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Abstract

The cost of sequencing the genome is dropping at a much faster rate compared to assem-

bling and finishing the genome. The use of lightly sampled genomes (genome-skims) could

be transformative for genomic ecology, and results using k-mers have shown the advantage

of this approach in identification and phylogenetic placement of eukaryotic species. Here, we

revisit the basic question of estimating genomic parameters such as genome length, cover-

age, and repeat structure, focusing specifically on estimating the k-mer repeat spectrum. We

show using a mix of theoretical and empirical analysis that there are fundamental limitations

to estimating the k-mer spectra due to ill-conditioned systems, and that has implications for

other genomic parameters. We get around this problem using a novel constrained optimiza-

tion approach (Spline Linear Programming), where the constraints are learned empirically.

On reads simulated at 1X coverage from 66 genomes, our method, REPeat SPECTra Esti-

mation (RESPECT), had 2.2% error in length estimation compared to 27% error previously

achieved. In shotgun sequenced read samples with contaminants, RESPECT length esti-

mates had median error 4%, in contrast to other methods that had median error 80%.

Together, the results suggest that low-pass genomic sequencing can yield reliable estimates

of the length and repeat content of the genome. The RESPECT software will be publicly

available at https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_shahab-

2Dsarmashghi_RESPECT.git&d=DwIGAw&c=-35OiAkTchMrZOngvJPOeA&r=

ZozViWvD1E8PorCkfwYKYQMVKFoEcqLFm4Tg49XnPcA&m=f-xS8GMHKckknkc7Xpp

8FJYw_ltUwz5frOw1a5pJ81EpdTOK8xhbYmrN4ZxniM96&s=717o8hLR1JmHFpRPS

WG6xdUQTikyUjicjkipjFsKG4w&e=.

Author summary

The cost of sequencing the genome is dropping at a much faster rate compared to assem-

bling and finishing the genome. The use of lightly sampled genomes (genome skims)
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could be transformative for genomic ecology. Analyzing genome skims, mostly based on

statistics of small oligomers, remains challenging, but recent results have shown the

advantage of this approach for the identification and phylogenetic placement of eukary-

otic species. In this paper, we present a method, RESPECT, to estimate genomic proper-

ties such as genome length and repetitiveness from low-coverage genome skims. We

trained RESPECT using assembled genomes and tested it on low-coverage simulated and

real reads. Benchmarking results reveal that RESPECT has excellent accuracy in estimat-

ing the genome length compared to other methods, and can provide critical information

regarding the repeat structure of the genome.

This is a PLOS Computational Biology Methods paper.

Introduction

Anthropogenic pressure and other natural causes have resulted in severe disruption of global

ecosystems in recent years, including loss of biodiversity [1]. In North America alone, the bird

population has declined by over a quarter since 1970 [2]. Simply understanding the scope and

extent of bio-diversity changes remains a challenging problem. Genomic sequence based bio-

diversity sampling provides an attractive alternative to physical sampling and cataloging, as

falling costs have made it possible to shotgun sequence a reference specimen sample for at

most $10 per Gb (with another $60 for sample prep). However, the analysis typically requires
assembling and finishing a reference genome, which can still be prohibitively costly. Despite the

many projects aimed at high quality genome sequencing of eukaryotic species [3], it could be

many decades before we have acquired high-quality data so that biodiversity measurements

for each population can be acquired on an ongoing, routine basis.

While (meta)barcoding [4–6] methods can be used for species identification and biodiver-

sity measurements, they have many drawbacks including limited phylogenetic resolution [7,

8]. Organelle assembly based methods [9–11] similarly cannot be used for populations and

often require whole genome sequences but discard the nuclear reads (the vast majority of

data). Therefore, there is renewed interest in the development of methods that use all nuclear

DNA from genome-skims–low-coverage (0.5–2Gb) sequencing, providing 0.2–4× coverage

[12]. The low coverage of skims makes them cost-effective, but insufficient for assembling, and

calls for assembly-free methods. Such methods, based on analysis of k-mers are being actively

developed [13], and have been used for species identification (Skmer [14]); for phylogenetic

placement of a new species not in the library (APPLES [15]), and contaminant filtering (CON-

SULT [16]). While k-mer analysis works well for species identification, it cannot be applied

easily for the analysis of populations (individuals from the same species) using genome-skims,

a key component of genomic ecology. Specifically, it ignores the effect of repeats, and uses heu-

ristics to estimate sequencing error and coverage, neither of which is known.

In this manuscript, we revisit the problem of estimating genomic parameters from genome-

skim data: specifically, genome length L, sequence-coverage c, and repeat content. From

genome-skim data, we have as input, abundance values of k-mers denoted by o, where oh
denotes the number of distinct k-mers of multiplicity h. A key latent variable is the k-mer-
repeat-spectrum (denoted hereafter as the k-mer spectrum) of the genome described by r,
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where rh denotes the number of distinct k-mers that appear exactly h times in the genome. As

the value of oh depends upon r, c, L, and also on sequencing error, we consider the inverse

problem of estimating genomic parameters given o as input. The problem was studied in a

seminal paper by Li and Waterman [17] who mostly considered the case of high coverage and

no sequencing errors. Williams et al. [18] improved upon this model by ignoring o1 assuming

that a large proportion of unique k-mers can be attributed to sequencing errors. This assump-

tion works better for high coverage because at low coverage, many informative k-mers are also

seen only once. Hozza et al. [19] point this out, and focus attention on k-mer spectra. Their

method, CovEst, models spectra using a geometric distribution of unknown parameters, uses

that parameterized model to estimate both parameters and r1, r2, r3, and improves estimates

even for low coverage and high error.

A distinct but related line of research relates to estimating o itself by sub-sampling or

streaming reads. Melsted and colleagues [20, 21] describe streaming algorithms to estimate o1

as well as moments Fk = ∑i ik oi. Interestingly, these moments can also be used to estimate

genome parameters. For example, E½F1� ¼ lL, where λ = (1 − (k − 1)/ℓ)c denotes the k-mer
coverage, or the average number of k-mers covering a position derived from reads of length ℓ.
We note that streaming is akin to low-coverage sampling and consider the case of estimating

parameters over a range of λ.

Estimating genome repetitiveness and other parameters using k-mers

While previous research has emphasized the estimation of genome length and coverage, we

focus specifically on estimating the k-mer spectrum r, defined below. Consider a genome of

length L. Decompose the genome into a collection of all fixed-length (overlapping) sequences

of length k, called k-mers. Let variables rj (j� 1) denote the number of k-mers that occur

exactly j times in the genome. When k is large enough (k� log4 L), high values of rj, for j� 2,

can be attributed to the repetitive structures in the genome rather than chance similarities.

