between the planes in close proximity in space, which operate under very severe conditions.
Clarifying the nature of the π···π interactions in helicenes under such severe conditions
will enable us to understand the factors that control the structures and the nature of the
interactions. The results will also provide a starting point for understanding the nature of
π···π interactions and will hint at designs for materials with high functionality based on
the interactions.

We have been particularly interested in the π···π interactions that operate under severe
conditions, as these should be the factors that control the fine details of the structures.
Interactions are also expected to result in materials with high functionalities. The nature
of π···π interactions under such severe conditions was investigated in a series of fused
benzene-type helicenes 1–12 and concave-type dimers 6:6–8:8 and 10:10, where 1–3 are
analyzed as helicenes in this paper, although they are usually not. Scheme 1 shows the
structures of helicenes 1–12, dimers 6:6–8:8, 10:10, and [n]phenacenes 1p–12p, where 1p–12p
are the comparative compounds and p stands for phenacenes. The bay and cape areas
used in this paper are also illustrated. We have previously reported the nature of the
benzene π···π interactions in cyclophanes [27] (see also [28,29]). The π···π interactions in
the helicenes must correspond to the extended π···π interactions of the species.
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Scheme 1. Helicenes, 1–12, dimers, 6:6–8:8 and 10:10, and [n]phenacenes, 1p–12p. The bay and cape
areas in 1–12 are illustrated. The number of C is shown, where the number of H is the same for C–H.
Benzene, naphthalene, and phenanthrene are defined corresponding to n = 1, 2, and 3, respectively.

The π···π interactions in the helicenes were analyzed with QTAIM dual functional
analysis (QTAIM-DFA [30–35]), which we proposed based on the QTAIM approach in-
troduced by Bader [36,37]. The π···π interactions will be reproduced on the bond paths
(BPs) between atoms, where a bond critical point (BCP, ∗) appears on each BP. The π···π
interactions in helicenes are typically described by BPs with BCPs of the H-∗-H, C-∗-H,
and C-∗-C forms. The asterisk indicates the existence of a BCP in each BP [36,37]. In
QTAIM-DFA, Hb(rc) is plotted versus Hb(rc)–Vb(rc)/2, where Hb(rc) and Vb(rc) are the
total electron energy densities and potential energy densities, respectively, at the BCPs of
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the interactions in question. In our treatment, data from the fully optimized structures and
the perturbed structures surrounding the fully optimized structures are used for the plots.

Data from the fully optimized structures in the plots were analyzed using polar coordi-
nate (R, θ) representation, which corresponds to the static nature of the interactions [30–35].
Data from both the perturbed and fully optimized structures are expressed by (θp, κp),
where θp corresponds to the tangent line and κp is the curvature of the plot. θ and θp are
measured from the y-axis and the y-direction, respectively. (See Figure SA1 of the Ap-
pendix S1 of the Supporting Information for the definition of the QTAIM-DFA parameters
of (R, θ) and (θp, κp), along with Equations (SA3)–(SA6) and the footnotes of Table 1). The
concept of the dynamic nature of the interactions was proposed based on (θp, κp). The θp
and κp for the major bonds seem to be controlled by the characters of the local bonds in
question: The influence from the behaviors of the minor bonds would not be so severe for
usual cases.

Table 1. QTAIM Functions and QTAIM-DFA Parameters Evaluated for the Fused Benzene-Type
Helicenes of Monomers (3–12), Employing the Perturbed Structures Generated with CIV 1–3.

Species ρb(rc) c∇2ρb(rc) 4 Hb(rc) R 5 θ 6 Cii
7 θp

8 κp
9 Predicted

Nature

X-∗-Y (eao
–3) (au) (au) (au) (◦) (Å mdyn−1) (◦) (au−1)

3 (1Hbay-∗-4Hbay) 0.0130 0.0060 0.0020 0.0063 71.3 3.29 72.8 12.4 p-CS/vdW
4 (1Hbay-∗-5Hbay) 0.0165 0.0078 0.0026 0.0082 71.8 6.67 74.5 11.4 p-CS/vdW
5 (1Hbay-∗-6Cbay) 0.0131 0.0063 0.0021 0.0066 71.6 6.12 80.8 136 p-CS/vdW
6 (1Hbay-∗-5Cbay) 0.0131 0.0060 0.0020 0.0063 71.3 3.82 79.9 31.8 p-CS/vdW
7 (1Hbay-∗-6Cbay) 0.0135 0.0063 0.0021 0.0067 71.5 5.47 77.9 188 p-CS/vdW
7 (2Cbay-∗-7Cbay) 0.0114 0.0051 0.0017 0.0054 71.9 3.33 80.6 128 p-CS/vdW
8 (1Hbay-∗-6Cbay) 0.0130 0.0061 0.0021 0.0065 71.1 5.51 76.7 189 p-CS/vdW
8 (2Cbay-∗-7Cbay) 0.0117 0.0052 0.0017 0.0055 71.8 2.01 86.4 28.5 p-CS/vdW
9 (1Hbay-∗-5Cbay) 0.0134 0.0062 0.0022 0.0066 70.7 3.40 79.5 627 p-CS/vdW
9 (2Cbay-∗-7Cbay) 0.0113 0.0050 0.0016 0.0053 72.1 1.83 81.6 119 p-CS/vdW
9 (3Cbay-∗-8Cbay) 0.0122 0.0053 0.0016 0.0056 72.9 1.87 85.0 196 p-CS/vdW

9 (4Ccape-∗-22Ccape) 10 0.0055 0.0020 0.0007 0.0022 70.7 5.25 66.9 135 p-CS/vdW
9 (6Ccape-∗-23Ccape) 0.0061 0.0021 0.0007 0.0022 70.4 8.51 69.4 37.7 p-CS/vdW
10 (1Hbay-∗-6Cbay) 0.0137 0.0064 0.0021 0.0067 71.6 5.74 79.2 123 p-CS/vdW

10 (2Cbay-∗-7Cbay) 11 0.0113 0.0050 0.0018 0.0053 70.5 1.86 94.2 2890 p-CS/t-
HBnc

10 (3Cbay-∗-8Cbay) 0.0114 0.0050 0.0016 0.0053 72.1 1.78 82.0 182 p-CS/vdW
10 (6Ccape-∗-23Ccape) 0.0059 0.0020 0.0007 0.0021 70.4 9.02 69.7 7.0 p-CS/vdW
10 (7Ccape-∗-25Ccape) 0.0061 0.0022 0.0008 0.0024 70.3 3.42 68.0 10.3 p-CS/vdW
11 (1Hbay-∗-6Cbay) 0.0136 0.0063 0.0021 0.0067 71.6 5.41 79.8 113 p-CS/vdW
11 (2Cbay-∗-7Cbay) 0.0116 0.0051 0.0017 0.0054 71.5 1.84 87.1 142 p-CS/vdW
11 (3Cbay-∗-8Cbay) 0.0115 0.0050 0.0016 0.0053 72.0 1.91 82.6 166 p-CS/vdW
11 (4Cbay-∗-9Cbay) 0.0111 0.0049 0.0016 0.0052 71.7 1.69 79.5 155 p-CS/vdW

