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ionone bioconversion productivity
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Abstract

Background: Dihydro-β-ionone is a principal aroma compound and has received considerable attention by flavor
and fragrance industry. The traditional method of preparing dihydro-β-ionone has many drawbacks, which has
restricted its industrial application. Therefore, it is necessary to find a biotechnological method to produce dihydro-
β-ionone.
Results: In this study, the enoate reductase with high conversion efficiency of β-ionone to dihydro-β-ionone, DBR1,
was obtained by screening four genetically engineered bacteria. The product, dihydro-β-ionone, was analyzed by
GC and GC-MS. The highest dihydro-β-ionone production with 308.3 mg/L was detected in the recombinant strain
expressing DBR1 which was later on expressed and purified. Its optimal temperature and pH were 45 °C and 6.5,
respectively. The greatest activity of the purified enzyme was 356.39 U/mg using β-ionone as substrate. In the
enzymatic conversion system, 1 mM of β-ionone was transformed into 91.08 mg/L of dihydro-β-ionone with 93.
80% of molar conversion.

Conclusion: DBR1 had high selectivity to hydrogenated the 10,11-unsaturated double bond of β-ionone as well as
high catalytic efficiency for the conversion of β-ionone to dihydro-β-ionone. It is the first report on the
bioconversion of β-ionone to dihydro-β-ionone by using enoate reductase.
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Background
Ionones were widely used in daily flavor formula. Most
Ionons were ionon and methyl ionone, and it cannot sat-
isfy the market demand with weak production capacity
and single variety. Dihydro-β-ionone, also called ‘sweet
osmanthus king’, has received great attention from the
flavour and fragrance industry. It is a main aroma com-
pound with mellow, sweet, and fresh cedar scent in
Osmanthus oil. Because of its unique scent, commercial
extracts are in high demand for use in the production of
expensive perfumes and cosmetics [1]. It is widely used
in foodstuff and beverage industries. It is also an

important intermediate compound used in the synthesis
of tea screw alkanes and its analogues with great appli-
cation foreground [2, 3]. Dihydro-β-ionone naturally
occurs in Osmanthus fragrans Lour, roses, and in many
flowers. For a number of ingredients, their extractions
from plant or animal tissues are the best way to get the
products. However, the aroma compound dihydro-β-ionone
is of particular interest because it occurs mostly at low con-
centrations in natural tissues and extraction in most situa-
tions is not economically feasible [4]. In addition, the
extraction of aroma compounds from natural source is an
expensive and arduous task and strongly depends on agri-
culture and all the factors surrounding it [5]. The chemical
production process of dihydro-β-ionone is a catalyzed hy-
drogenation process from β-ionone, which is performed by
using asymmetric hydrogenation of costly catalysts like
chiral rhodium or ruthenium phosphines [6, 7]. The limiting
issues involved in the chemical production process are the
disposal of complex heavy metal ligands and the
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requirement of high pressure [8]. Therefore, a specific
branch of biotechnology has been developed in which con-
straints relative to the natural state are present [9].
Biotechnology represents a very attractive alternative for

the sustainable production of flavors and fragrances [10].
With the increasing development of genetic engineering,
it became possible to produce heterologous products in
microbial cell factories that are normally found only in
small amounts in nature [11, 12]. The highly demanded
phenethyl alcohol, vanillin, and γ-decalactone can also be
produced through biotechnology of natural products, but,
for many compounds, yields are very low and the products
are too expensive to satisfy demand [13–17]. In recent
years, enoate reductases which are members of the ‘old
yellow enzyme family’, have been attracting the interest of
chemists for its high potential in asymmetric reduction of
activated C=C bonds [18]. Enoate reductases have a wide
variety of substrates, such as α,β-unsaturated aldehyde ke-
tone, nitroalkenes, α,β-unsaturated nitriles, α,β-unsatu-
rated carboxylic acids and their derivatives [19–21].
Enoate reductases have been found in plant, bacteria,
fungi, and protozoa [22–25], and play critical roles not
only in the biosynthesis of steroids, fatty acids, and phyto-
hormones like jasmonic acid [26], but also in plant sec-
ondary metabolism, such as pulegone and artemisinin
biosynthesis [27, 28]. In the area of enoate reductases
enzymatic hydrogenation, research efforts mainly focused
on whole-cell systems with wild-type microorganisms,
new enoate reductases with highly catalytic activity, and
broad substrate profile [29]. There exists almost no
research on the conversion of natural active substance
with enoate reductases, and the demand of industrial pro-
duction could not be met because of the absence of high
activity, stability, and tolerance to the system.
In the present study, high enoate reductases were