Therefore, we define r = [r1, r2, � � �] as the (k-mer)-repeat-spectrum of the genome.

While the repetitive sequences occur in a variety of arrangements in terms of their multi-

plicity, complexity and the size of repeating unit, the repeat spectrum provides a valuable sum-

mary of the extent of repetition in the genome as well as other parameters. For example, the

genome length can be estimated as L = k − 1 + ∑j jrj’ ∑j jrj. Define the uniqueness ratio of a

genome as r1/L, or the ratio of the number of k-mers seen only once to the genome length

(which is the total number of k-mers in the genome). We computed the uniqueness ratio for

622 eukaryotic genomes in RefSeq using k = 31 (S1 Fig). The ratio revealed a broad spectrum

of values, ranging from 0.287 for A. tauschii (Tausch’s goatgrass) to 0.995 for a mite species,

V. jacobsoni (Fig 1A). Expectedly, there is some phylogenetic correlation and the variation of

uniqueness ratio within a genus (intra-generic) is significantly lower than inter-generic varia-

tion of uniqueness ratios (S2 Fig). At higher taxonomic ranks, we observed that plants had a

significantly lower uniqueness ratio compared to other groups (Fig 1B), consistent with a prev-

alence of whole genome duplication (WGD) events (see Methods). Nevertheless, the correla-

tion is not strong enough to predict uniqueness ratios solely from taxonomy. For example, rice

species O. sativa and O. brachyantha have different ratios 0.91 and 0.75, respectively.

The repeat spectrum provides other insights. In genomes composed largely of unique

sequences, r1/L’ 1 and rj values decrease rapidly for j� 2 with log r1/r5� 4.5 (Fig 1C). On

the other hand, genomes with higher repetitive content have a smoother decrease of rj values

(Fig 1D) with log
r1
r5
� 2:5 (S3 Fig). Additionally, a genome that has duplicated very recently

will have r1’ 0 and a very high value of r2. Over time, however, r1 increases due to the
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accumulation of mutations. Similarly, rj> 0 for large values of j suggest the presence of inter-

spersed repeats.

Our method RESPECT (Repeat Spectrum identification) derives genomic length and cover-

age from low-coverage genome skims, while also providing insight into the repeat structure.

We showed, through a mix of theoretical reasoning and empirical evidence, that the k-mer

repeat spectra estimation problem is fundamentally difficult because of severe ill-conditioning

of the system. In fact, the spectra are hard to estimate even when the coverage and sequencing

error rate are known. We resolve this problem for the case of known coverage and sequencing

error by imposing constraints on rh and solving a constrained optimization problem. This

approach provides greatly improved estimates of r, which in turn lead to even better estima-

tion of coverage, genome length and sequencing error through a stochastic iteration method.

Results on genomes sampled from different parts of the tree of life and with differing repeat

structures illustrate the validity of our approach.

Fig 1. Characterizing repeats at k-mer level. A: RefSeq plant taxonomy. The species are color-coded based on the uniqueness ratio, from red (highly

repetitive) to blue (non-repetitive). B: Uniqueness ratio distribution among four major taxonomic groups of eukaryotes in RefSeq. Plants (green) have

significantly lower r1/L compared to invertebrates (pink), mammals (yellow), and other vertebrates (blue). P-values shown on the figure, are the result

of statistical tests that the uniqueness ratio is lower among plants compared to other groups. Also, to understand the extent of difference, we tested if the

ratios are lower among plants by X% margin. The results are 5% p-value = 1.1 × 10−6, 10% p-value = 4.3 × 10−6, and 10% p-value = 4.2 × 10−6 when

comparing plants against invertebrates, mammals, and other vertebrates, respectively. C: Dot-plot of V. jocobsoni genome’s (self)alignment with very

few off-diagonal points, and a rapidly decaying repeat spectrum (r1/L = 0.99). D: Dot-plot of D. citri’s highly-repetitive genome marked by many off-

diagonal elements and a smoothly decreasing repeat spectrum (r1/L = 0.51).

https://doi.org/10.1371/journal.pcbi.1009449.g001
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Results

A simple model for estimating repeat spectra from unassembled data

performs poorly

Assume that reads in the genome-skim are sequenced with a fixed mean error rate of � per bp,

and that the read start positions follow a Poisson distribution with a mean coverage of λ per

bp. Denote the observed k-mer data as the vector o = [o1, o2, � � �], where oh denotes the number

of k-mers observed exactly h times in the genome-skim input. The value oh is the outcome of a

random variable Oh that depends upon the parameter set F = {λ, �, r} (See Methods: ‘Modeling

genomic parameters’). Specifically, we assume that each k-mer with copy number j in the

genome is sampled h times according to a Poisson distribution with rate dependent upon k, F.

Let Phj represent the probability of h observances of a k-mer with copy number j. Then, in

expectation,

E½O� ¼ rPT þ 1h¼1E ð1Þ

where E is the expected number of erroneous k-mers that in turn depends upon F.F could be

estimated using:

F ¼ arg min
F
ko � E½O�k ¼ arg min

F
ko � ðrPT þ 1h¼1EÞk ð2Þ

In principle, an iterative procedure could be used to solve the optimization; we start with initial

estimates of λ and �, and use them to compute P and E. Then, we can use the least-square (LS)

method to find r which minimizes ko − (rPT + 1h=1 E)k (Eq 2) (See Methods: ‘Least-squares

estimate of repeat spectrum’).

To study the accuracy of this model for repeat spectra estimation, we simulated genome

skims at 1X coverage with no sequencing errors (E = 0) for all 622 genomes in RefSeq in four

major taxonomic groups of eukaryotes. A subset of 66 species was selected as the test set. The

test genomes were sampled such that their uniqueness-ratio (r1/L) values matched the distribu-

tion of uniqueness-ratios of all 622 RefSeq genomes (S4 Fig, see Methods: ‘Comparing r1/L
distribution over different sets’). In the following text, all parameters were trained on the 556

training genomes, and all test results shown on the 66 test genomes.

For a baseline test, we assumed that the coverage λ was known, so that r could be estimated

using ko − rPTk2 (Eq 2). Using an LS solver (see Methods: ‘Least-squares estimate of repeat

spectrum’), we obtained highly accurate estimates of r1 on the test data (Fig 2A; LS method).

However, even in this simple case with perfect knowledge of coverage and no sequencing

error, the error in estimating rj increased rapidly with increasing j, as the LS solution was often

sparse and the estimation set rj = 0 for many j’s, contrary to its true value in the genome.

