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Abstract 

Acute Liver failure (ALF) is a life-threatening disease and is determined by coagulopathy (with INR ≥ 1.5) and hepatic 
encephalopathy as a result of severe liver injury in patients without preexisting liver disease. Since there are problems 
with liver transplantation including lack of donors, use of immunosuppressive drugs, and high costs of this process, 
new therapeutic approaches alongside current treatments are needed. The placenta is a tissue that is normally dis-
carded after childbirth. On the other hand, human placenta is a rich source of mesenchymal stem cells (MSCs), which 
is easily available, without moral problems, and its derived cells are less affected by age and environmental factors. 
Therefore, placenta-derived mesenchymal stem cells (PD-MSCs) can be considered as an allogeneic source for liver 
disease. Considering the studies on MSCs and their effects on various diseases, it can be stated that MSCs are among 
the most important agents to be used for novel future therapies of liver diseases. In this paper, we will investigate the 
effects of mesenchymal stem cells through migration and immigration to the site of injury, cell-to-cell contact, immu-
nomodulatory effects, and secretory factors in ALF.
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Introduction
Liver is one of the largest vital organs in human body that 
controls various biological processes, including the pro-
duction of multiple hormones, storage of glycogen, neu-
tralization of toxins and drugs, control of metabolism, 
metabolism of urea, and synthesis of plasma protein. 
Typically, most physiological features of liver function 
are controlled by liver cells or hepatocytes; therefore, 
the loss of hepatocytes is the main cause of liver failure. 
Several diseases related to malfunction of the liver are 
caused by damage to or loss of hepatocytes, including 
viral hepatitis, fatty liver disease, drug and toxin-induced 
liver injury, hepatocellular carcinoma, and hepatic abnor-
malities associated with autoimmunity and cirrhosis [1]. 

In adults, the liver weighs nearly 1.4 kg (3.1  lb) and lies 
to the right of the abdomen below the diaphragm [2]. 
Each year, many people worldwide develop liver disease. 
Acute liver injury (ALI), acute liver failure (ALF), acute 
on chronic liver failure (CLF), and inherited metabolic 
liver diseases are examples of liver diseases [3].

Liver failure
Liver failure is a clinical syndrome diagnosed with clini-
cal signs of jaundice, ascites, hepatic encephalopathy 
and a tendency for bleeding due to liver damage. This 
syndrome can occur for a variety of reasons, including 
viral hepatitis, autoimmune hepatitis and liver damage 
[4]. Approximately 1.6 cases per million people world-
wide develop this serious disease annually, which in 
turn results in high costs and mortality [5, 6]. Patients 
with drug induced liver injury are associated with some 
degree of ascites, encephalopathy, coagulopathy of any 
grade (PT (prothrombin time), INR (international nor-
malized ratio)) as well as impaired liver function (AST 
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(aspartate aminotransferase), ALT(alanine transami-
nase), TBIL (Total bilirubin Indirect level), ALB (Albu-
min)). Liver failure is divided into three forms as follows. 
ALF within 48  h to several days with jaundice, coagu-
lopathy and encephalopathy; acute-on-chronic liver fail-
ure (ACLF) with a background of chronic liver disease 
leading to rapid progression of liver injury and associ-
ated with jaundice and ascites; and CLF occurring within 
months to years [7].

Acute liver failure (ALF)
ALF is an unpredictable and potentially catastrophic 
condition often encountered in intensive care units, with 
more than 2500 cases reported each year in the United 
States. The progression potential of acute hepatic dys-
function toward multi-organ failure demands rapid diag-
nosis and management of the disease. Due to a set of 
hepatic and non-hepatic complications, ALF indirectly 
leads to immediate follow-up for liver transplantation 
[8]. ALF, formerly known as fulminant hepatic failure, 
means the development of hepatocellular disorders such 
as coagulopathy and encephalopathy with INR ≥ 1.5 
in patients without a history of liver disease within 
26 weeks. More than half of the cases of ALF progression 
require liver transplantation and significant improve-
ments have been reported in the last decade after liver 
transplantation. ALF mortality is usually due to intracra-
nial hypertension (ICH) and infection [9–11]). However, 
patients with varying degrees of hemodynamic disor-
ders and renal failure have also been reported [12, 13]. 
Clinically, the patients show coagulopathy, jaundice and 
hepatic encephalopathy. The period between the onset of 
the first clinical symptoms and hepatic encephalopathy 
is crucial in determining the prognosis of these patients 
[14, 15]. There are obvious differences in the develop-
ment mechanisms of early ALF. The three main factors 
determining the prognosis of this disease include meta-
bolic problems leading to the loss of liver cells, secretion 