screened and β-ionone was converted into
dihydro-β-ionone by whole-cell systems. Overpression and
characterization of the optimization of enoate reductases
have also been reported. This enzyme has high selectivity
for transforming β-ionone to dihydro-β-ionone. These
extraordinary properties enable enoate reductases a good
biocatalyst for producing dihydro-β-ionone in vitro.

Methods
Bacterial strains and plasmids
The genes encoding DBR2 (NCBI accession number
BAU61367.1) from Artemisia annua, BacOYE1 (NCBI
accession number KJ577134.1) from Balillus sp., DBR1
(NCBI accession number FJ750460.1) from Artemisia
annua, and Unigene (CL2687.Contig2_ALL) from
Osmanthus fragrans transcriptome sequencing (SRA
accession number SRP057917) which shared 78% iden-
tity with the DBR2 of Artemisia annua (NCBI accession
number BAU61367.1) were synthesized by Shanghai

Generay Biotech Co. Ltd. (Shanghai, China). The synthetic
genes were inserted into plasmid PGEX-4 T1 or pET-28a
(Invitrogen, USA) to generate the expression vector
pET-28a-BacOYE1, pET-28a-DBR1, PGEX-4 T1-DBR2,
and PGEX-4 T1-2687. Then recombinant plasmids were
transformed into E. coli BL21 (DE3). The sequence of
DBR1, DBR2, BacOYE1, and CL2687.Contig2_ALL was
shown in Additional file 1.

Production of dihydro-β-ionone on whole-cell systems
One hundred microliters of an overnight culture was
used to inoculate 5 ml of LB resistance medium at 37 °C
to an optical density at OD600 of 0.4–2.0. The expres-
sion of the proteins was induced by adding 0–1 mM
isopropyl-b-D-thiogalactoside (IPTG). Fifty to three
hundred microliters β-ionone solution to a final concen-
tration of 10 mM was added using chloroform, DMSO,
methanol, ethanol and ethyl acetate as the solvents. The
bacteria were further incubated at 22–42 °C for 6–27 h
and gently shaken (180 rpm). One milliliter of chloro-
form was added to the reaction mixture as inhibitor and
extractant of assay products. The reaction was measured
against β-ionone control solutions under the same reac-
tion conditions with cells carrying plasmid without in-
sertion. Production was analyzed using GC and GC-MS.

Expression and purification of the optimization of
recombinant DBR1
For protein expression, 1 ml of an overnight culture was used
to inoculate 50 ml of LB kanamycin medium at 37 °C to an
optical density at OD600 of 1.8. The expression of the pro-
teins was induced by adding isopropyl-b-D-thiogalactoside
(IPTG) to a final concentration of 0.6 mM, and the bacteria
were further incubated at 27 °C for 18 h and gently shaken
(180 rpm). Bacteria were harvested by centrifugation at
5000×g for 20 min at 4 °C, and then resuspended in 10 ml of
1× PBS.
Cells were lysed by sonification on ice with an MS 73

sonotrode (Bandelin Electronic, Berlin, and Germany) four
times for 30 s at 10% of maximal power. Cell debris was
removed by centrifugation (20,000 g, 30 min, and 4 °C).
The recombinant protein was purified with Ni-chelating
affinity chromatography(Novagen). The recombinant pro-
tein was eluted with an elution buffer containing increas-
ing concentrations (20, 30, 50, 75, 100, 150, 200, and
300 mM) of imidazole. The protein was examined by
SDS-PAGE. The protein concentration was determined by
the Bradford method using BSA as a standard. The Brad-
ford protein Assay Kit (Sangon Biotech, Shanghai, China)
was employed for the determination.