Empirical and theoretical results showed that the poor performance could be attributed to

severe ill-conditioning. We proved that the condition number of P grows exponentially with

the number of spectra (see S1 Appendix). Therefore, small changes in o relative to E½O� (Eq 1),

for example due to the sampling variability or the simplifying assumptions of model, led to

very large errors in estimates of r.

Overview of RESPECT algorithm

The negative result suggested a fundamental limitation to the use of k-mer based methods for

estimating repeat spectra. Regularization is a proposed remedy for ill-conditioned matrices.

However, most regularization methods enforce sparsity and r is known to be not sparse. A sec-

ond challenge is that both observed counts and k-mer spectra are very skewed towards lower

indices. Thus, a small (even 1%) relative error in r1 could lead to a larger error in rj for j> 1.
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To get around the ill-conditioning problem, we focused on constraining possible values of r.

We observed empirically that ratio of consecutive spectral values rj+1/rj was tightly constrained.

Fig 2B traces r2/r1 as a function of
r1P
i�1

ri
on the training data and notes the tight correlation

across all taxonomic groups. A similar, albeit less tight, constraint was observed for r3/r2 (Fig

2C) and other values as well (S5, S6 and S7 Figs).

These ideas provided the basis of a constrained linear-program for estimating r. As a first

step, we added the constraint that Lj �
rj

rjþ1
� U j for each j, where Lj and U j are the smallest

and the largest
rj

rjþ1
ratios over the training genomes, and solved the following LP to find r (see

Methods: ‘Linear programming for constrained optimization based estimates’)

r ¼ arg min
r

E ¼ arg min
r

Xn

h¼2

joh �
Xn

j¼1

Phjrjj ð3Þ

Fig 2. Repeat spectra estimation. A: The relative error in estimating repeat spectra using Least-Squares (LS), constrained Linear Programming (LP),

and Spline Linear Programming (SLP). The genome-skims are simulated at 1X with no sequencing error. B: Correlation between true r2/r1 ratios, and

our estimates of r1/∑i=1 ri for each genome. C: Similar correlation plot between true r3/r2 and estimated r2/∑i=2 ri. In both B and C, true spectral ratios on

Y axis are computed from the assemblies, and the estimated indices on X axis are obtained by applying the LP method to the simulated skims described

in A.

https://doi.org/10.1371/journal.pcbi.1009449.g002
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This approach significantly improved the average error in estimating the spectra at multiplicity

j = 3 and higher (Fig 2A; LP method), and resulted in small improvement at j = 1, 2 as well.

Using the repeat spectra from 556 training genomes, we observed a strong correlation

between r2/r1 and r1/∑i�1 ri (Fig 2B). Therefore, we estimated r2/r1 by using the LP estimate of

r1/∑i�1 ri and a spline fitted on the training data based on a generalized additive model [22, 23]

(see Methods: ‘Spline Linear programming’). The estimated r2/r1 value and the LP estimated r1

value provided a new estimate (named SLP) of r2. In a similar fashion, we computed SLP esti-

mates of rj+1 from LP estimate of rj and rj/∑i�j ri for j = 2, 3, 4, 5 (Fig 2C, S5, S6 and S7 Figs,

and Methods: ‘Spline Linear programming’). Using the additional information learned from

the training genomes captured by the fitted splines, we obtained significant reduction in the

average error of repeat spectra estimation (SLP vs. LP in Fig 2A). To solve the full optimization

problem in Eq 2, we used a simulated annealing procedure. Specifically, starting with initial

estimates of parameters obtained under no-repeat assumption, at each iteration a new values

for λ is suggested, and SLP method is used to estimate r. If a candidate λ results in a reduction

in error, the algorithm accepts the move. Moreover, to avoid getting stuck at local minima,

occasionally moves to states with higher error are also accepted. Lastly, the initial estimate of �

is corrected for the repetitiveness of genome using a regression learned over a subset of train-

ing genomes (S8 Fig). The algorithm is outlined below (also see Methods: ‘RESPECT algo-

rithm’ for a detailed description).

1. Generate initial estimates of λ, �, and r.

2. Compute the initial values of P and error function E.

3. For t = 1, � � �, N repeat:

3.1. Choose λnext randomly within a neighborhood of current λ, and compute Pnext.

3.2. Solve for rnext using SLP method.

3.3. Use Pnext and rnext to compute Enext.

3.4. Set λ λnext, E  Enext, and r rnext with probability minf1; expð� ðEnext � EÞt=NÞg.

4. Correct the initial estimate of �, and update λ

5. Output c = λℓ/(ℓ − k + 1), r, L = B/c, and � at the end of iterations (B is the total amount of

nucleotides sequenced).

Estimating genome lengths

We applied RESPECT and CovEst to simulated genome-skims–Illumina reads sampled from

the 66 test genomes skimmed at 1X coverage with 1% sequencing-error rate–and compared

their relative error in the estimation of r1 through r5 and genome length (Fig 3), after their con-

vergence (see S9–S14 Figs for the convergence of RESPECT’s estimates). The median

RESPECT error in estimating r1 was less than 1.5% (average: 2.9%), while the median error of

CovEst was 15% (average: 34%). The error profile extended to higher multiplicities, where, as

noted earlier, CovEst used a parametric model. The tight relation between r1 and r2 and the

large absolute differences between the two values implied that a small error in r1 would trans-

late into a large relative error for r2, and we observed that for r2. Similarly, the RESPECT esti-

mates of genome length were highly accurate with median error 2.2% (average: 4.1%), in

contrast to 27% (average: 40%) for CovEst (Fig 3B). RESPECT estimates were better than Cov-

Est in 62 out of 66 species, often by considerable margins (Fig 3C). For example, in 54/66

PLOS COMPUTATIONAL BIOLOGY Estimating repeat spectra and genome length from genome skims

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009449 November 15, 2021 7 / 23

https://doi.org/10.1371/journal.pcbi.1009449


species, RESPECT error was less than 5%, while CovEst error exceeded 50% in one third of

test genomes. In fact, CovEst severely underestimates the length for these genomes (S15 Fig).

For 18/66 test genomes, the CovEST estimate was less than the true length by a factor of 4 or

higher (S16 Fig). RESPECT relies on models trained using available assemblies. We tested if

the performance depended on the amount of training data and the taxonomic composition of

the training data. RESPECT performance remained robust in these scenarios (S17(A) Fig).

Moreover, its performance improved slightly (had fewer outliers) with additional training data

(S17(B) Fig).

We repeated the same experiment at sequence level coverage of 0.5X, 2X, and 4X (S18 Fig).