11 (4Ccape-∗-22Ccape) 0.0053 0.0019 0.0007 0.0020 70.1 6.81 68.3 13.5 p-CS/vdW
11 (6Ccape-∗-23Ccape) 0.0059 0.0020 0.0007 0.0021 70.2 10.21 69.7 7.5 p-CS/vdW
11 (7Ccape-∗-25Ccape) 0.0059 0.0022 0.0008 0.0023 70.2 3.58 67.8 7.2 p-CS/vdW
11 (9Ccape-∗-26Ccape) 0.0062 0.0021 0.0007 0.0022 70.4 5.80 69.5 64.7 p-CS/vdW
12 (1Hbay-∗-6Cbay) 0.0136 0.0063 0.0021 0.0067 71.5 4.84 80.5 103 p-CS/vdW
12 (2Cbay-∗-7Cbay) 0.0115 0.0051 0.0017 0.0053 71.5 1.77 87.8 349 p-CS/vdW
12 (3Cbay-∗-8Cbay) 0.0117 0.0051 0.0016 0.0053 72.3 1.74 83.6 241 p-CS/vdW
12 (4Cbay-∗-9Cbay) 0.0110 0.0048 0.0016 0.0051 71.5 1.72 80.7 87.8 p-CS/vdW

12 (4Ccape-∗-22Ccape) 0.0055 0.0020 0.0007 0.0022 70.2 4.80 66.3 697 p-CS/vdW
12 (6Ccape-∗-23Ccape) 0.0060 0.0021 0.0008 0.0022 70.0 6.78 68.0 8.6 p-CS/vdW
12 (7Ccape-∗-25Ccape) 0.0059 0.0022 0.0008 0.0023 70.0 3.41 68.2 3.3 p-CS/vdW
12 (9Ccape-∗-26Ccape) 0.0059 0.0020 0.0007 0.0021 70.3 6.95 69.4 24.7 p-CS/vdW
12 (10Ccape-∗-28Ccape) 0.0056 0.0020 0.0007 0.0022 70.5 4.09 68.6 65.4 p-CS/vdW

1 Calculated with M06-2X/6-311+G(3d,p). 2 Data are given at the BCPs. 3 All interactions are predicted to have
the p-CS/vdW nature, except for 10 (2Cbay-∗-7Cbay), which has the p-CS/t-HBnc nature. 4 c∇2ρb(rc) = Hb(rc) −
Vb(rc)/2, where c = h̄2/8m. 5 R = (x2 + y2)1/2, where (x, y) = (Hb(rc) − Vb(rc)/2, Hb(rc)). 6 θ = 90◦ − tan−1 (y/x). 7

Cij = ∂2E/∂fi∂fj, where i and j refer to internal coordinates, and the external force components acting on the system
fi and fj correspond to i and j, respectively. 8 θp = 90◦ − tan−1 (dy/dx). 9 κp = ?d2y/dx2?/[1 + (dy/dx)2]3/2. 10

Data from w = ±0.0125, ±0.025, and 0 were used for the plot since BCPs were not detected at w = ±0.05. 11 Data
from w = −0.05, −0.0375, −0.025, −0.0125, and 0 were used for the plot since BCPs were not detected when w > 0.
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The perturbed structures necessary for QTAIM-DFA were generated by CIV [38],
with the coordinates Ci corresponding to the compliance constants Cii for the internal
vibrations [39–44]. The basic concept for the compliance constants was introduced by
Taylor and Pitzer [45], followed by Konkoli and Cremer [46]. The Cij are defined as the
partial second derivatives of the potential energy due to an external force [47–49], where
i and j refer to internal coordinates. The dynamic nature of the interactions based on
perturbed structures with CIV is described as the “intrinsic dynamic nature of interactions”
because the coordinates are invariant to the choice of coordinate system. QTAIM-DFA
and the criteria obtained by applying QTAIM-DFA with CIV to standard interactions
are explained in the Appendix of the Supporting Information using Schemes SA1–SA3,
Figure SA1 and SA2, Table SA1, and Equations (SA1)–(SA7).

In this work, we present the results of the investigations into the natures of the π···π
interactions in 1–12, 6:6–8:8, and 10:10, although some are discussed in the Supporting
Information or calculated only for comparison. The interactions are classified and charac-
terized by using the criteria as a reference. The structural features and the energy profile
are also discussed to provide a solid basis for the discussion.

2. Methodological Details of the Calculations

Calculations were performed with the Gaussian 09 program package [50]. The 6-
311+G(3d,p) basis set was used for the calculations at the DFT level of M06-2X [51] (M06-
2X/6-311+G(3d,p)). The optimized structures were confirmed by frequency analysis. The
results of the frequency analysis were used to calculate the compliance constants (Cii) and
the coordinates corresponding to Cii (Ci). Calculations were also performed with M06-
2X/6-311+G(2d,p) and LC-ωPBE/6-311+G(2d,p) [52] to examine the basis set and level
dependence, containing the optimized π···π distances, on the results. The results with M06-
2X/6-311+G(3d,p) are discussed in the text, while the results with M06-2X/6-311+G(2d,p)
and LC-ωPBE/6-311+G(2d,p) are discussed mainly in the Supporting Information. We
should be careful with the basis set and level dependence on the QTAIM-DFA parameters,
which has been examined carefully [53]. Similar methodology was also employed for the
theoretical studies of the π-stacking [54,55].

Equation (1) explains the method for generating perturbed structures with CIV [38].
The i-th perturbed structure in question (Siw) is generated by adding Ci to the standard
orientation of a fully optimized structure (So) in the matrix representation. The coefficient
giw in Equation (1) controls the structural difference between Siw and So, giw is determined
to satisfy Equation (2) for r, where r and ro stand for the interaction distances in question
in the perturbed and fully optimized structures, respectively, with ao = 0.52918 Å (Bohr
radius). Five-digit Ci values were used to predict Siw.

Siw = So + giw·Ci (1)

r = ro + wao (w = (0), ±0.025 and ±0.05; ao = 0.52918 Å) (2)

y = co + c1x + c2x2 + c3x3 (Rc
2: square of the correlation coefficient) (3)

The QTAIM functions were calculated using the same basis set system as in the
optimizations, unless otherwise noted, and were analyzed with the AIM2000 [56,57] and
AIMAll [58] programs. The Hb(rc) values are plotted versus the Hb(rc) − Vb(rc)/2 values
for five data points in Equation (2) in QTAIM-DFA: w = 0, ±0.025, and ±0.05. Each plot
was analyzed using a cubic function regression curve, as shown in Equation (3), where (x,
y) = (Hb(rc) − Vb(rc)/2, Hb(rc)) (Rc

2 > 0.99999 as usual) [31].

3. Results and Discussion
3.1. Structural Features of 1–12 and Their Energy Profile

The structures of 1–12 were optimized with M06-2X/6-311+G(3d,p), M06-2X/6-311
+G(2d,p), and LC-ωPBE/6-311+G(2d,p), retaining C2 symmetry. The selected noncovalent
X···Y distances (X, Y = C, H) in the optimized structures with M06-2X/6-311+G(3d,p), M06-
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2X/6-311+G(2d,p), and LC-ωPBE/6-311+G(2d,p) are shown in Table S1 of the Supporting
Information, along with the observed values [59–66].

How can the behaviour of the energies of the helicenes be explained? The energies
of the helicenes were compared with the energies of [n]phenacene, a nonhelical species,
evaluated with M06-2X/6-311+G(3d,p). The energy profiles will be discussed based on the
energy differences, ∆E(n) = E(n) − E(n − 1) for helicenes (1–12) and ∆E(np) = E(np) − E(np
− 1) for [n]phenacenes (1p–12p). The ∆E(n) values correspond to the energy differences in
the formation of n from n − 1, and the ∆E(np) values similarly correspond to np from (np−
1). The E(n), E(np), ∆E(n), and ∆E(np) values were calculated on the energy surface, which
are described by EES(n), EES(np), ∆EES(n), and ∆EES(np), respectively. The values were also
calculated with the zero-point energies, which are described by EZP(n), EZP(np), ∆EZP(n),
and ∆EZP(np). The values calculated with M06-2X/6-311+G(3d,p) are collected in Table S2
of the Supporting Information. The plot of ∆EZP(n) versus ∆EES(n) revealed an excellent
correlation (y = 1.0042x + 0.6859; Rc

2 = 0.980, see Figure S1 of the Supporting Information).
As a result, ∆EES(n) can be used to analyze the energy terms.