of toxins and mediators from the liver tissue, and capac-
ity of the remaining hepatocytes to repair the liver [15, 
16].

Common treatments are therapies that are often meant 
to improve the complications of acute liver failure (ALF). 
Multiple organ failure (MOF) and severe infection are 
the most prevalent factors of mortality in these patients. 
Therefore, management of treatment for ALF patients 
should focus on the handling and prevention of infection 
[17]. ALF patients with severe hepatic encephalopathy, 
those with renal failure and patients who have any of SIRS 
criteria use broad-spectrum antibiotics [18]. Application 
of vasoconstrictors and dialysis reduce the incidence of 
cerebral edema [19]. In case of hepatic encephalopathy, 
the patient is transferred to ICU and ventilator devices 
are used to regulate the level of blood gases patients 
with ALF have qualitative and quantitative coagulation 
abnormalities. In control of bleeding and during inva-
sive procedures, there is indication for FFP and platelet 
administration [20]. To prevent gastrointestinal bleed-
ing in ALF, patients admitted to ICU are treated with H2 
blockers or proton pump inhibitors (PPI) [21]. Patients 
with ALF are at risk of hypovolemia for a number of rea-
sons, including poor oral fluid intake, vomiting, and vas-
odilation, in which case bolus fluids are used and level of 
fluids is frequently maintained if necessary to keep serum 
sodium levels and prevent fluid overload [22]. In addition 
to the mentioned treatments, 10–20% glucose is adminis-
tered when glycemic target is 140 mg/dL and Na level is 
135–145 mmol/L, as well as N-acetylcysteine and stress 
ulcer prophylaxis agents [17].

Etiology
A wide variety of factors cause ALF (Table  1) [23–25]. 
The most common causes of this disease are viral infec-
tions and drug-induced liver inflammation. In Asia and 
parts of Europe, mainly viral hepatitis agents are involved 
and acetaminophen is the predominant factor in coun-
tries such as USA and Australia [26].

Table 1  Etiology of ALF

Other etiologies of ALF The most common global agents of ALF

Hypoxia-induced liver injury
Acute Budd-Chiari Syndrome
Veno-occlusive Disease
Wilson’s disease
Mushroom Ingestion
Sepsis
Autoimmune hepatitis
Acute fatty liver of pregnancy
HELLP (hemolysis, elevated liver enzymes, low platelet) syndrome
Heat stroke
Malignant infiltration of the liver

Viral hepatitis
Drug-induced hepatitis
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Immune system in patients with ALF
Impaired function of both humoral and innate immu-
nity is implicated in the pathophysiology of ALF [27].

The mechanism of ALF begins with necrosis of hepat-
ocytes [28]. Oxidative stress is triggered when liver 
injury is caused by factors such as viral infections, alco-
hol consumption, drug intoxication, autoimmune dis-
eases, herbal remedies and many other factors [29–31]. 
Oxidative stress results in the production of reactive 
oxygen species, which in turn activates the Janus kinase 
(JNK) signaling pathway [32] and generates damage-
associated molecular patterns (DAMPs), followed by 
liver inflammation. Liver inflammation is a major fac-
tor in immunopathology of several hepatic diseases 
[33, 34]. DAMPs activate hepatic macrophages (Kupffer 
cells (KCs)) and induce the formation of inflamma-
some [32, 35] that eventually leads to the secretion of 
IL-1, IL-18, and caspase 1 [32]. DAMPs are detected 
by Kupffer cells [33, 36] that express a large number of 
DAMP receptors, including TLR4, TLR9, and RAGE 
[36]. KCs are activated in this process and release 
inflammatory cytokines such as TNFα, oxygen radi-
cals, and chemokines such as CCL2 under the effect 
of inflammatory signals. The presence of inflammatory 
factors mobilizes inflammatory cells such as neutro-
phils and monocytes and thereby increases inflamma-
tion [33, 34].