At 0.5X coverage, the median error of RESPECT was 16% (average: 18%), while CovEst had

88% median error (average: 75%) and underestimated the length by a factor of 8 or more in

half of the species (S19 Fig). CovEst performance improved at higher coverage but RESPECT

continued to have lower error (S20 Fig). At 4X, CovEst had median error 3.3% (average:

7.6%), while RESPECT median error was < 1% (average: 1.9%). Moreover, CovEst error

exceeded 10% error in a third of species, while RESPECT had< 10% error in 64/66 species

(S21 Fig).

Fig 3. Iterative estimation of genome length. A: Comparing the error of RESPECT and CovEst in estimating the repeat spectrum. The first 5 spectra

are shown. B: The distribution of error in CovEst and RESPECT. The absolute value of relative error in genome length estimation is used (in

logarithmic scale). C: Per-genome error of RESPECT and CovEst in estimating the genome length of 66 species with genomes skimmed at 1X coverage.

https://doi.org/10.1371/journal.pcbi.1009449.g003
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We also compared the performance of RESPECT among different taxonomic groups. In

general, plants and invertebrates had higher error rates compared to both vertebrate groups

(S22 Fig), consistent with their lower uniqueness ratios (Fig 1B). In fact, we observed a statisti-

cally significant negative correlation between the estimation error and the uniqueness ratio

(S23 Fig). We additionally tested RESPECT on simulated genome-skims at 1X coverage from

10 bacterial genomes, and the results did not suggest any bias against prokaryotic genomes

(S24 Fig), despite the fact that we trained our model on eukaryotic genomes.

Estimating genome length using sequenced short reads

A key difference between sequenced reads versus simulated reads is the presence of ‘contami-

nants’ or reads from non-target species. Differences may also include presence of adapter

sequences, duplications of reads from the sequencing platform, lower or higher sequencing

error rates due to DNA quality, and length variation of reads. Therefore, we tested RESPECT

in genome-skims obtained from NCBI’s Sequence Read Archive (SRA) database [24]. We

downloaded high-coverage raw reads from 29 test species (from all four major taxonomic

groups of eukaryotes in RefSeq) including highly repetitive plant genomes, and compared the

results with the corresponding genome assemblies of the same data. After preprocessing the

raw reads using BBTools [25] to remove adapter sequences and duplicate reads, we used Kra-

ken [26] to remove contaminant reads with microbial or human origin (see Methods: ‘SRA

preprocessing and contamination filtering’). We note that this is an imperfect process as

these tools work only when the contaminating organisms have a highly related member in

the reference databases [27]. We discarded 10 samples because > 40% of reads (after remov-

ing adapters) were either duplicates of other reads, or came from external DNA sources

(Table A in S1 Appendix). For the remaining 19 samples, duplicates and reads classified as

contaminant were removed, and unclassified reads were sub-sampled to 1X coverage. In 16

out of 19 samples, RESPECT error was less than 11% (median: 4%), including highly repeti-

tive genomes such as A. tauschii (r1/L = 0.29), Z. mays (maize) (r1/L = 0.32), S. salar (salmon)
(r1/L = 0.48), and N. tabacum (r1/L = 0.57), where the abundance of repeats made the length

estimation challenging (Fig 4, Table 1). In contrast, CovEst had less than 30% error in only 4

samples (median error 80%) (Fig 4). For the highly repetitive genomes, CovEst length esti-

mates ranged from 1/11 to 1/7 of the assembled sequence lengths or 10 to 30 times larger

error compared to RESPECT (see Table 1). In 3 samples, RESPECT had relatively high errors.

For SRR085103 (domestic ferret), 99.9% of the reads did not in fact map to the available ref-

erence assembly of the domestic ferret M. putorious. Together with the relatively low percent-

age of duplication (9%) the data suggest a mislabeling of the sample species. For Coquerel’s

sifaka (P. coquereli), we observed a large gap between the total sequence length (2.8 Gbp) and

the total ungapped length (2.1 Gbp) of the assembly, suggesting some challenges with the

assembly. Cape elephant shrew (E. edwardii) was the last sample where RESPECT length esti-

mate of 4.5Gbp exceeded the RefSeq (GCF_000299155.1) assembly length (3.8Gbp) by over

10%. Interestingly, the uniqueness ratio of the assembly was r1/L = 0.72, which contrasted

with the RESPECT estimated uniqueness ratio of r1/L = 0.65 from the short-read data. Upon

investigation, we found that a more recent assembly for E. edwardii (GCA_004027355.1), not

yet in RefSeq, had an assembled length equal to 4.3 Gbp, with r1/L = 0.66, matching the

RESPECT estimates (4.5Gb, 0.65, respectively). The difference between total sequence length

and ungapped length in GCA_004027355.1 was only 1 Mbp, in contrast to > 500 Mbp for

GCF_000299155.1. Together, these data suggest that GCA_004027355.1 better assembles

repetitive regions, and the RESPECT length estimation error was < 5%, despite using only

1X coverage.
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The role of WGD versus high copy repeat elements in shaping genome

repeat structure

Predicting polyploidy and recent WGD is challenging because mutation and gene loss after

a WGD event can reduce the polyploidy signal. Specifically, a WGD event results in the

uniqueness ratio (r1/L) becoming 0. Subsequently, as mutations accumulate, r1/L ratio moves

gradually towards 1 in a process that may be specific to the species, and hard to predict. Never-

theless, it should be skewed toward smaller values for recent WGD events. Independently, the

presence of high copy repeats due to DNA transposons and retrotransposons can lead to very

Fig 4. Estimating genome length using SRA data. Comparing the error of CovEst and RESPECT. High coverage SRA were

preprocessed and later downsampled to 1X coverage. Both methods are applied to genome skims (after preprocessing) and the

absolute values of the relative error in estimating the genome lengths are compared.

https://doi.org/10.1371/journal.pcbi.1009449.g004

Table 1. Comparing RESPECT and CovEst accuracy on SRA’s of highly repetitive genomes. The numbers in parentheses are the percentage errors.

Species A. tauschii (goat grass) Z. mays (maize) S. salar (salmon) N. tabacum (tobacco)

r1/L 0.29 0.32 0.48 0.57

Assembly length (Gbp) 4.3 2.1 3.0 3.6

RESPECT 3.9 (-10.7%) 2.0 (-8.2%) 2.8 (-4.9%) 3.7 (2.6%)

CovEst 0.4 (-90%) 0.2 (-90%) 0.3 (-90%) 0.5 (-86%)

https://doi.org/10.1371/journal.pcbi.1009449.t001
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high copy numbers of a small set of oligomers. To capture the contribution of high copy repeat

elements, we defined the ‘High Copy Repeats per Million (HCRM)’ value as the average count

(per million base-pairs) of the 10 most highly repetitive k-mers. HCRM values varied across

the species, ranging from 2 to 3738 among our set of 622 RefSeq genomes (S25 Fig). We

observed some correlation between HCRM values of species of the same genus, especially

among vertebrates (S26 Fig). However, similar to the case of uniqueness ratios, the phyloge-

netic signal was not pronounced enough to predict HCRM based on the taxonomy.