Figure 1 shows the plots of ∆EES(n) and ∆EES(np) versus n. Both the ∆EES(n) and
∆EES(np) values (∆EES(n; np)) decrease when n increases from 2 to 3. The extension of the
π system appears to contribute more to the formation of phenanthrene from naphthalene
than the repulsive noncovalent H···H interaction. The ∆EES(3; 3p) values are less than
the ∆EES(2; 2p) values; however, the ∆EES(n; np) values increase from 3; 3p to 4; 4p. In
the case of ∆EES(np), the ∆EES(4p) value is somewhat larger than ∆EES(3p) but slightly
smaller than ∆EES(2p). The ∆EES(np) value decreases again slightly from 4p to 5p. Then,
the values are nearly constant for np ≥ 5p. The results show that the repulsive energy from
the noncovalent H···H interaction does not appear to be as severe as the stabilization factor
from the extended π systems in 1p–12p. Namely, the np system stabilizes almost constantly
as the size of the species increase, especially for np ≥ 5p, although a change in ∆EES(np) is
detected for 2p ≤ np < 5p.
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Figure 1. Plot of ∆EES(n) and ∆EES(np) versus n, evaluated with M06-2X/6-311+G(3d,p), where
∆EES(n) = EES(n) − EES(n − 1) and ∆EES(np) = EES(np) − EES(np − 1).

The data points for ∆EES(n) appear to be greater than those for ∆EES(np) when n ≥ 4.
The observations must be due to the severe steric repulsion in ∆EES(n ≥ 4), where the plot
for ∆EES(np) corresponds to that without such severe steric repulsion. The ∆EES(4) value is
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much larger than those of ∆EES(2) and ∆EES(3). The results can be explained by considering
the much larger contribution from the repulsive noncovalent H···H interaction in 4 than in
3. This consideration is supported by the optimized structure of 4, drawn in Figure 2, as
the molecular graph type. The ∆EES(n) values decrease in the following order: ∆EES(4) >
∆EES(5) > ∆EES(6) > ∆EES(7) > ∆EES(8). The contribution of steric repulsion to ∆EES(n) due
to noncovalent interactions is expected to increase as n increases in this process. However,
the observed results are the opposite of what was expected. Therefore, the observed trend
should be attributed to the increased energy-lowering effect by the extended π systems in
4–8 relative to the repulsive interactions.
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Figure 2. Molecular graphs for 4 (a), 7 (b), 9 (c), 11 (d), and 12 (e), calculated with M06-2X/6-
311+G(3d,p), where BPs with BCPs corresponding to intramolecular noncovalent interactions are
detected. The BCPs are denoted by red dots, RCPs (ring critical points) by yellow dots, CCPs (cage
critical points) by green dots, and BPs by pink lines. The carbon atoms are in black and the hydrogen
atoms are in grey.

The ∆EES(n) value becomes somewhat larger again from n = 8 to 9 and 9 to 10, and
then decreases again from 10 to 11 and 11 to 12. The subtle conditions in the steric re-
pulsion contribute to the complex behaviour of ∆EES(n) (8 ≤ n ≤ 12). The behaviour of
∆EES(2)–∆EES(12) shown in Figure 1 should be affected both by the repulsive factor of the
noncovalent H-∗-H, C-∗-H, and C-∗-C interactions and by the energy-lowering factor of
the extended π system. The ∆EES(4) value is the largest among ∆EES(2)–∆EES(12). The
results are of great interest since the repulsive noncovalent H···H interaction in 4 from 3
appears to be very large among 2–12 when evaluated by ∆EES(n). The trend in ∆EES(n)
seems to be in good agreement with those reported by Rulíšek et al., calculated with
PBE-D/TZVP//PBE-D/6-31G(d), except for ∆EES(8) and ∆EES(9) [67].

It is also instructive to analyze the aromaticities of acenes, phenacenes, and helicenes
after investigating the energy profiles. The structures of acenes, phenacenes, and helicenes
are illustrated in Chart S1 of the Supporting Information, together with the definition of the
ring positions. The aromaticities were analyzed by the HOMA (harmonic oscillator model
of aromaticity) method [68]. The HOMA values are collected in Table S3 of the Supporting
Information. The HOMA values of the acenes and phenacenes are plotted versus those of
the helicenes, which are shown in Figure S2 of the Supporting Information. The plot of the
data for phenacenes versus those for helicenes gave a very good correlation (y = 0.964x +
0.042; Rc

2 = 0.981), whereas the correlations of the plots for acenes versus helicenes were
very poor (y = −0.685x + 0.995; Rc

2 = 0.492 if calculated under the closed–shell singlet
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conditions and y = −0.399x + 0.880; Rc
2 = 0.317 under the open–shell singlet conditions).

The very good correlation of the former demonstrates that the aromaticities of the helicenes
appear to be very similar to those of the phenacenes, irrespective of the very severe steric
deformations in the structures of helicenes. However, the very poor correlations with the
negative correlation constants show that the aromaticities of the helicenes are very different
from those of acenes.

3.2. Survey of X-∗-Y (X, Y = C and H) in 3–12 with the Molecular Graphs

Figure 2 shows the molecular graphs, exemplified by 4, 7, 9, 11, and 12. Many BPs
with BCPs are detected in the π···π interactions between the phenyl rings in close proximity
to the helicenes. The molecular graphs for helicenes 3–12, except for 4, 7, 9, 11, and 12, are
shown in Figure S3 of the Supporting Information.

The BPs corresponding to X-∗-Y (X, Y = C and H) appear almost straight, as shown in
Figure 2 and Figure S4 of the Supporting Information, although some appear somewhat
bent. To examine the linearity of the BPs further, the lengths of the BPs (rBP) were calculated
for all X-∗-Y of 3–12, along with the corresponding straight-line distances (RSL). The values
are collected in Table S4 of the Supporting Information, along with the differences between
them (∆rBP = rBP – RSL). The averaged values of ∆rBP were 0.2040, 0.4006, 0.0588, and
0.1451 Å for Hbay-∗-Hbay, Cbay-∗-Hbay, Cbay-∗-Cbay, and Ccape-∗-Ccape, respectively. As
a result, ∆rBP for Hbay-∗-Hbay and Cbay-∗-Hbay were larger than 0.20 Å, while those for
Cbay-∗-Cbay and Ccape-∗-Ccape were less than 0.15 Å. Therefore, the BPs corresponding to
Cbay-∗-Cbay and Ccape-∗-Ccape can be roughly approximated as straight lines since the ∆rBP

values are less than 0.20 Å (see also Figure S4 of the Supporting Information).
The QTAIM functions were calculated at BCPs on X-∗-Y of 3–12 with M06-2X/6-

311+G(3d,p). Table 1 collects the ρb(rc), Hb(rc) − Vb(rc)/2, and Hb(rc) values for one of
the X-∗-Y if it is doubly degenerated due to the C2 symmetry of the optimized structures.
Figure 3 shows the plots of Hb(rc) versus Hb(rc) – Vb(rc)/2 for each X-∗-Y, exemplified
by 3–6, 8, 10, and 12, where H-∗-H was detected in 3 and 4 and C-∗-H and C-∗-C were
detected in 8, 10, and 12. (See Figure S5 of the Supporting Information for 7, 9, and 11).
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Figure 3. Plots of Hb(rc) versus Hb(rc) − Vb(rc)/2 for H-∗-H, C-∗-H, and C-∗-C, exemplified by those
in 3–6, 8, 10, and 12. (a) Whole picture; (b) Magnified picture of the C-∗-H area; (c) Magnified picture
of the C-∗-C bay area; (d) Magnified picture of the C-∗-C cape area. The definitions of (R, θ) and (θp,
κp) are illustrated, exemplified by H-∗-H in 4.
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The plots were analyzed according to Equations (SA3)–(SA6) of the Supporting In-
formation. Table 1 also collects the QTAIM-DFA parameters of (R, θ) and (θp, κp) for each
X-∗-Y of 3–12, along with the Cii values corresponding to the interactions in question. The
(θp, κp) values, evaluated with CIV, should be denoted by (θp:CIV, κp:CIV), respectively. How-
ever, (θp, κp) will be used in place of (θp:CIV, κp:CIV) to simplify the notation. The QTAIM
functions and QTAIM-DFA parameters calculated with M06-2X/6-311+G(2d,p) and LC-
ωPBE/6-311+G(2d,p) are collected in Tables S5 and S6 of the Supporting Information
respectively.