Enzyme characterization
The enzymatic activity of the recombinant DBR1 enzyme
was assayed according to the method by Muangphrom
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et al. [30] and modified. The activity was determined GC
using β-ionone as substrate. Assays contained 0.05 M
TRIS-HCl, pH 6.5, 1 mM NADPH, 2 mM dithiothreitol
(DTT), 1 mM β-ionone and 300 μg of the crude recombin-
ant protein in a total volume of 500 μl at 45 °C for 10 min.
After the incubation, 1 ml of chloroform was added to the
reaction mixture as enzyme inhibitor and extractant of
assay products. The enzymatic reaction was measured
against β-ionone control solutions under the same reaction
conditions while proteins were heat deactivated (100 °C,
10 min) prior to the incubation experiments.
The optimum temperature for enzyme activity was deter-

mined by standard assays ranging from 20 to 50 °C in the
0.05 M TRIS-HCl at pH 7.5. The optimum pH for DBR1
activity was determined by incubation at 45 °C for 10 min
in a 0.05 M TRIS-HCl from pH 5.0 to 9.0. The results were
expressed as percentages of the activity obtained at either
the optimum pH or the optimum temperature.
To determine the effect of temperature on the stability

of DBR1, the enzyme was pre-incubated in the 0.05 M
TRIS-HCl (pH 6.5) for various times at 40, 45 and 50 °C
in the absence of the substrate and other cofactor. The ac-
tivity of the enzyme without pre-incubation was defined
as 100%. The pH stability of the enzyme was determined
by measuring the remaining activity after incubating the
enzyme at 40 °C for 1 h in the 0.05 M TRIS-HCl from
pH 5.0–9.0. Then, the residual activity of the enzyme in-
cubated at variant pH was determined, immediately.
The effects of metals and chemical agents on the pure

DBR1 enzyme were determined. Fe3+, Ca2+, Na+, Li+, K+,
Mg2+, Zn2+, Al3+, Fe2+, NH4

+, Mn2+, Cu2+, Ba2+, Hg2+,
Co2+, Sr2+, Fe2+, DTT, and NADPH were assayed at the
final concentrations of 1 and 5 mM in the reaction mix-
ture. The control reaction was measured against under
the same reaction conditions while DTT was absence.
The effects of organic solvents on the enzyme were de-
termined by adding 1, 2, 3, 4, 5 and 6% organic solvents
(ethanol, methanol, and DMSO) to the reaction mixture.
The kinetic constant of DBR1 was determined by

measuring the initial rates at various β-ionone concen-
trations (0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, and 1.8 mM).
The reaction conditions were activated by 15 μg purified
enzyme protein under standard conditions.

Analysis of GC and GC-MS
Dihydro-β-ionone was analyzed using GC 6890 system (Agi-
lent, USA) and a HP5 column (30 m× 0.25 mm×0.25 μm)
with flame ionization detector. Injection and detector temper-
atures was 250 °C, Helium is employed as the carrier gas with
the flow rate at 1 ml/min. Sample size and flow were 0.2 μl
and 2 ml/min, respectively. Temperature-rising program was
50 °C for 2 min, raising to 120 °C at 10 °C/min for 2 min.
Then the temperature was raised to 200 °C at 5 °C/min for
5 min. Dihydro-β-ionone was also verified using Trace

ISQ-LT GC-MS (Thermo Fisher, USA) and a DB-5MS col-
umn (30 m× 0.25 mm×0.25 μm) with flame ionization de-
tector. Interface temperature was 250 °C, EI-MS with 70 EV
ionization energy and swath range were 50–450 m/z.