Analytical calculations showed that the probability of high HCRM values�200 in a genome

with random set of k-mers was negligibly small (P� 10−100) (See Methods: ‘Statistical analysis

of the repeat structure’), suggesting that high HCRM values could not be explained solely by

WGD events, and were likely due to high copy (transposon) repeats. Fig 5 shows the (r1/L,

HCRM) value of 622 genome-skims, which tightly matched the true values computed from

assembled genomes (S27 Fig). To analyze the r1/L and HCRM values of genomes with recent

WGD, we compiled a partial list of species with known WGD events within the last 150M

years based on the available literature [28–30] (See Methods: ‘Selecting species with known

recent WGD events’ and Table B in S1 Appendix).

Fig 5. High copy repeats per million versus uniqueness ratio among genomes with and without known recent WGD events. Most of genomes with

known recent WGD events had r1/L< 0.8 and HCRM< 200. The y-axis is in a logarithmic scale. HCRM values are computed from genome-skims

simulated at 1X coverage with no sequencing error. Some of the species with a recent WGD are labeled by their common names.

https://doi.org/10.1371/journal.pcbi.1009449.g005
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Species with known recent WGD events had expectedly low r1/L. For example, only 14% of

species with recent WGD had r1/L values� 0.8, in contrast with 64% of all species that had r1/

L values higher than 0.8. Surprisingly, 93% of species with recent WGD also had low HCRM

values (� 200) (Fig 5), and there was a strong association between the occurrence of recent

WGD events and the (r1/L, HCRM) values (p-value: 1.8 × 10−23; See Methods: ‘Statistical anal-

ysis of the repeat structure’). Our results suggest that genomes with low HCRM and r1/L are

strong candidates for WGD events.

Discussion

In this paper, we revisited the problem of estimating genomic parameters (length, sequence

coverage, k-mer spectra) based on low coverage shotgun sequencing data. The problem has

been studied previously and was considered challenging due to the need for simultaneous

inference of coverage and sequencing errors along with the k-mer spectra. However, our

results suggest that the problem remains challenging even when there is no error and the cov-

erage is known. This is due to two factors. (a) The linear system is ill-conditioned, so that a

small change in the k-mer counts due to random sampling can lead to large changes in the esti-

mated k-mer spectra (b) Values in the k-mer spectra show a skewed and non-sparse distribu-

tion, where r1 dominates; r1 is important for length estimation, but controlling for small errors

in r1 leads to larger errors in the other rh values. We provide evidence of both, but future work

will clarify the importance of each facet of the identification.

Proposed solutions for ill-conditioning use regularization but those methods generally

enforce sparse solutions. However, the true k-mer distribution is not sparse. Our work

resolved this issue through an empirical estimation of k-mer ratios based on finished genomes.

This approach is viable given the many finished genomes with different repeat characteristics.

Our study, with 662 genomes of which around 10% were isolated for testing, is the largest

empirical study of its kind.

As expected, accurately estimated k-mer spectra led to better estimation of genomic param-

eters such as length, with RESPECT performing significantly better than the previous best

method, sometimes by orders of magnitude. Our results also have lower variance than those of

other methods.

As coverage increases, all methods perform well. However, at coverage 8X and higher, par-

tial assemblies are possible and small contigs can start to be assembled. In those cases, alterna-

tive methods to estimate genome lengths may be possible, but our methods work well even for

0.5X coverage.

We had used every genome for which the assembled sequence and the raw-reads were avail-

able at the time of submission. Recently, new data has been been released, and we tested our

method on 10 additional samples with very similar performance (S28 Fig).

The presence of contaminants is a significant barrier to accurate estimations, and in fact is

challenging even for assembling the data. As data sampling and DNA extraction methods

improve, this problem will likely be less problematic. In parallel, we are also working to

improve computational approaches to removing contamination.

While most k-mer based statistics were developed as an initial first step prior to deep

sequencing and assembly, they may have an important role to play in independent analysis of

genomes. Many genomes are� 1Gb or lower. Therefore acquiring genome-skims for a major-

ity of organisms and even multiple individuals in a population is a feasible goal. Methods that

work on these reduced representations can be transformative for studying dramatic and short-

term changes in bio-ecology. We can envision technologies where a sampled individual’s

genome-skim can be used to quickly estimate its genome-length, repeat structure, remove
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contaminating reads, identify the organism or place it confidently in the tree of life, and finally,

identify the robustness of population through analysis of heterozygosity. Our paper contrib-

utes to the first step of this vision.

Methods

Comparing r1/L distribution over different sets

To compare two sets of values and see if the values in one set are greater than the other set,

we used the Mann–Whitney U test. Formally, if X and Y are random samples from popula-

tions X and Y, the test statistic, U, is given by the number of times x is greater than y for all

ðx; yÞ 2 X � Y. The Mann–Whitney U test is non-parametric and does not restrict the sam-

ples to be from a certain family of distributions. The test also allows the user to specify a loca-

tion shift μ and examine the alternative hypothesis that X − Y> μ. By gradually increasing μ
and computing the p-value, we can understand the extent of difference between X and Y.

To test if two sets of numbers are drawn from the same distribution, we used the two-sam-

ple Kolmogorov–Smirnov (KS) test. The test statistic is a distance between the empirical distri-

butions functions of the samples from the two sets. We used R ‘stats’ package [31] to compute

the p-values for both tests.

Modeling genomic parameters

We consider k-mers in a genome of length L and assume that k� log4 L so that any k-mer is

unlikely to appear more than once, unless it is part of a repeated sequence. Denote the

(unknown) k-mer spectrum of a genome that contains repeats using r, where rj describes the

number of distinct k-mers that appear exactly j times in the genome.