3.3. Nature of Each X-∗-Y in 3–12

The criteria shown in Scheme SA3 and Table SA1 of the Supporting Information
indicate that the interactions in the range of 45◦ < θ < 90◦ should be classified as pure
closed-shell (p-CS) interactions. In the p-CS region of 45◦ < θ < 90◦, the character of the
interactions will be the vdW type for 45◦ < θp < 90◦ (45◦ < θ < 75◦), whereas the character of
the interactions will be the typical hydrogen bond type (t-HB) with no covalency (t-HBnc)
for 90◦ < θp < 125◦ (75◦ < θ < 90◦), where θ = 75◦ and θp = 125◦ are tentatively given for θp
= 90◦ and θ = 90◦, respectively.

The C atoms in helicenes 3–12 were subdivided into Cbay and Ccape based on the
positions of the atoms in the species, as were the H atoms into Hbay and Hcape. The bay
and cape areas (positions) in the species are illustrated in Scheme 1. While both the Cbay
and Ccape atoms of 3–12 participate in the interactions as BPs, only Hbay atoms participate
as BPs. The θ and θp values for H-∗-H, C-∗-H, and C-∗-C of 3–12, collected in Table 2, are
all less than 90◦, except for θp of 2Cbay-∗-7Cbay in 10, where (θ, θp) = (70.5◦, 94.2◦). The
2Cbay-∗-7Cbay interaction in 10 is denoted by 10 (2Cbay-∗-7Cbay) (see also Table 1). Therefore,
the H-∗-H, C-∗-H, and C-∗-C interactions of 3–12 are all classified as p-CS interactions
and characterized to have a vdW nature, which is denoted by p-CS/vdW, except for 10
(2Cbay-∗-7Cbay), which is predicted to have a p-CS/t-HBnc nature.

Table 2. QTAIM Functions and QTAIM-DFA Parameters Evaluated for the Fused Benzene-Type
Helicenes of Concave-Type Dimers (6:6 and 7:7), Employing the Perturbed Structures Generated with
CIV 1–3.

Species ρb(rc) c∇2ρb(rc) Hb(rc) R θ Cii θp κp Predicted
Nature

X-∗-Y (eao
–3) (au) (au) (au) (◦) (Å mdyn−1) (◦) (au−1)

6:6 (1Hbay-∗-17’Hcape) 4 0.0045 0.0018 0.0006 0.0019 72.6 25.02 88.1 5163 p-CS/vdW
6:6 (1Hcape-∗-17’Hcape) 0.0061 0.0022 0.0006 0.0023 74.3 35.63 76.2 184.2 p-CS/vdW
6:6 (1Hcape-∗-16’Hcape) 0.0051 0.0019 0.0007 0.0020 70.9 42.01 74.9 69.9 p-CS/vdW

6:6 (15Ccape-∗-17’Ccape)5 0.0065 0.0025 0.0009 0.0027 69.2 12.64 70.8 1066 p-CS/vdW
6:6 (16Ccape-∗-17’Ccape) 0.0066 0.0026 0.0010 0.0028 68.3 8.63 68.0 53.5 p-CS/vdW

6:6 (1Hbay-∗- 5Cbay) 0.0128 0.0057 0.0019 0.0060 71.9 3.817 78.3 32.3 p-CS/vdW
6:6 (3Cbay-∗-7Hbay) 0.0134 0.0061 0.0020 0.0064 71.7 3.414 79.3 29.5 p-CS/vdW

7:7 (20Hcape-∗-18’Hcape) 0.0073 0.0031 0.0012 0.0033 68.9 14.61 75.5 24.6 p-CS/vdW
7:7 (20Hcape-∗-20’Hcape) 0.0054 0.0022 0.0008 0.0024 70.0 27.90 72.7 36.5 p-CS/vdW
7:7 (20Hcape-∗-2’Ccape) 0.0079 0.0030 0.0010 0.0032 71.4 10.01 73.3 125.7 p-CS/vdW
7:7 (18Hcape-∗-3’Ccape) 0.0050 0.0016 0.0005 0.0016 73.8 17.36 73.2 181.8 p-CS/vdW

7:7 (1Hbay-∗-6Cbay) 0.0132 0.0062 0.0021 0.0065 70.8 5.557 80.0 93.5 p-CS/vdW
7:7 (3Cbay-∗-8Hbay) 0.0138 0.0065 0.0021 0.0068 71.9 5.024 78.8 154.1 p-CS/vdW

1 Calculated with M06-2X/6-311+G(3d,p). 2 Data are given at the BCPs. 3 See footnotes of Table 1 for the
QTAIM-DFA parameters and Cii. 4 Data from w = −0.0375, −0.025, −0.0125, 0, and 0.0125 were used for the plot,
since BCPs for 6:6 (1Hbay-∗-17’Hcape) were not detected when w > 0.0125. 5 Data from w = −0.05, −0.0375, −0.025,
−0.0125, and 0 were used for the plot, since BCPs for 6:6 (15Ccape-∗-17’Ccape) were not detected when w > 0.

Next, the interactions were individually examined. The (θ, θp) values are (71.3◦, 72.8◦)
and (71.8◦, 74.5◦) for 3 (1Hbay-∗-4Hbay) and 4 (1Hbay-∗-5Hbay), respectively. The θ values
for 3 (1Hbay-∗-4Hbay) and 4 (1Hbay-∗-5Hbay) are larger than those of A-∗-HF (A = He, Ne,
and Ar: (θ, θp) = (59.9–70.9◦, 64.0–88.0◦)), whereas the θp values are larger than those of



Nanomaterials 2022, 12, 321 9 of 19

A-∗-HF (A = He and Ar). The interaction in 4 is estimated to be slightly stronger than
that in 3, although the real image of 3 (1Hbay-∗-4Hbay) has been much debated [69–71].
The detection of BPs with BCPs for 3 (1Hbay-∗-4Hbay) would not show enough strength
for the interaction. It could be the mathematical results of the treatment. Nevertheless, 3
(1Hbay-∗-4Hbay) and 4 (1Hbay-∗-5Hbay) are discussed as very weak interactions in this work
because the (θ, θp) values are larger than those of A-∗-HF (A = He, Ne, and Ar). Double
Hbay-∗-Cbay interactions are detected for each of 5–12, with (θ, θp) values of (70.7–71.6◦,
76.7–80.8◦). The (θ, θp) values are very close to those of A-∗-HF (A = He, Ne, and Ar). The
BP (Hbay-∗-Cbay) in 6 and 9 connect the Hbay and Cbay atoms. However, they are not located
at the nearest positions, as shown in Table 1 and Figure S3 of the Supporting Information.
Therefore, the BP (Hbay-∗-Cbay) in 6 and 9 should be analyzed carefully.