Results
Analyzing the sequence of four cDNA clones
Four cDNA clones were identified as potential candidates.
Based on BLASTP searches of public databases, amino acid
sequence of four clones were identified with Δ11(13) reduc-
tase, 12-oxophytodienoate reductases and enoate reduc-
tases enzymes, both of which have high potential in
asymmetric reduction of activated the double bonds. Se-
quence analysis indicated that DBR2, BacOYE1, and 2687
share some conserved motifs (Fig. 1): EAGFDG (residues

Fig. 1 Comparison of the sequence four clones by using Multi-alignment.
Multiple sequence alignment was performed by using Clustal X1.8. Full
species names and Genbank IDS of four clones are as follows: DBR1,
Artemisia annua, FJ750460.1; BacOYE1, Balillus sp., KJ577134.1; DBR2,
Artemisia annua, BAU61367.1; 2687, Unigene (CL2687.Contig2_ALL) from
Osmanthus fragrans transcriptome sequencing (SRA accession
number SRP057917)
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171–176), EIHGAHGYL (residues 178–186), and DEYGG-
SLENR (residues 200–209). Unlike other three cDNA
clones, DBR1 has own characteristics: it has a glycine-rich
motif, AASGAVG (residues 165–171), which is known to
participate in binding of the pyrophosphate group of
NAD(P)H or NAD(P)+ [31]. In addition, a Tyr in the sub-
strate binding site of Dbr1 (Tyr59) and a putative catalytic
Tyr of Dbr1 (Tyr262), in the conserved domain “SQY”,
were not find in other three clones.

Selection and production of dihydro-β-ionone on whole-
cell systems
Four genetically engineered bacteria were selected on the
basis of their yield rate of dihydro-β-ionone on the
whole-cell systems (Fig. 2). The recombinant strain
pET-28a-DBR1 showed strong ability on transforming
β-ionone to dihydro-β-ionone (Fig. 2). A total of
308.3 mg/L dihydro-β-ionone was obtained with a final

concentration of IPTG 0.4 mM at OD600 1.8 and using
ethanol as solvent. The addition of β-ionone in the system
was 250 μl and the temperature maintained was 27 °C for
18 h. Under this condition, the yield of dihydro-β-ionone
by pET-28a-DBR1 was higher by 256-fold than
PGEX-4T1-2687, 270-fold than PGEX-4 T1-DBR2, and
770-fold than pET-28a-BacOYE1. Therefore, the recom-
binant strain pET-28a-DBR1 could be considered as
potential and effective genetically engineered organism for
the transformation of β-ionone. The transformation prod-
ucts of four genetically engineered bacteria were analyzed
by GC-MS. The total ion diagram of GC-MS on the bio-
transformation of four recombinant E. coli has been pre-
sented in Fig. 3.

Expression and purification of the optimization of
recombinant DBR1
The recombinant pET-28a-DBR1 was transformed into
E. coli BL21 (DE3) and was expressed for 18 h by adding

Fig. 2 Optimization of dihydro-β-ionone preparation on the whole cell systems by four recombinant E. coli, namely, pET-28a-BacOYE1, pET-28a-DBR1,
PGEX-4 T1-DBR2, and PGEX-4 T1-2687 against different parameters. a final concentration of IPTG; b, temperature; c, OD600; d, time; e, solvents and f,
dosage (data represent the mean values of three replicates, and error bars represent the standard deviation)
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0.6 mM of IPTG and at OD600 1.8–2.0 under a
temperature of 27 °C (Fig. 4). It was over expressed with
an activity of approximately 73.95 U/mg whilst the
dihydro-β-ionone concentration reached 43.04 mg/L.
The final IPTG concentration had some effects on en-
zyme activity. The recombinant E. coli was induced at
27 °C with a final IPTG concentration ranged from 0 to
1 mM during which the activity of the enzyme activity
showed a certain change. Inducing with no IPTG,
17.69 U/mg of DBR1 activity was detected in the soluble
fraction, which indicated that the recombinant DBR1
could be expressed without the expressive and toxic
IPTG. The unexpected expression with no IPTG may
have caused due to low concentration of lactose from
the LB medium [32]. DBR1 was also expressed using
arabinose instead of IPTG [33]. In addition, it has also
been observed that the induction temperature played an
important role for the enzyme activity. DBR1 enzyme ac-
tivity was found at a very low level (0.88 U/mg) if