The genome is shotgun sequenced using reads of length ℓ with average sequencing depth c.
The total number of nucleotides sequenced is given by B = cL. As there are l − k + 1 k-mers in

each read, the k-mer coverage is given by

l ¼ ð1 � ðk � 1Þ=‘Þc ¼
ð1 � ðk � 1Þ=‘ÞB

L
: ð4Þ

Let o denote the histogram of observed k-mer counts. The observed number of k-mers of

abundance h, oh, can be thought of as a sample allocation to random variable Oh, whose

expected value, mh ¼ E½Oh�, depends upon r, λ, L, and also on sequencing error. We assume

that any base-pair is sequenced erroneously with probability �, and sequencing errors only

result in novel k-mers. We further assume that the number of times a unique k-mer repeated j
times is sampled follows a Poisson distribution with rate λj(1 − �)k. Therefore

m ¼ rPT þ 1h¼1E ; ð5Þ

where Phj ¼ e� jlð1� �Þk ðjlð1� �Þ
kÞh

h!
denotes the probability that a k-mer repeated j times in the

genome is observed with count h in the genome skim, 1h=1 = [1, 0, 0, . . .], and E = Lλ(1 − (1 −
�)k) is the expected number of erroneous k-mers. As λ and L are connected through Eq 4, we

choose λ as the independent variable and consider L as a function of λ. Under this model, we

would like to estimate ðr; l; �Þ ¼ arg minr;� EðP; r; �; oÞ, where E is a weighted p-norm of the

difference between expected and observed counts

Ew;pðP; r; �; oÞ ¼
X

h

whjmh � ohj
p

 !1=p

¼
X

h

whjðrP
T þ 1h¼1EÞh � ohj

p

 !1=p

: ð6Þ
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Note that the optimization is non-trivial because P and E are functions of (r, λ, �), and must be

simultaneously estimated.

A generic iterative optimization for parameter estimation

The dimensions of o and r in Eq 5 are determined entirely by data and are not necessarily

identical. However, we truncated both to a common dimension n = 50 for computational

expediency. A generic optimization method could be described as below.

1. Generate initial estimates of λ, �, L.

2. Solve for r using Eq 6.

3. Use estimated r and grid-search to re-estimate λ, �.

4. Repeat step 2 onwards until the error has converged.

Step 2 is the key step in this procedure, and we devised a number of approaches to solve it.

Least-squares estimate of repeat spectrum

Choosing p = 2 (Euclidean norm) and wh = 1, 8h in Eq 6, the problem is turned into a Least-

Squares (LS) optimization. To test an LS method for estimating r, we considered the simplest

sequencing-error-free case (� = 0), where coverage λ was known. Therefore, E½O� ¼ m ¼ rPT,

where P is an n × n matrix with

Phj ¼ e� jl
ðjlÞh

h!
:

We showed (S1 Appendix) that P is non-singular and in the error-free case, it should be possi-

ble to use the estimate r(est) = oP−T. However, we observed that its effective rank was very

small as Λ, E each have rapidly diminishing eigenvalues. Therefore, instead of decomposing P

and explicitly computing P−1, we used the non-negative least squares (NNLS) method [32] to

solve

rðestÞ ¼ arg min
r
ko � rPTk

2
:

We used nnls method from SciPy’s [33] Optimize library. Unfortunately, the LS estimates

were very unreliable and showed high error. In fact, we proved, for λ = 1 (see S1 Appendix),

that

condðPÞ �
2n

n
:

The condition number grows exponentially with n suggesting a highly ill-conditioned matrix

P where small changes in o from the expected values m would lead to large errors in estimate

of r. For these reasons, we adopted constrained optimization methods to solve for r.

Linear programming for constrained optimization based estimates

We used Eq 6 with w = [0, 1, 1, . . ., 1] and p = 1 to design a Linear programming estimate of r

as:

min
r

Xn

h¼2

joh �
Xn

j¼1

Phjrjj ; ð7Þ
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such that

Lh �
rh
rhþ1

� Uh; h ¼ 1; 2; � � � ; n � 1

The rationale behind setting w1 = 0 was that o1 contains a large number of erroneous k-mers,

so we exclude it from the objective function and use the rest of the bins to estimate r. As � is

not known in general, o1 was used to estimate the (average) sequencing error rate, and subse-

quently the k-mer coverage λ.

The lower and upper bounds on
rj

rjþ1
were determined based on the distribution Rj of spectral

ratios in 556 training genomes, and therefore we only search for candidate solutions r that sat-

isfy the constraints. Specifically, we profiled the repeat spectra of the training genomes and set

½Lj;U j� equal to the empirical support of Rj distribution, i.e., Lj and U j are the smallest and the

largest samples observed from Rj over the training genomes. We use Gurobi Optimizer [34] to

solve the constrained optimization problem formulated in Eq 7.

Spline Linear programming

The final method of estimating r is based on the LP estimate of r and the splines fitted on spec-

tral ratios rj/rj+1 as functions of
rjP
i�j

ri
. Formally, let rLPj denote the LP estimate of rj by con-

straining the spectral ratios to be within the support of Rj among the training genomes, as

discussed above. For each j 2 {1, 2, 3, 4, 5}, we used a generalized additive model (GAM),

learned from 556 training genomes, to predict rj/rj+1 based on
rLPjP
i�j

rLPi
. Specifically, we model yj

= rj/rj+1 for different genomes as samples drawn from dependent random variable Yj, which

follows gamma distribution and its mean is determined by

gjðE½Yj�Þ ¼ sjð
rj

P
i�jri
Þ ; ð8Þ

where gj is called the link function, and sj is the smoothing spline. These functions allow us to

capture nonlinear dependencies between the variables in our model. For j = 1, 2, we use a loga-

rithmic link function to account for the large dynamic range of rj/rj+1 over the training set, and

use identity link for j = 3, 4, 5. For each fitted GAM, we empirically set the smoothing parame-

ter to balance the over-fitting against the goodness of fit. We used R ‘mgcv’ package [35] for

GAM fitting.

Using the LP estimates of rj’s and plugging them into Eq 8, we predict the spectral ratios.

Let ySLPj denote the estimate of yj using Eq 8 on previous estimates of r. We recursively re-esti-

mate rj for j 2 {2, 3, 4, 5, 6} and call them rSLPj :

rSLPj ¼

( rLPj j ¼ 1 and j > 6

rSLPj� 1
=ySLPj� 1

2 � j � 6
ð9Þ

RESPECT algorithm

For the RESPECT algorithm, we replaced the basic iterative method described above with a sim-

ulated annealing procedure outlined in Algorithm 1 to speed up the computations. To initialize

the algorithm, we started with the assumptions that genome has no repeats r = [L, 0, 0, . . .], and

the error-free k-mer counts follow a Poisson distribution (Eq 5). Defining λef = λ(1 − �)k as the
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error-free k-mer coverage, we estimate its initial value from the ratio of observed counts

lef ¼
ðh� þ 1Þoh�þ1

oh�
; where h� ¼ arg max

h>1

oh ;

and set

l ¼ e� lef
l
h�

ef

h�!
o1

oh�
þ lefð1 � e� lef Þ; � ¼ 1 � ðlef=lÞ

1=k

(see S1 Appendix). The above estimate of � is used throughout the algorithm, but is corrected at

the end based on the estimated uniqueness ratio (described below). Using the estimate of λef, we

compute P, and thus the error function E at the start of the algorithm. For E, we chose w = [0, 1,