Hepatic encephalopathy in ALF
Hepatic encephalopathy (HE) is a function of neurotox-
ins that reach the brain through the bloodstream [37]. 
Various factors such as blood ammonia levels, infec-
tion, necrotic liver, toxins, and systemic inflammatory 
response syndrome (SIRS) can lead to HE [38]. In normal 
conditions, the ammonia produced in the body is effi-
ciently excreted by the liver through the urea cycle and 
glutamine synthesis and thus a small amount of ammonia 
remains in hepatic vessels. In ALF, ammonia levels rise in 
the hepatic vein, and the liver loses the ability to release 
ammonia from the hepatic veins. The muscles and brain 
begin ammonia detoxification through glutamine syn-
thesis. Therefore, both of these tissues are considered as 
an ammonia scavenging and glutamine releasing organs 
[39].

Tissue damage is the first factor triggering SIRS reac-
tion. As explained above, the injury leads to the release 
of inflammatory mediators such as DAMPS, TNFα, 
IL-6, and IL-18. Inflammatory cells such as lympho-
cytes and monocytes reach the damage site and enhance 
the inflammatory response. Coagulation factors as well 
as primary and secondary homeostasis also become 
involved and result in SIRS reaction [38]. These reactions 

are associated with the development of HE [40, 41], bac-
teremia [42] and, in some cases, infection [41, 43].

Compensatory anti-inflammatory response syndrome 
(CARS) occurs in reaction to SIRS, leading to the secre-
tion of anti-inflammatory factors (including IL-10 and 
SPLI) from hepatic macrophages during the early stages. 
This reaction is meant to alleviate the inflammatory 
status [44, 45]. Both of these reactions eventually lead 
to dysregulation of the immune system and defective 
immune responses to microbial agents [46, 47].

Mesenchymal stem cells and their secreted factors
MSCs are fusiform non-hematopoietic cells capable of 
adhering to plastic surfaces, which can be isolated from 
various tissues, including placenta, umbilical cord, bone 
marrow, adipose, and other tissues [48].

Despite their morphological and phenotypical simi-
larities, MSCs have different regeneration potentials 
[49], which is due to the microenvironment and cellu-
lar niches affecting their fate [50]. The number of stem 
cells in many adult tissues is small and isolation of them 
is associated with several risks; for example, the cells 
exhibit a limited capacity for differentiation and prolif-
eration after removal from the body, making it difficult to 
produce large numbers of stem cells [51]. In comparison 
to adipose tissue and BM, in which MSCs are affected by 
donor’s age, placenta is a rich source of stem cells [52] 
and high differentiation capacity and pluripotentiality of 
placental cells are related to their origin [53]. PD-MSCs 
have a higher proliferative potential than BM-MSCs [54] 
which reduces the number of passages to reach a large 
number of cells as well as the risk of cell aging [55, 56]. 
Among MCSs, PD-MSCs have a higher potential for 
in  vitro proliferation and differentiation of hepatocytes 
[57]. Human BM-MSC cells are involved in neovasculo-
genesis and synergize with endothelial colony forming 
cells (ECFCs) to create microvessels in vivo [58, 59]. BM-
MSC cells serve as the gold standard for bone and car-
tilage repair [60]. Adipose tissue-derived mesenchymal 
stem cells (AD-MSCs) are isolated from adipose tissue by 
liposuction, are capable of differentiation to hepatocyte-
like cells in the presence of HGF, FGF-1, and FGF-4 fac-
tors and participate in the regeneration of hepatocytes 
and vasculogenesis [61]. Wharton’s jelly mesenchymal 
stem cells (WJ-MSCs) exhibit stemness and pluripoten-
tial properties and have been shown to generate various 
types of neurons and connective tissue cells [62, 63].