One, one, four, four, seven, and eight different types of C-∗-C interactions are detected
for 7–12, respectively. The (θ, θp) values for C-∗-C in 7–12 are (70.0–72.9◦, 66.3–94.2◦). It
appears better to separately examine the values for two groups of Cbay-∗-Cbay and Ccape-
∗-Ccape. While the (θ, θp) values of Cbay-∗-Cbay in 7–12 are (71.5–72.9◦, 79.5–87.8◦), the
values are (70.0–70.7◦, 66.3–69.7◦) for Ccape-∗-Ccape. The θ values for Ccape-∗-Ccape are
slightly smaller than those of Cbay-∗-Cbay (by 0.5–2.2◦), but the θp values for Ccape-∗-Ccape
are much smaller than those of Cbay-∗-Cbay (by 13.2–24.5◦). In this case, θp < θ for Ccape-∗-
Ccape, whereas θp > θ for Cbay-∗-Cbay. Interactions with θp > θ are usually observed, but
interactions with θp < θ are rare.

Interactions with θ > θp occur under some specific conditions. To examine the be-
haviour of θ and θp in 7–12, the ∆θp (=θp – θ) values are plotted versus θp for C-∗-C, H-∗-H
and C-∗-H in 3–12. Figure 4 shows this plot. The plot showed a very good correlation for
all data (y = 0.918x – 64.88: Rc

2 = 0.995). (A substantial correlation was not found in the
plot of ∆θp versus θ due to the very small range of θ). The two areas for C-∗-C interactions
with ∆θp > 0 and ∆θp < 0 are clearly illustrated by the green dotted lines in Figure 4. The
∆θp values for the interactions are positive if the θp values are larger than 70.7◦, whereas
∆θp < 0 if θp < 70.7◦. Figure 4 clearly shows that Cbay-∗-Cbay and Ccape-∗-Ccape in 9–12
belong to the areas where ∆θp > 0 and ∆θp < 0, respectively.
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It seems difficult to clearly explain the results shown in Figure 4; however, our ex-
planation is as follows: The static nature of the interactions described by θ should be a
measure of the strength of the interactions. If so, the steric compression on Ccape-∗-Ccape
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in 9–12 appears to be similar to that on Cbay-∗-Cbay in fully optimized structures. Namely,
the Ccape-∗-Ccape and Cbay-∗-Cbay interactions in the fully optimized structures of 9–12
would be affected similarly to steric compression, according to the θ values. On the other
hand, the dynamic nature of the interactions is defined by θp based on the behaviour of
the interactions in the perturbed structures. The Cbay-∗-Cbay interactions in the perturbed
structures will be affected by steric compression, similar to the usual cases of interactions,
whereas the Ccape-∗-Ccape interactions will be inversely affected compared with the usual
cases when measured by the θp values at the BCPs of the interactions.

3.4. Nature of Each X-∗-Y in 6:6 and 7:7

What is the behaviour of the interactions when the helicenes form concave-type
dimers? The behaviour was elucidated, exemplified by 6:6 (Ci) and 7:7 (Ci) with M06-2X/6-
311+G(3d,p). Figure 5 shows molecular graphs of 6:6 and 7:7. Five and four independent
BPs with BCPs were detected in 6:6 and 7:7, respectively, between the components of
H-∗-H and C-∗-H, as well as two independent BPs with BCPs for the intramolecular C-∗-
H interactions in each component of 6:6 and 7:7. The behaviour of the interactions was
also investigated for 7:7 (Ci), 8:8 (Ci), and/or 10:10 (Ci) with M06-2X/6-311+G(2d,p) and
LC-ωPBE/6-311+G(2d,p). The results are collected in Tables S7 and S8 of the Support-
ing Information. The QTAIM functions were similarly calculated for the intermolecular
interactions at the BCPs on the BPs of 6:6 and 7:7 with M06-2X/6-311+G(3d,p).
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Figure 5. Molecular graphs for helicene dimers, 6:6 (a) and 7:7 (b), calculated with M06-2X/6-
311+G(3d,p), where BPs with BCPs corresponding to intra- and intermolecular noncovalent inter-
actions are detected. The BCPs are denoted by red dots, RCPs (ring critical points) by yellow dots,
CCPs (cage critical points) by green dots, and BPs by pink lines. The carbon atoms are in black and
the hydrogen atoms are in grey.

Table 2 collects the ρb(rc), Hb(rc) − Vb(rc)/2, and Hb(rc) values for one of the doubly
degenerate interactions due to the Ci symmetry of the optimized structures. Figure 6 shows
the plots of Hb(rc) versus Hb(rc) − Vb(rc)/2 for each interaction between the components
at 6:6 and 7:7. (The plots for 8:8 and 10:10 are shown in Figure S7 of the Supporting
Information, and the data are collected in Table S8 of the Supporting Information).

The plots were analyzed similarly to the case of 3–12. Table 2 also collects the QTAIM-
DFA parameters of (R, θ) and (θp, κp) for the intermolecular interactions in question at 6:6
and 7:7, together with the Cii values corresponding to the interactions in question. The (θ,
θp) values for the three H-∗-H and two C-∗-C intermolecular independent interactions of
6:6 are (70.9–74.3◦, 74.9–88.1◦) and (68.3–69.2◦, 68.0–70.8◦), respectively. The (θ, θp) values
for the couple of H-∗-H and two C-∗-H intermolecular independent interactions at 7:7 are
(68.9–70.0◦, 72.7–75.5◦) and (71.4–73.8◦, 73.2–73.3◦), respectively. The θ and θp values for
the intermolecular H-∗-H, C-∗-H, and C-∗-C interactions at 6:6 and 7:7 are all less than 90◦;
therefore, the interactions are all predicted to have a p-CS/vdW nature (see Table 2). The
interactions appear to be very weak, based on the (θ, θp) values. However, (θ, θp) = (72.6◦,
88.1◦) for 6:6 (1Hbay-∗-17’Hcape), of which nature seems close to p-CS/t-HBnc.
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calculated with M06-2X/6-311+G(3d,p).

In the case of intramolecular interactions, 1Hbay-∗-5Cbay and 3Cbay-∗-7Hbay were
detected at 6:6. The former was also observed in 6, whereas the latter was newly detected
in 6:6. The new appearance of 6 (3Cbay-∗-7Hbay) may be due to a structural change at 6:6
relative to 6. Similarly, 1Hbay-∗-6Cbay and 3Cbay-∗-8Hbay were detected at 7:7. The former
was observed in 7, while 3Cbay-∗-8Hbay in 7:7 appeared in place of 2Cbay-∗-7Cbay in 7. The
change in the optimized structures between 7 and 7:7 would again be responsible for the
results. However, clarifying the reason for the appearance/disappearance of BPs is very
complex and difficult in helicenes, and it is beyond the scope of this work.

Highly theoretical treatment must be necessary to clarify the reason for the appearance
and disappearance of BPs/BCPs. Pendás and coworkers discussed BPs as privileged
exchange channels, using the interacting quantum atom (IQA) framework [72]. They have
investigated how BPs between an atom A and atoms B in its environment appear to be
determined by competition among the A–B exchange correlation energies that always
contribute to stabilize the A–B interactions. And they have predicted that a BP is found
between two atoms by examining a number of archetypal simple systems: (1) there is no
other competing atom in its vicinity, so there must be a direct exchange route between
them or (2) its Vxc term is the largest among several possibilities, where Vxc stands for
a quantum-mechanical correction coming from the exchange correlation second-order
density [72]. It has also indicated that interaction energies between both atoms cannot be
universally used to predict the existence of a BP between them [73]. Moreover, they are
not correlated to distances or to the density values at BCPs. On the contrary, the exchange
contribution is shown to be an appropriate descriptor [73]. Similarly, theoretical treatments
are applied to various interactions, employing QTAIM-defined an atomic interaction line
(AIL: Presence or absence), IQA-defined interaction energy and its components, NCI (non-
covalent interactions)-defined isosurfaces, and deformation density [74]. The reason for
the appearance and disappearance of BPs/BCPs in the helicenes would be rationalized by
applying above theory [27].