induced with a temperature greater than 37 °C. This
may be caused by pellet autolysis after extensive incuba-
tion at a high temperature [34].
The soluble protein and pure protein with different

concentrations of imidazole elution were analyzed by
SDS-PAGE (Fig. 5). The target protein was fused with
His-tag, and the molecular weight of fusion protein was
approximately 38.5 kDa. This finding is consistent with
Zhang [33]. The majority of the reductase activity was
eluted with 75 mM imidazole. The activity of purified
DBR1 was 3.2-fold higher than that of the crude soluble
fraction (Table 1).

Characterization of recombinant DBR1
The enzyme properties of recombinant DBR1 were char-
acterized by using the crude enzyme. The optimal
temperature was 45 °C, and the activity was nearly 80%
of the maximum activity within a temperature range of
35–50 °C (Fig. 6a). The optimal pH determined was 6.5

Fig. 3 Total ion diagrams of GC-MS on the biotransformation of four recombinant E. coli: a PGEX-4 T1-DBR2, b pET-28a-BacOYE1, c PGEX-4 T1-2687,
and d pET-28a-DBR1. e Total ion diagram of GC-MS on the biotransformation of cells carrying plasmid without insertion
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(Fig. 6b). Thermostability assays of the recombinant
DBR1 showed that its residual activity was almost 80%
after incubating at 40 °C for 2 h, which was more than
90% for an incubation period of 1 h (Fig. 6c). The en-
zyme retained over 70% of its optimum at pH activity
between 7.0 and 8.0. The residual activity was more than
90% of the original enzyme activity after an incubation
period of 1 h at a temperature 40 °C having pH range

5.0–7.5 and in the absence of the substrate (Fig. 6d).
The recombinant protein was more stable at an acidic
pH and has a little different value to 2-nonenal for the
substrate of DBR1 [33].
Effects of various metal cations on the activities of

DBR1 were also investigated with final concentrations of
1 and 5 mM (Table 2). The activity of DBR1 was inhib-
ited completely by Cu2+ and Hg2+, and it was also

Fig. 4 Effects of different factors on the concentration of dihydro-β-ionone. a, final concentration of IPTG; b, temperature; c, OD600; and d, time
(data represent the mean values of three replicates, and error bars represent the standard deviation)

Fig. 5 SDS-PAGE analysis of recombinant enzyme. M: marker; lane1–8: different concentrations of imidazole elution; lane 9: crude enzyme
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strongly inhibited by a high concentration of Fe3+, Zn2+,
and Fe2+. On the contrary, the activity of DBR1 was in-
creased by Al3+, Ca2+, Ba2+, Mg2+, Sr2+, Ni2+, Na+, K+,
NH4

+, and DTT. The catalytic efficiency of the reaction
system increased significantly with Al3+, Ca2+, Ba2+, Mg2
+, Sr2+, Na+, K+, and NH4

+ added at 5 mM final concen-
tration. DTT and Ni2+ showed no difference both in high
and low concentrations. The activity also increased by
adding 5 mM Co2+, Mn2+, and Li+ but inhibited at low
concentration. In addition, recombinant DBR1 showed
no ability on transforming β-ionone to dihydro-β-ionone
when NADPH was absent. Zhang [33] compared the
sequence of DBR1 with Arabidopsis DBR1 [35], and
found a glycine-rich motif in the DBR1 sequence.
This glycine-rich motif has been confirmed to partici-
pate in binding of the NADPH [31]. In the present
study, monovalent cations such as Na+, K+, and
NH4