Umbilical cord-derived mesenchymal stem cells (UC-
MSCs) have been recognized as low-immunogenicity 
cells because of their immunomodulatory properties. 
UC-MSCs are involved in neovascularization and dif-
ferentiation into hepatocyte-like cells [64, 65]. Umbili-
cal cord blood has always been considered as a source 
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of hematopoietic stem cells (HSCs) [66]. The phenotypic 
characteristics of UC-MSCs are consistent with BM-
MSC cells [67].

Dental tissue‐derived mesenchymal stem cells (DP-
MSC) have limited differentiation capacity relative to 
BM-MSCs [68]. Dental pulp stem cells (DPSCs) are 
dental stem and progenitor cells that are capable of self-
renewal and differentiation, which differentiate into neu-
rons and adipocytes in addition to odontogenic cells [69, 
70].

The definition of MSCs according to International 
Society for Cell Therapy (ISCT) is as follows: MSCs are 
(1) able to bind plastic surfaces, (2) able to differenti-
ate into all three classes of chondrocytes, adipocytes 
and osteocytes in  vitro, and (3) capable of expressing 
CD73, CD90, and CD105 markers but not hematopoi-
etic markers like CD45, CD14, CD19, CD34, and HLA-
DR [71]. MSCs release numerous factors such as vascular 
endothelial growth factor (VEGF), insulin-like growth 
factor 1 (IGF-1), basic fibroblast growth factor (bFGF), 
nerve growth factor (NGF), Transforming growth factor 
beta-1 (TGF-b1), placental growth factor (PGF), stromal 
cell-derived factor 1 (SDF-1/CXCL12), monocyte chem-
oattractant protein-1 (MCP 1/CCL2), hepatocyte growth 
factor (HGF), interleukin-6 (IL-6), IL-8, IL-10, IL-13, 
G-CSF and GM-CSF [72–75].

There are various tissue-specific factors in MSCs 
depending on the tissues from which MSCs are isolated. 
For example, factors such as HGF, bFGF, and IL-6 are 
mainly secreted by MSCs isolated from placental tissue 
or interferon-γ (IFN-γ), tumor necrosis factor α (TNF-
α), interleukin-1 alpha (IL-1α), and interleukin-1 beta 
(IL-1β) secreted by MSCs from Menstrual blood-derived 
stem cells (MenSCs) [76, 77]. Hence, it can be said that 
the selection of mesenchymal stem cells extracted from 
tissues is an important consideration in the treatment 
of diseases with respect to the secretory factors they 
produce.

Placenta‑derived mesenchymal stem cells
Embryonic stem cells are isolated from embryonic tis-
sues, especially multiple extraembryonic tissues. Tissues 
such as amniotic fluid, Wharton’s jelly, amnion, chorion, 
embryonic membrane and placenta have MSCs. The pla-
centa is one of the largest organs with an essential role 
in the development of the fetus, which plays a role in the 
secretion of nutrients for the fetus and immune protec-
tion (tolerance) of it. It has recently been observed that 
PD-MSC are a new alternative source of MSCs for regen-
erative therapies [78]. Studies have shown that PD-MSCs 
possess self-renewal capacity, have multilineage differen-
tiation, lack ethical problems, are accessible, abundant, 
and show strong immunosuppressive effects [79–81]). In 

addition, placental tissue derived from the fetus is volu-
minous and can be easily manipulated to increase the 
number of MSCs, which exceeds the number of MSCs 
present in bone marrow and adipose tissue [81, 82]. 
Another advantage of these placental stem cells is that 
we do not require an invasive method to isolate them, 
whereas invasive methods are needed to isolate adult 
MSCs [78].