The (θ, θp) values for the intramolecular interactions at 6:6 and 7:7 are (70.8–71.9◦,
78.3–80.0◦). As a result, the interactions are all predicted to have a p-CS/vdW nature (see
Table 2). The predicted natures of the interactions in 6:6 and 7:7 appear to be similar to
those in 6 and 7, perhaps due to the very weak nature of both dimers and monomers.
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4. Basis Set and Level Dependence of the Predicted Natures

The basis set and level dependence of the predicted natures was investigated, ex-
emplified by 7 and 7:7, to attempt to determine the reason why the optimized structures
can easily change. Table 3 shows the QTAIM-DFA parameters of (R, θ) and (θp, κp) and
the Cii values, calculated with M06-2X/6-311+G(3d,p), M06-2X/6-311+G(2d,p), and LC-
ωPBE/6-311+G(2d,p). Table 3 includes the distances in question as well as some internal
vibration(s) νn corresponding to the interactions in question, which are closely related to (θp,
κp). Figure 7 shows the motions of the internal vibrations for ν1 of 7 and 7:7 calculated with
M06-2X/6-311+G(3d,p), M06-2X/6-311+G(2d,p), and LC-ωPBE/6-311+G(3d,p). (Other
motions are shown in Figure S9 of the Supporting Information).

Table 3. QTAIM Functions and QTAIM-DFA Parameters Evaluated for the Fused Benzene-Type
Helicene (7) and the Concave-Type Dimer (7:7), Employing the Perturbed Structures Generated
with CIV, together with the X-∗-Y Distances and the Corresponding Internal Vibrations, with the
Frequencies Closely Related to the Interactions in Question 1,2.

Species r(X···Y) R θ Cii θp κp
Predicted

Nature

X-∗-Y (Å) (au) (◦) (Å mdyn−1) (◦) (au−1)

7 (M06-2X/6-311+G(3d,p): ν1 = 43.4 cm−1)
1Hbay-∗-6Cbay 2.5902 0.0067 71.5 5.47 77.9 187.5 p-CS/vdW
2Cbay-∗-7Cbay 2.9751 0.0054 71.9 3.33 80.6 128.2 p-CS/vdW

7 (M06-2X/6-311+G(2d,p): ν1 = 46.6 cm−1)
1Hbay-∗-6Cbay 2.5896 0.0067 70.4 5.49 81.6 39.9 p-CS/vdW
2Cbay-∗-7Cbay 3.0025 0.0054 69.9 3.06 78.7 120.2 p-CS/vdW

7 (LC-ωPBE/6-311+G(2d,p): ν1 = 40.1 cm−1) 3,4

1Hbay-∗-5Cbay 2.4681 0.0066 70.5 3.72 82.2 46.4 p-CS/vdW
7:7 (M06-2X/6-311+G(3d,p): ν1 = 14.0 cm−1; ν4 = 24.2 cm−1; ν5 = 29.3 cm−1; ν11 = 81.2 cm−1)

20Hcape-∗-18’Hcape 2.5423 0.0033 68.9 14.61 75.5 24.6 p-CS/vdW
20Hcape-∗-20’Hcape 2.7155 0.0024 70.0 27.90 72.7 36.5 p-CS/vdW
20Hcape-∗-2’Ccape 2.6769 0.0032 71.4 10.01 73.3 125.7 p-CS/vdW
18Hcape-∗-3’Ccape 2.9640 0.0016 73.8 17.36 73.2 181.8 p-CS/vdW

7:7 (M06-2X/6-311+G(2d,p): ν1 = 13.0 cm−1; ν4 = 22.1 cm−1; ν5 = 27.3 cm−1; ν11 = 78.6 cm−1)
20Hcape-∗-18’Hcape 2.5643 0.0032 67.9 16.63 75.2 60.1 p-CS/vdW
20Hcape-∗-20’Hcape 2.7287 0.0024 68.6 29.20 71.9 42.2 p-CS/vdW
20Hcape-∗-2’Ccape 2.6881 0.0031 70.2 11.44 69.4 12.4 p-CS/vdW
18Hcape-∗-3’Ccape 2.9857 0.0016 73.0 31.43 73.2 181.9 p-CS/vdW

7:7 (LC-ωPBE/6-311+G(2d,p): ν1 = 2.1 cm−1; ν5 = 15.8 cm−1; ν6 = 28.8 cm−1; ν8 = 48.2 cm−1) 5,6

20Ccape-∗-18’Hcape 3.2357 0.0015 63.8 65.63 67.4 40.4 p-CS/vdW
20Hcape-∗-20’Hcape 3.0148 0.0014 63.6 96.42 66.9 90.7 p-CS/vdW
20Hcape-∗-2’Ccape 3.0656 0.0014 67.2 52.66 70.0 10.9 p-CS/vdW
18Hcape-∗-3’Ccape 3.6594 0.0005 62.9 73.99 73.9 394.0 p-CS/vdW

1 See footnotes of Table 1 for the QTAIM-DFA parameters and Cii. 2 The motions of the internal vibrations
are shown in Figure 7 and Figure S9 of the Supporting Information. 3 BPs and BCPs were not detected for
1Hbay-∗-6Cbay and 2Cbay-∗-7Cbay. 4 r(1Hbay-∗-6Cbay) = 2.5609 Å and r(2Cbay-∗-7Cbay) = 3.2265 Å. 5 BPs and BCPs
were not detected for 20Hcape-∗-18’Hcape. 6 r(20Hcape-∗-18’Hcape) = 2.9473 Å.
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Figure 7. The internal vibrational motions of ν1 for 7 (C2) and 7:7 (Ci). (a) For 7 (C2) calculated with
M06-2X/6-311+G(3d,p); (b) for 7 (C2) calculated with M06-2X/6-311+G(2d,p); (c) for 7 (C2) calculated
with LC-ωPBE/6-311+G(2d,p); (d) for 7:7 (Ci) calculated with M06-2X/6-311+G(3d,p); (e) for 7:7 (Ci)
calculated with M06-2X/6-311+G(2d,p); (f) for 7:7 (Ci) calculated with LC-ωPBE/6-311+G(2d,p).

The calculated r(1Hbay···6Cbay) and r(2Cbay···7Cbay) distances were 2.590 Å and 2.975 Å,
respectively, for 7, when calculated with M06-2X/6-311+(3d,p), while the values were
2.590 Å and 3.003 Å, respectively, when calculated with M06-2X/6-311+(2d,p). The dif-
ferences are less than 0.001 Å for r(1Hbay···6Cbay) and 0.028 Å for r(2Cbay···7Cbay). The
results show that the structure of 7 optimized with M06-2X/6-311+(2d,p) appears to be
nearly identical to that optimized with M06-2X/6-311+(3d,p). On the other hand, the
r(1Hbay···6Cbay) and r(2Cbay···7Cbay) of 7 were 2.561 Å and 3.227 Å, respectively, if calcu-
lated with LC-ωPBE/6-311+(2d,p). The difference was −0.029 Å for the former but 0.224 Å
for the latter relative to the corresponding values calculated with M06-2X/6-311+(2d,p). The
structure of 7 optimized with LC-ωPBE/6-311+(2d,p) appears to be (very) different from
that optimized with M06-2X/6-311+(2d,p), especially around r(2Cbay···7Cbay). In the case
of 1Hbay···5Cbay, the distance was optimized to be 2.468 Å with LC-ωPBE/6-311+(2d,p),
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which is shorter than the r(1Hbay···6Cbay) distance optimized with M06-2X/6-311+(2d,p)
(2.590 Å) by 0.122 Å. BPs (with BCPs) were detected for 1Hbay-∗-6Cbay and 2Cbay-∗-7Cbay
in 7 if calculated with M06-2X/6-311+(3d,p) and M06-2X/6-311+(2d,p), while a BP was
detected for 1Hbay-∗-5Cbay if calculated with LC-ωPBE/6-311+(2d,p). The 2Cbay-∗-7Cbay

and 1Hbay-∗-5Cbay distances in 7, optimized with LC-ωPBE/6-311+(2d,p), were (much)
longer and shorter than those optimized with M06-2X/6-311+(2d,p), respectively.