+, showed higher activation ability compared to
divalent cations. Improved stability of NADPH might
be responsible for it [36].
The recombinant enzyme activity can be improved by

using organic solvent. Methanol, ethanol, and DMSO at

suitable doses can improve the recombinant enzyme ac-
tivity (Table 3). Compared with directly added β-ionone,
by adding 5% ethanol, the recombinant enzyme activity
can be increased to 151%.
The kinetic parameters of the enzyme were analyzed

using β-ionone as a substrate, the KM and Vmax
values were 0.55 mM and 14.77 U/mg, respectively.
DBR1 catalyzed the reduction of 2,3-unsaturated alde-
hydes, such as 2E-hexenal, 2E-nonenal, and artemisi-
nic aldehyde. In the present investigation, although
DBR1 showed a 10-fold higher specificity for
2E-nonenal relative to artemisinic aldehyde [33], spe-
cificity of similar strength was also shown for
β-ionone relative to 2E-nonenal.

Analysis of dihydro-β-ionone via biological catalytic
hydrogenation of β-ionone
The products of the biological catalytic hydrogenation of
β-ionone were verified by GC, and a time-course experi-
ment was performed. The reaction mixture, in a total
volume of 500 μl, containing 0.05 M of TRIS-HCl
(pH 6.5), 1 mM of β-ionone, 1 mM NADPH, 2 mM
DTT, and 100 U/ml of the pure recombinant protein
was incubated for 60 min at 45 °C. The data have been
presented in Fig. 7. The maximum β-ionone concentra-
tion was found to be 76.49 mg/L (Fig. 7f ), and the effect-
ive β-ionone conversion rate reached 78.77% (the
biological catalytic hydrogenation of β-ionone by DBR1
enzymes led to one moles of dihydro-β-ionone per mole
of β-ionone). A supplementary addition of 50 U

Table 1 Purification scheme for the recombinant protein

Purification step Total protein
(mg)

Enzyme activity
(U/mg)

Purification
(fold)

Crude extract 22.94 112.01 1.0

Ni affinity chromatography 5.02 356.39 3.2

Fig. 6 Effects of pH and temperature on the activity and stability of the recombinant DBR1. a, temperature; b, pH; c, thermo stability of the
enzyme DBR1; d pH stability of the enzyme DBR1 (the residual activity was monitored, while the enzyme was incubated at 40, 45, and 50 °C; the
initial activity was defined as 100%; all these activities were expressed as relative values; data represent the mean values of three replicates, and
error bars represent the standard deviation)
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recombinant DBR1 or 1 mM NADPH was performed
after 30 min and 30 min later period of the former, so
that the yield of dihydro-β-ionone can be increased to
83.12 and 91.08 mg/L. Under this condition the effective
β-ionone conversion rate reached 85.60 and 93.80%,
respectively.

Discussion
In the modern synthetic biological study, the utilization of
Gordian technique to invert β-ionone to dihydro-β-ionone
needs the presence of an effective invertase. This task has
rarely been reported. However, few publications are available
regarding the conversion of unsaturated aldehydes and ke-
tones as well as their genes. A clear distinction of substrate
structure, could strongly affect enzymatic property and

conversion efficiency. The enzyme employed in synthetic
biology or biological catalytic conversion processes could
break the boundaries of species. It could origin from the
same or different plants or even may be rooted in microbes.
The artemisinin biosynthetic pathway has been

studied for many years, and most of the enzymes
have already been cloned [37–39]. In the artemisinin
biosynthesis, artemisinic aldehyde Δ11(13) reductase
(DBR) can convert artemisinic aldehyde into dihy-
droartemisinic aldehyde [30]. DBR1 has been cloned
by Zhang [33], which can perform catalytic hydrogen-
ation of 2,3 unsaturated aldehyde. Artemisia annua
aldehyde and hexene aldehyde can be catalyzed by
DBR1. DBR2 as cloned by Zhang [28] which has high
catalytic activity to cyclohexenone and carvone. OYE
homologous genes i.e., Bac-OYE1 was cloned from
Bacillus also exhibited activities toward α,β-unsatu-
rated aldehydes, ketones, and other α,β-unsaturated
compounds [40]. In the present research, those four
genetically engineered bacteria were screened to
biotransform β-ionone to dihydro-β-ionone for the
first time.
Dihydro-β-ionone is the characteristic aroma com-