Typically, PD-MSCs can maintain a high proliferative 
capacity in culture medium for at least 20 passages [83]. 
Some studies have recently suggested the differentia-
tion of PD-MSCs into hepatocyte-like endodermal cells 
[57, 84]. Investigations have shown that many perinatal 
resources of MSCs such as amniotic membrane (AM), 
chorionic plate (CP), parietal decidua [85], and umbili-
cal cord (UC) have advantages relative to adult sources, 
including bone marrow (BM) [86–88]. The MSCs iso-
lated from these tissues have their own characteristics as 
follows. VCAM1 is a biomarker of chorionic plate with 
unique immunosuppressive activity that plays an impor-
tant role in immune responses [86]. CP-derived mesen-
chymal cells copiously secrete HGF and VCAM1. Parietal 
decidua derived mesenchymal stem cells (DMSCs) [85] 
show a high secretion of Ang1 and VEGF but the low-
est secretion of TGFβ1. Umbilical cord (UC) derived 
MSCs have a high secretion level of IGF1 and amniotic 
membrane (AM) derived MSCs highly release PEG2 and 
TGFβ1 [89]. Considering the above statements, we show 
in this research that amniotic membrane-derived mesen-
chymal stem cells may be effective in treatment of pre-
mature ovarian aging due to overexpression of PEG2 and 
TGFβ1, CP-derived MSCs could be used for angiogenic 
therapy because of pro-angiogenic activity, and parietal 
decidua derived MSCS [85] might be useful for the treat-
ment of vital organ ischemia, and UC-MSCs may be used 
for other therapies because of secreting a large number of 
factors [90].

Possible disadvantages of MSCs
Most animal and human studies on MSCs have indi-
cated therapeutic effects of these cells. However, there 
is evidence for low engraftment of MSCs due to short-
term viability after injection [77, 91]. MSCs are trapped 
in the lung after injection and a lower number of these 
cells may reach their destination [92]. Therefore, the 
reduction of cell loss during migration is an advantage 
of topical over intravenous injection [93]. Several stud-
ies have indicated that a single injection of MSCs is 
safe for the patient and does not stimulate the immune 
system, but re-injection of MSCs may lead to the gen-
eration of alloantibodies [94]. In addition, the FBS 
that is used to grow MSCs could induce an immune 
response in the patient [95]. In general, MSCs show a 
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dual behavior when faced with tumors and PD-MSCs 
are no exception in this regard. For example, some 
in vitro studies have indicated that UC-MSCs increase 
the expression of proliferating cell nuclear antigen 
(PCNA) [96], induce the proliferation promoting genes 
like EPGN/MZT2A, downregulate transcription factors 
associated with the suppression of tumor development 
such as TAL1/FOS/EGR1/KLF10, which stimulates dif-
ferent tumor populations [97]. Pursuant to this dual 
role of PD-MSCs, one study introduces the antitumor 
role of these cells in a particular type of tumor but sug-
gests a promoter role in another type. WJ-MSCs have 
an antitumor role in the face of squamous cell car-
cinoma in  vitro, but stimulate the growth of cancer 
in vivo [98].

Therapeutic approaches for acute liver failure & 
PD‑MSCs advantages
Clinicians have observed that a number of patients with 
ALF may recover spontaneously and that the clinical out-
come of these patients largely depends on the balance 
between loss and repair of hepatocytes [99]. The dam-
aged hepatocytes are rapidly replaced by normal hepato-
cytes in moderate disease, but in case of severe injury and 
widespread death of hepatocytes, the repair capacity of 
remaining hepatocytes may not be complete and lead to 
the deployment of liver progenitor cells (LPC) that act as 
hepatocytes [100]. In most ALF patients, these progeni-
tor cells are insufficient to repair and replace hepatocytes, 
eventually leading to the adoption of limited therapeutic 
approaches by physicians [101]. Today, liver transplanta-
tion is the only way to treat liver failure patients. How-
ever, liver transplantation has failed for a number of 
reasons such as lack of proper organs, high costs, and 
the administration of immunosuppressive agents for 
long periods of time. Other treatment strategies include 
bioartificial liver with less hepatocytes and drug therapy 
[102]. Hepatic failure is a disastrous consequence of liver 
loss, in which the repair of residual hepatocytes is not 
performed in a timely and appropriate manner, resulting 
in increased mortality [103]. Massive hepatic necrosis in 
acute liver failure [97] is caused by sudden loss of hepato-
cytes due to a variety of acute injuries induced by hepa-
totoxic drugs, immune system attack, and viral infections 
[104–106]. While most hepatocytes are completely 
destroyed in ALF, the circulating Bone Marrow-derived 
cells and endogenous hepatocyte progenitor cells can 
rapidly regenerate the liver [107]. Cell-based therapies 
have been promising in regenerative medicine. MSCs can 
be important sources of alternative therapy because of 
various properties such as self-renewal, proliferation and 
differentiation [108].