The differences in the optimized distances appear to be the main factor for the appear-
ance/disappearance of the BPs, although predicting the appearance/disappearance of the
BPs is very difficult and complex. Despite such different results, the motion of ν1 appears
to be very similar when calculated at both the M06-2X and LC-ωPBE levels, indicating
that ν1 is a good measure for imaging the dynamic nature of the π···π interactions in 7
among the internal vibrations. Small differences in the dynamic nature of the interactions
predicted at both the M06-2X and LC-ωPBE levels result from the (very) similar motion of
ν1. The magnitudes of the displacements in the cape area seem (much) larger than those in
the bay area in ν1. This will be instructive if the relationship is clarified for that between
the magnitudes of the displacements and the ∆θp values. This issue will be investigated in
a future work. The very low energy of ν1 in 7 suggests the basis set and level dependence
can easily change the optimized structure.

In the case of 7:7, the r(20Hcape···18’Hcape), r(20Hcape···20’Hbay), r(20Hcape···2’Ccape), and
r(8Hcape···3’Ccape) distances were 2.543 Å, 2.716 Å, 2.677 Å, and 2.964 Å, respectively, when
calculated with M06-2X/6-311+(3d,p), while the values were 2.564 Å, 2.729 Å, 2.688 Å,
and 2.986 Å, respectively, when calculated with M06-2X/6-311+(2d,p). The differences
are 0.011–0.022 Å, which are less than approximately 0.02 Å. The results show that the
optimized structures of 7:7 are very similar with both M06-2X/6-311+(3d,p) and M06-2X/6-
311+(2d,p). On the other hand, the distances are optimized to be 2.947 Å, 3.015 Å, 3.066 Å,
and 3.659 Å with LC-ωPBE/6-311+(2d,p). The differences with the corresponding values
of M06-2X/6-311+(2d,p) are 0.286–0.674 Å. Namely, the structure of 7:7 optimized with
LC-ωPBE/6-311+(2d,p) appears to be very different from that optimized with M06-2X/6-
311+(2d,p), similar to the case of 7.

The 20Ccape-∗-18’Hcape distance was optimized to be 3.236 Å, which is longer than
r(20Hcape···18’Hcape) (2.947 Å) by 0.288 Å with LC-ωPBE/6-311+(2d,p). However, a BP
was detected for 20Ccape-∗-18’Hcape but not for 20Hcape-∗-18’Hcape. The difference in the
atomic size between C and H, such as the van der Waals radii, may be responsible for
the predicted results, in this case. The 20Ccape-∗-18’Hcape, 20Hcape-∗-20’Hbay, 20Hcape-∗-
2’Ccape, and 8Hcape-∗-3’Ccape distances at 7:7, optimized with LC-ωPBE/6-311+(2d,p), were
much longer than the corresponding distances, optimized with M06-2X/6-311+(2d,p). BPs
were detected for 20Hcape-∗-18’Hcape, 20Hcape-∗-20’Hbay, 20Hcape-∗-2’Ccape, and 18Hcape-∗-
3’Ccape when calculated with M06-2X/6-311+(2d,p), while they were detected for 20Ccape-
∗-18’Hcape, 20Hcape-∗-20’Hbay, 20Hcape-∗-2’Ccape, and 8Hcape-∗-3’Ccape when calculated with
LC-ωPBE/6-311+(2d,p). The differences in the optimized distances appear to be the main
factor for the appearance/disappearance of the BPs, similar to the case of 7.

Table 3 contains the ν1 values for 7 and 7:7, calculated with M06-2X/6-311+(3d,p),
M06-2X/6-311+(2d,p), and LC-ωPBE/6-311+(2d,p). Table 3 also contains some vibrations
closely related to the interactions in question (corresponding to the perturbed structures) at
7:7, where most candidates were found to be less than νn of ν20. The ν1 values for 7 were
48.4 cm−1, 46.6 cm−1, and 40.2 cm−1 when calculated with the three methods, respectively.
The ν1 motion of 7 appears to be very similar when calculated with the three methods. In
the case of 7:7, the frequencies of ν1 calculated with M06-2X/6-311+G(3d,p) and M06-2X/6-
311+G(2d,p) were 14.0 cm−1 and 13.1 cm−1, respectively, while the value calculated with
LC-ωPBE was 2.1 cm−1. Very large differences are predicted for ν1 at 7:7 when calculated
at the M06-2X and LC-ωPBE levels. The ν1 value with the motion should correspond to the
strength of the interactions in the direction of the perturbed structures.

The (θ, θp) values of 7:7 are (67.9–73.0◦, 69.4–75.2◦) and (62.9–67.2◦, 67.4–73.9◦) with
M06-2X/6-311+(2d,p) and LC-ωPBE/6-311+(2d,p), respectively. The differences seem large
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relative to the case of 7, with (θ, θp) values of (70.4◦, 81.6◦) and (70.5◦, 82.2◦) when calculated
with M06-2X/6-311+(2d,p) and LC-ωPBE/6-311+(2d,p), respectively, although 7 (1Hbay-∗-
6Cbay) was detected with M06-2X/6-311+(2d,p) and 7 (1Hbay-∗-5Cbay) was detected with
LC-ωPBE/6-311+(2d,p). The (optimized) structures of 7:7 would be affected more easily by
surroundings containing the calculation methods than the case of 7. The basis set and level
dependence of the interactions in 7 and 7:7 can help us to better understand the interactions
in helicenes.

The unit of Cii [Å mdyn−1] is the inverse of that of the force constant, which corre-
sponds to the frequency. Therefore, the strengths of the interactions should be roughly
inversely proportional to the Cii values. As shown in Table 3, the Cii values for the π···π
interactions of 7 are 3.1–5.5 Å mdyn−1 for Hbay-∗-Cbay and Cbay-∗-Cbay with the three meth-
ods. The values for the π···π interactions of 7:7 are 10.0–27.9, 11.4–31.4, and 52.7–96.4 Å
mdyn−1 for Hcape-∗-Hcape and Hcape-∗-Ccape when calculated with M06-2X/6-311+(3d,p),
M06-2X/6-311+(2d,p), and LC-ωPBE/6-311+(2d,p), respectively. This consideration ex-
plains the above results.

5. Conclusions

It is challenging to clarify the natures of π···π interactions in helicenes since the
interactions are factors that control the fine details of structures and are expected to give
rise to specific functionalities for the species. The repulsive interactions between the
benzene rings in helicenes must be very strong; therefore, the π···π interactions would
be considered strong. The π···π interactions in the helicenes are described by the H-∗-H,
C-∗-H, and C-∗-C forms with BPs and BCPs. The π···π interactions in helicenes 1–12, as well
as in dimers 6:6 and 7:7, were analyzed with QTAIM-DFA after clarifying the structural
features and the energy profile. Hb(rc) was plotted versus Hb(rc) − Vb(rc)/2, and the
data from the fully optimized structures and the perturbed structures around the fully
optimized structures were used in QTAIM-DFA. Data from the fully optimized structures
in the plots correspond to the static nature of the interactions, which are analyzed using
polar coordinate (R, θ) representation. Data from both the perturbed and fully optimized
structures are expressed by (θp, κp), where θp corresponds to the tangent line and κp is the
curvature of the plot. The concept of the dynamic nature of the interactions was proposed
based on (θp, κp).