pounds of O. fragrans. There exists an enzyme in
plants belonging to the genus Osmanthus Lour.
(Fam.: Oleaceae) which could convert β-ionone into
dihydro-β-ionone. Enzyme of plants might not be
much effective, but it could be increasingly improved
through repeated screening and research. Ro [41]
published a design to assemble some genes from dif-
ferent organisms in order to establish non-natural
metabolic pathways on yeast to synthesize largely
precursor of artemisinin-artemisinic acid. This experi-
ment simulated the natural plant’s metabolic process,
to invert β-ionone to dihydro-β-ionone in vitro.
Meanwhile, the present research team firstly discov-
ered a kind of double bond reductase gene from
non-O. fragrans, which has a strong transfer ability.
Divalent cations were not necessary than monovalent
cations for enzymatic activity and that DBR1 is not a
metalloprotein. The DBR1 activity was not affected by
DTT, which is a well-known thiol group inhibitor,
suggesting that sulfhydryl groups may not be involved
in the catalytic center of the protein structure. In
addition, DBR1 was more stable at an acidic pH or a
temperature range of 35–50 °C withβ-ionone, the
cloning and characterization of Dbr1 present some
biotechnological possibilities.
Based on this, in the present investigation, a recom-

binant strain pET-28a-DBR1 with steady catalytic per-
formance through gene biotechnology has been
achieved. This strain and its enzyme has commendable
catalytic hydrogenation capacity to β-ionone’s exocyclic
double bond.

Table 3 Effects of organic solvent on the recombinant enzyme
activity

Organic
solvent
(%)

Relative activity

Methanol Ethanol DMSO

0 100.0 100.0 100.0

1 110.7 112.1 104.6

2 123.8 113.9 111.6

3 118.4 116.9 113.4

4 111.8 136.5 116.2

5 100.9 151.0 94.1

6 95.7 118.0 84.2

Values shown are the mean of duplicate experiments, and the variation about
the mean was below 5%

Table 2 Effects of metal cations and reagents on the
recombinant enzyme activity

Cation
of
reagent

Relative activity Cation of
reagent

Relative activity

1 mM 5 mM 1 mM 5 mM

Control 100.0 100.0 Mn2+ 78.3 114.5

Al3+ 117.0 125.9 Hg2+ 2.1 2.0

Fe3+ 101.7 0.7 Ni2+ 112.3 111.5

Ba2+ 103.2 126.5 Na+ 122.51 130.7

Ca2+ 113.4 123.4 K+ 111.7 123.1

Co2+ 85.8 117.9 Li+ 89.9 118.3

Cu2+ 17.0 2.8 NH4
+ 110.5 129.2

Mg2+ 108.6 123.0 DTT 126.6 125.3

Zn2+ 106.5 37.1 NADPH 100.0 136.6

Sr2+ 115.2 121.8 No NADPH 0.0 0.0

Fe2+ 118.0 78.6

Values shown are the mean of duplicate experiments, and the variation about
the mean was below 3%
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Conclusion
Of the known plants, 2-alkenal reductases substrate spe-
cificity is somewhat broad, but without a complete sub-
strate overlap among various enzymes. In the present
study, four genetically engineered bacteria were screened
to biotransform β-ionone to dihydro-β-ionone and only
the DBR1 from A. annua showed high conversion

efficiency. DBR1 was also expressed, purified, and bio-
chemically characterized. It has a high catalytic efficiency
for biotransforming β-ionone to dihydro-β-ionone, and
thus becomes economically more feasible. This study,
therefore, demonstrates that recombinant DBR1 has
great potential for industrial applications, including bio-
conversion for producing natural compounds.

Fig. 7 GC analysis of β-ionone hydrogenation by recombinant DBR1. b, c, d, e, and f β-ionone incubated for 0, 10, 20, 30, and 60 min,
respectively. g and h The supplementary addition of 50 U recombinant DBR1 or 1 mmol/L NADPH after 30 min, total reaction time was 60 min. a
Dihydro-β-ionone and β-ionone reference standard
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