Mechanisms of PD‑MSC effect on acute liver injury
The precise mechanism of MSCs in ALF is not com-
pletely understood [109]. According to several studies, it 
can be stated that placenta-derived mesenchymal stem 
cells (PD-MSC) are able to affect the liver damages in 
several ways:

1.	 PD-MSCs are recruited to the damaged area by 
VCAM-1 and VLA-4 adhesion molecules [104, 110, 
111] affecting the remaining hepatocytes through 
cell–cell contact and secretion of TGF-α, EGF, HGF, 
and VEGF tropic factors [112, 113].

2.	 PD-MSCs have immunomodulatory properties and 
increase Treg cells, modulating the immune system 
as well as suppressing activated T-cells, NK cells, 
B-cells and IL-10 production [113, 114].

3.	 PD-MSCs decrease the inflammation of hepatocytes 
and prevent their apoptosis by suppressing TNFα 
and IFNγ, which leads to the regeneration of hepat-
ocytes by releasing HGF, IL-6, PAF and VEGF [115, 
116].

4.	 MSCs are capable of secreting various angiogenic 
factors, including VEGF, SDF-1α, and MMP1, which 
promote angiogenesis [117–119].

5.	 In addition to their immunomodulatory properties, 
MCSs differentiate into vascular cells and pericytes 
in vivo [117]. They also have the potential to differ-
entiate into hepatocyte-like cells both in  vivo and 
in  vitro, leading to improvement of liver damage 
(Fig. 1) [115, 120].

A majority of studies have used the intravenous route to 
inject MSCs, after which most MSCs are trapped in lungs 
in the early stages [121, 122]. After 24  h, MSCs move 
toward other organs (especially the liver and spleen) and 
settle in them [123]. They also migrate to damaged tis-
sues [123]. For instance, in a study on patients with cir-
rhosis, MSCs labeled with 111IN-Oxine were detected in 
the liver after 48  h (through radioactivity assay) where 
they remained for 10  days [124]. Elimination of MSCs 
may be related to the immune system, which does not 
rule out the functional effect of these cells. One study 
has reported that phagocytosis of dead MSCs induces the 
production of regulatory macrophages modulating the 
immune response by producing IL-10 factors [125, 126]. 
Moreover, a small fraction of these cells that have been 
spared elimination could be responsible for the therapeu-
tic effects [126].

MSCs play a critical role in liver regeneration because 
of their ability to produce and regulate platelet-activating 
factor (PAF), hepatocyte growth factor (HGF) and vascu-
lar endothelial growth factor (VEGF) [104]. Several stud-
ies have demonstrated the significance of MSCs in liver 
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diseases. MSCs have been used in various investigations 
on ALF in both animal models [127, 128] and clinical tri-
als [129, 130]. Nevertheless, the precise mechanism of the 
function of these cells remains unclear. Since MSCs are 
able to move to the site of injury and inflammation [131] 
as well as being capable of proliferating and differentiat-
ing into hepatocytes [132, 133], they play an essential role 
in regenerative therapies. MSCs show immunomodula-
tory feature because they do not express stimulatory mol-
ecules or HLA II [134] and are therefore a good source 
for allogeneic and autologous transplantation.

Several studies have shown that MSCs secrete tropic 
factors and can be effective in reducing inflammation, 
fibrosis and apoptosis of liver cells as well as repairing 
damaged tissue by stimulating angiogenesis [74].

High migration ability is a major advantage of PD-
MSCs. Migration involves the movement of MSCs 
toward damaged and inflamed sites through interactions 
between MSCs with cytokines and adhesion molecules 
secreted from the injured tissue environment [135]. 
Migration of MSCs has been investigated in both animal 
[136] and in human studies [137]. For example, various 
researches have revealed that MSCs express adhesion 
molecules and integrins such as VCAM-1 and VLA-4, 

which are composed of CD29 and CD49d components. 
Compared with BM-derived mesenchymal stem cells 
(BM-MSCs), placental MSCs express a higher level of 
VLA-4 and animal studies have indicated MSCs binding 
to endothelial cell surface markers such as P-selectin and 
VCAM-1, which is indicative of the high implantation 
capacity of PD-MSCs into damaged tissue [111, 138]. A 
clinical trial of cirrhotic patients showed that 111In-oxine-
labeled MSCs were trapped in the lungs in the early 
hours after injection through peripheral blood and that 
they left there after 48  h and migrated to the liver and 
spleen, remaining in these tissues for 10 days [137].