The interactions were analyzed by dividing the C atoms of 3–12 into Cbay and Ccape
and the H atoms into Hbay and Hcape. While both Cbay and Ccape atoms of 3–12 take part
in the interactions, only Hbay atoms participate as BPs. The θ and θp values for H-∗-H,
C-∗-H, and C-∗-C of 3–12 are all less than 90◦, except for 10 (2Cbay-∗-7Cbay), where (θ,
θp) = (70.5◦, 94.2◦). Therefore, the H-∗-H, C-∗-H, and C-∗-C interactions of 3–12 are all
predicted to have a p-CS/vdW nature, except for 10 (2Cbay-∗-7Cbay), which is predicted
to have a p-CS/t-HBnc nature. While the (θ, θp) values of Cbay-∗-Cbay in 7–12 are (71.5–
72.9◦, 79.5–87.8◦), the values are (70.0–70.7◦, 66.3–69.7◦) for Ccape-∗-Ccape. The θ values for
Ccape-∗-Ccape are slightly smaller than those of Cbay-∗-Cbay (by 0.5–2.2◦), but the θp values
for Ccape-∗-Ccape are much smaller than those of Cbay-∗-Cbay (by 13.2–24.5◦). In this case,
θ < θp for Cbay-∗-Cbay, whereas θ > θp for Ccape-∗-Ccape. Interactions with θ < θp are usually
observed, whereas interactions with θ > θp are rare.

The H-∗-H, C-∗-H, and C-∗-C interactions of dimers 6:6 and 7:7 were similarly ana-
lyzed. The interactions were predicted to have a p-CS/vdW nature, although 6:6 (1Hbay-∗-
17’Hcape) has a nature close to p-CS/t-HBnc, since (θ, θp) = (72.6◦, 88.1◦). The interactions
at 3–12 and 6:6 and 7:7 were predicted to be much weaker than expected. The very low
energy of ν1 of 7:7 supports the very weak nature predicted for interactions and the easy
dependence of the levels on the nature of the interactions. The strength of the interactions
can also be estimated by the Cii

−1 values. Detecting the interactions and predicting the
nature of helicenes will provide a solid basis for investigating and applying the interactions
in helicenes.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/nano12030321/s1. Table S1: The observed and calculated C···C length (robsd and rcalcd,
respectively), which are located in the bay area for 3–5 and the bay and cape area between adjacent
aromatic rings for 6–12, together with the differences, ∆rcalcd (=rcalcd:XY − robsd:XY) in each C···C for 3–
12, elucidated with various methods. Table S2: The total energy EES and zero-point energy EZP values
for n; np, where n = 1 to 12, along with the ∆EES and ∆EZP(n; np) values, evaluated with M06-2X/6-
311+G(3d,p). Table S3: The HOMA indices for [n]acenes, [n]phenacenes, and [n]helicenes, evaluated
with M06-2X/6-311+G(3d,p). Table S4: The observed and calculated X-∗-Y lengths (Robsd:XY and
Rcalcd:XY, respectively; X, Y = C and H) and the length of the bond paths (rBP:XY) and the corresponding
straight-line distances (RSL:XY), together with the differences, ∆Rcalcd:XY (=Rcalcd:XY – Robsd:XY) in
each X-∗-Y for 3–12, 6:6 and 7:7, evaluated with M06-2X/6-311+G(3d,p), where RSL:XY = Rcalcd:XY,
together with 8:8 and 10:10, calculated with M06-2X/6-311+G(2d,p). Table S5: QTAIM functions and
QTAIM-DFA parameters for the fused benzene-type helicenes of monomers (3–12 (C2)), together
with the nature of each noncovalent interaction, elucidated with M06-2X/6-311+G(2d,p). Table S6:
QTAIM functions and QTAIM-DFA parameters for the fused benzene-type helicenes of monomers
(3–12 (C2)), along with the nature of each noncovalent interaction, elucidated with LC-ωPBE/6-
311+G(2d,p). Table S7: The EES (au), ∆EES (kJ mol−1), and ∆EZP (kJ mol−1) values for 6:6–8:8 and
10:10, evaluated with various methods. Table S8: QTAIM functions and QTAIM-DFA parameters for
the concave-type dimer of helicenes (8:8–10:10 (Ci)), together with the nature of each noncovalent
interaction, elucidated with M06-2X/6-311+G(2d,p). Figure S1: Plots of ∆EZP(n) versus ∆EES(n),
calculated with M06-2X/6-311+G(3d,p). Figure S2: Plots of HOMA indices for [n]acenes (n = 4–12) at
closed-shell singlet state, [n]acenes (n = 7–12) at open-shell singlet state, and [n]phenacenes (n = 4–12)
versus those for [n]helicenes (n = 4–12), calculated with MP2/6-311+G(3d,p). Figure S3: Molecular
graphs for 3–6, 8, and 10 calculated with M06-2X/6-311+G(3d,p). Figure S4: Plots of rBP versus RSL
for Hbay-∗-Hbay, Cbay-∗-Hbay, Cbay-∗-Cbay, and Ccape-∗-Ccape in 3–12, calculated with M06-2X/6-
311+G(3d,p). Figure S5: Plots of Hb(rc) versus Hb(rc) − Vb(rc)/2 for H-∗-H, C-∗-H, and C-∗-C for 7, 9,
and 11. Figure S6: Molecular graphs for 8:8 (Ci) and 10:10 (Ci) calculated with M06-2X/6-311+G(2d,p).
Figure S7: Plots of Hb(rc) versus Hb(rc) − Vb(rc)/2 for H-∗-H, C-∗-H, and C-∗-C for 8:8 and 10:10.
Figure S8: The internal vibration motions of νn for 7:7 (Ci) from the top view. Figure S9: The internal
vibration motions of νn for 7:7 (Ci).
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15. Beránek, T.; Žádný, J.; Strašák, T.; Karban, J.; Císařová, I.; Sýkora, J.; Storch, J. Synthesis of a Helical Phosphine and a Catalytic
Study of Its Palladium Complex. ACS Omega 2020, 5, 882–892. [CrossRef]

16. Medena, C.; Aubert, C.; Derat, E.; Fensterbank, L.; Gontard, G.; Khaled, O.; Ollivier, C.; Vanthuyne, N.; Petit, M.; Barbazanges, M.
Helical Bisphosphinites in Asymmetric Tsuji-Trost Allylation: A Remarkable P:Pd Ratio Effect. ChemCatChem 2021, 13, 4543–4548.
[CrossRef]

17. Kel, O.; Fürstenberg, A.; Mehanna, N.; Nicolas, C.; Laleu, B.; Hammarson, M.; Albinsson, B.; Lacour, J.; Vauthey, E. Chiral
Selectivity in the Binding of [4]Helicene Derivatives to Double-Stranded DNA. Chem. Eur. J. 2013, 19, 7173–7180. [CrossRef]

18. Kawara, K.; Tsuji, G.; Taniguchi, Y.; Sasaki, S. Synchronized Chiral Induction between [5]Helicene–Spermine Ligand and B-Z
DNA Transition. Chem. Eur. J. 2017, 23, 1763–1769. [CrossRef]

19. Kalachyova, Y.; Guselnikova, O.; Elashnikov, R.; Panov, I.; Žádný, J.; Církva, V.; Storch, J.; Sykora, J.; Zaruba, K.; Švorčík, V.; et al.
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