1, . . ., 1] and p = 1 in Eq 6, so

E ¼
Xn

h¼2

joh �
Xn

j¼1

Phjrjj

With the initial values of the parameters known, RESPECT runs a simulated annealing opti-

mization until the error converges. At each iteration, a candidate λnext in 1

2
l; 3l

� �
is selected

uniformly at random, and Pnext is computed from λnext(1 − �)k. Next, we run SLP method on

(o, Pnext) to get rnext. Throughout the algorithm, we used truncated o1×m, r1×n, and Pm×n where

the number of spectra is fixed at n = 50 (a reasonable compromise between accuracy and

speed), and the number of observed counts m = n �max(1, λef) scales proportionally with the

initial estimate of error-free k-mer coverage. Using (o, Pnext, rnext), error function for the can-

didate state Enext is calculated. If moving to the candidate state results in a reduction in the

error (Enext < E), the algorithm accepts the move and updates the current estimate of parame-

ters. In addition, to help the algorithm deal with local minima and find better solutions, a sim-

ulated annealing scheme is implemented such that the algorithm probabilistically decides to

move to states with higher error. Specifically, at iteration t, even if Enext > E, the algorithm

accepts the move with probability expð� ðEnext � EÞt=NÞ.
At the end of iterations, the initial estimate of � (obtained under no-repeats assumption) is

corrected based on the estimated value of r1/L. The correction was learned over 120 genomes

randomly selected from the training set, and applied if the estimated coverage is smaller than

1.5X. Then, λ is re-computed based on the corrected �, and is used to compute the final esti-

mates of coverage and genome length. The estimated sequencing error rate and repeat spec-

trum are also provided by the algorithm.

Algorithm 1: The RESPECT method

Start with lef ¼ l
ð0Þ
ð1 � �Þ

k
¼
ðh�þ1Þoh�þ1

oh�
, where h� = arg maxh>1 oh;

Compute P(0), Eð0Þ ¼ minrEðP
ð0Þ; rð0Þ; oÞ, and rð0Þ ¼ arg minrEðP

ð0Þ; rð0Þ; oÞ;
Find E ¼ o1 �

P
jP
ð0Þ

1j r
ð0Þ

j ;

Set l
ð0Þ
¼ e� lef l

h�
ef
h� !

o1

oh�
þ lefð1 � e� lef Þ, and compute � from λef and λ(0);

for 1 � t � N do
l
ðtÞ
 U 1

2
� l
ðt� 1Þ

; 3 � l
ðt� 1Þ

� �
;

Use λ(t) and � to compute P(t), rðtÞ ¼ arg minrEðP
ðtÞ; rðtÞ; oÞ, and

EðtÞ ¼ minrEðP
ðtÞ; rð0Þ; oÞ;

Move to λ(t) with probability min 1; exp Eðt� 1Þ � EðtÞ
N� tþ1

� �n o
;

end
Correct � and set λ = λ(N)(1 − �)k/(1 − �corrected)

k;
Output c ¼ ‘

‘� kþ1
l, L = B/c, �corrected, and r(N)
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SRA preprocessing and contamination filtering

After downloading SRA accessions and converting them to FASTQ using SRA Toolkit [36],

we used BBDuk and Dedupe from BBTools package to trim adapter sequences and remove

duplicate reads. We then ran Kraken2 to remove contamination with prokaryotic or

human origin. For plant and invertebrate samples, we filtered out any read that was classi-

fied to the Kraken database at 0 confidence level (very sensitive, a single matched k-mer is

enough for the classification). For vertebrates, due to their smaller evolutionary distance to

homo sapiens, we required 0.5 confidence level (more specific, half of the read’s k-mers

should match) for human classification, and 0 confidence level for everything else in the

database.

Implementation details and running time

We use ‘count’ and ‘histo’ commands from Jellyfish [37] command line tool to compute the k-

mer histogram of input genome-skims. In each iteration of RESPECT algorithm, we solve a

constrained optimization problem using the tools provided by Gurobi Python interface in

‘gurobipy’ package. The running time of RESPECT slowly increases with the coverage as the

size of P (and hence the size of optimization problem at each iteration) scales with the (initial)

estimate of coverage. On average, for a typical 0.5X-4X coverage of genome-skims, it takes

about 2 hours for RESPECT algorithm to converge and produce the final estimate of the

parameters.

Selecting species with known recent WGD events

From the total of 83 RefSeq genomes in our database, we obtained the WGD annotation (with

estimated age) for 44 plant species [29]. WGD annotations for the remaining 32 plant species

in our database were based on the data provided by the 1000 plants project [30], where either

the exact same species or a species from the same genus is identified to have undergone a

WGD event using transcriptomic data. We also have 7 Salmonid genomes where their com-

mon ancestor is thought to have had a WGD event about 80My ago [28].

Statistical analysis of the repeat structure

In a random genome with length L, there are L − k + 1’ L k-mers, and assuming the random

selection of k-mers is uniform over the space of all 4k possible k-mers, the probability distribu-

tion for the copy number (CN) of each k-mer is

Prob CN ¼ x½ � ¼
L
x

� �

ð
1

4kÞ
x
ð1 �

1

4kÞ
L� x

:

For typical values of L* 100 − 1000 Mbp and k = 31, the conditions to use a Poisson distribu-

tion to approximate a Binomial (see e.g., Section 5.4 of [38]) are met, i.e., L� 1 and 4−k� 1,

hence we have

Prob CN ¼ x½ � ¼ e� L=4k ðL=4kÞ
x

x!
:

If the genome subsequently undergoes nw whole genome duplication events, the genome

length is multiplied by 2nw . However, the multiplicity of each k-mer increases by at most 2nw , as

mutations reduce the copy number of k-mers. Therefore, to have an HCRM value of H, there

should exist at least a k-mer with copy number x�HL in the original random genome. Now,
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considering that under random-genome model the selection of any k-mer is equally likely, we

can use the union bound (see e.g., Section 1.5 of [38]) and have

Prob½HCRM � H� <
X

all
k‐mers

X

x¼HL

e� L=4k ðL=4kÞ
x

x!

< 4k
X

x¼HL

e� L=4k ðL=4kÞ
x

x!
:

ð10Þ

We used WolframAlpha [39] to compute the bound in (10) for several values of H. For

H = 200 and L 2 [100 − 1000] Mbp, the resulting p-values were less than 10−100.