There are various mechanisms in the creation of an 
immunologically safe environment by placenta for the 
fetus [139]. This feature is a strong advantage for PD-
MSC cell therapy in allogeneic transplantation, which 
prevents graft rejection, stabilizes the transplant and 
drives MSCs, including BM-MSCs and amniotic fluid-
derived MSCs (AF-MSCS), toward the site of injury 
[140]. Embryonic-derived MSCs are also capable of 
migrating to the placenta and blood brain barrier (BBB) 
[141]. It can be argued that the beneficial effects of MSCs 
in liver diseases (including ALF) are not limited to hepat-
ocyte repair, but rather the tropical factors released by 

Fig. 1  Mesenchymal stem cells and its effects on acute liver failure
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them modulate the deleterious effects of the immune 
response [142]. The immunosuppressive effects of MSCs 
on the secretion of TNFα and IFN γ prevent from apop-
tosis of hepatocyte cells and reduce hepatic inflamma-
tion, and the suppression of these cytokines appears 
to be systemic [143]. MSCS in mice with ALF suppress 
activated T-cells, decreasing the inflammatory cytokines 
TNFα, γ IFN and IL-4 and exerting their immunosup-
pressive effects by increasing IL-10 levels [143, 144]. Cells 
such as natural killer T (NKT) are of high importance in 
the pathogenesis of ALF and are immunomodulatory tar-
gets mediated by MSCs along with dendritic cells (DCs), 
macrophages and T-cells [143, 145].

HGF is one of the most important factors in the repair 
of hepatic tissue, which is secreted by MSCs. Hepatocyte 
growth factor is an effective mitogen for hepatic tissue 
repair that is dependent on c-met receptor during tis-
sue damage [146]. The HGF/c-met signaling pathway is 
essential for liver repair and implantation of MSCs in the 
affected area [147]. Many studies have reported the pro-
tective effects of HGF/c-met signaling pathway on liver 
injury [148, 149]. HGF as well as other factors like TNFα 
and EGF is considered a mitogenic factor associated 
with hepatocyte proliferation [112, 150]. On the other 
hand, HGF together with NGF factor secreted by MSCs 
induces apoptosis of Hepatocyte Stellate Cells (HSC), 
indicating the antifibrotic property of these cells [151–
153]. Many studies have shown that angiogenesis plays a 
crucial role in hepatic repair so that the injection of anti-
angiogenic factors such as anti-VEGF inhibits hepatic 
repair [154, 155] but factors such as bFGF enhance it 
[156]. VEGF boosts angiogenesis and contributes to 
the healing process [157]. Angiogenesis is essential for 
wound healing, regeneration and organogenesis [158]. 
IL-6 binds to gp80 and gp130 receptors, which activate 
the JAK pathway and in turn phosphorylate tyrosines in 
the intracellular domain of gp130, subsequently activat-
ing the MAPK pathway and STAT 1 and 3 transcription 
factors that lead to hepatocyte proliferation [159–161]. 
Recent experiments on animal models have shown that 
IL-6 and TNF-2 are involved in regeneration of liver mass 
[162].

Conclusion
Limited information is available on the repair mecha-
nism of MSCs in various diseases; therefore, further 
in vivo studies provide a broad perspective for MSCs use 
in clinical practice. Choosing the right cell, determining 
the proper dose, selecting the appropriate injection site 
and timely injection can help improve the function and 
implantation of MSCs in the target tissue, and they can 
be highly important and applicable for further research 
in the future. In this review paper, we concluded that 

PD-MSCs can be considered as a good allogeneic source 
for ALF in future because of their safety, easy accessi-
bility, lack of immune system stimulation, secretion of 
appropriate factors for liver tissue and healing properties.
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