To test the association between WGD events and the values of r1/L and HCRM, we used the

assembled genomes of 622 RefSeq species and constructed a two by two contingency table

where columns represent the species with or without an identified recent WGD, and the rows

specify whether or not the genome has r1/L and HCRM values less than 0.8 and 200, respec-

tively. We filled the table by the count of genomes that satisfied each of these four conditions,

and performed a Fisher’s exact test (using R ‘stats’ package [31]) and got the p-value = 1.8× 10−23

for the correlation between the rows and columns of the table.

Supporting information

S1 Appendix. Supplementary methods and data. Detailed mathematical derivations and sup-

plementary tables. Table A: SRA preprocessing results. Table B: List of species with recent

WGD events.

(PDF)

S1 Fig. Whole RefSeq taxonomy with r1/L annotation. A: Plants, B: Invertebrates, C: Mam-

mals, D: Other vertebrates.

(TIF)

S2 Fig. Distributions of intra-generic versus inter-generic differences in r1/L for pairs of

RefSeq species. A: Plants, B: Invertebrates, C: Mammals, D: Other vertebrates.

(TIF)

S3 Fig. Correlation of r1/L with spectral ratios. A: r1/r3 versus r1/L, B: r1/r5 versus r1/L.

(TIF)

S4 Fig. Comparing the distributions of r1/L among test and all RefSeq genomes. The p-

value for the hypothesis that the distributions are different using two-sided Kolmogorov–

Smirnov test is 0.93. Highly-repetitive genomes are slightly over-represented in the test set.

(TIF)

S5 Fig. Correlation between true r4/r3 and estimated r3/∑i=3 ri.
(TIF)

S6 Fig. Correlation between true r5/r4 and estimated r4/∑i=4 ri.
(TIF)

S7 Fig. Correlation between true r6/r5 and estimated r5/∑i=5 ri.
(TIF)

S8 Fig. Correlation between the relative error in the estimated sequencing error and the

uniqueness ratio. A subset of 120 training genomes were selected as the cross-validation set,

and genome-skims were simulated at 1X coverage with 1% sequencing error rate. There is a
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strong correlation (R = −0.995) between the error in estimating � and r1/L ratio. We capped

the correction at 20% (red dashed line).

(TIF)

S9 Fig. r1 estimation convergence with time.

(TIF)

S10 Fig. r2 estimation convergence with time.

(TIF)

S11 Fig. r3 estimation convergence with time.

(TIF)

S12 Fig. r4 estimation convergence with time.

(TIF)

S13 Fig. r5 estimation convergence with time.

(TIF)

S14 Fig. Genome length convergence with time.

(TIF)

S15 Fig. Genome length estimation error of RESPECT and CovEst. The coverage is 1X, and

the y-axis is in square-root scale. The sign of error indicates overestimation or underestima-

tion. The dashed lines mark the region that the absolute value of error is less than 5%.

(TIF)

S16 Fig. Estimated to true genome length ratio. Comparing RESPECT and CovEst over 66

test species with genomes skimmed at 1X coverage. The y-axis is plotted in log scale, and the

red dashed line at y = 1 is the grand truth (no error). Two genomes (A. tauschii (0.002) and Z.
mays (0.003)) that CovEst had extremely low estimated to true ratios were removed to improve

readability.

(TIF)

S17 Fig. Impact of training data on length estimation accuracy. RESPECT was trained on a

subset of genomes (50 of 129 mammalian genomes and 50 of 195 invertebrate genomes were

removed), and the error plotted (circles) along with the error on the original training set (tri-

angles). A: The error per genome is plotted in log scale on the y-axis. B: The distribution of

error values with RESPECT trained on the subset (blue) and the entire data set (red).

(TIF)

S18 Fig. Length estimation error on simulated data at different coverages. The distribution

of error made by RESPECT and CovEst in estimating the length of 66 test genomes skimmed

at 0.5X, 1X, 2X, and 4X coverage. The y-axis is plotted in log scale.

(TIF)

S19 Fig. Estimated to true genome length ratio. Comparing RESPECT and CovEst over 66

test species with genomes skimmed at 0.5X coverage. The y-axis is plotted in log scale, and the

red dashed line at y = 1 is the grand truth (no error). Four genomes (D. grimshawi (0.0004), S.
salar (0.0006), A. tauschii (0.0012), and Z. mays (0.0016)) that CovEst had extremely low esti-

mated to true ratios were removed to improve readability.

(TIF)

S20 Fig. Estimated to true genome length ratio. Comparing RESPECT and CovEst over 66

test species with genomes skimmed at 2X coverage. The y-axis is plotted in log scale, and the
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red dashed line at y = 1 is the grand truth (no error).

(TIF)

S21 Fig. Estimated to true genome length ratio. Comparing RESPECT and CovEst over 66

test species with genomes skimmed at 4X coverage. The y-axis is plotted in log scale, and the

red dashed line at y = 1 is the grand truth (no error). Four genomes (D. grimshawi (0.0004), S.
salar (0.0006), A. tauschii (0.0012), and Z. mays (0.0016)) that CovEst had extremely low esti-

mated to true ratios were removed to improve readability.

(TIF)

S22 Fig. Distribution of length estimation error over four major taxonomic groups. Signifi-

cant p-values (0.05 threshold) computed using Mann-Whitney U test are added to the plot.

Plants and invertebrates have higher error rates compared to vertebrates species in our test

dataset.

(TIF)

S23 Fig. Length estimation error vs. uniqueness ratio. Negative correlation between

RESPECT’s error and uniqueness ratio of the genome.

(TIF)

S24 Fig. Length estimation error for 10 bacterial genomes. The 10 bacterial genomes were

selected at random from RefSeq and genome-skims were simulated at 1X coverage. The rela-

tive error of the estimated length is plotted in log scale on the y-axis.

(TIF)

S25 Fig. Whole RefSeq taxonomy with HCRM annotation. Colors are based on logarithm of

HCRM values for each genome. A: Plants, B: Invertebrates, C: Mammals, D: Other vertebrates.

(TIF)

S26 Fig. Distributions of intra-generic versus inter-generic differences in HCRM for pairs

of RefSeq species. A: Plants, B: Invertebrates, C: Mammals, D: Other vertebrates.

(TIF)

S27 Fig. High copy repeats per million versus uniqueness ratio among genomes with and

without known recent WGD events. HRCM values are computed directly from the genome

assemblies.

(TIF)

S28 Fig. Estimating genome length using SRA data. RESPECT was test on 10 new samples

(chosen at random) made available since the original submission of the manuscript. One of

the samples was removed during the preprocessing due to high duplication rate. The results

for the remaining 9 samples are plotted along with the original test species. Two newly added

samples with high error are Z. cesonia and V. riparia. RESPECT overestimates their genome

length by %28. It could be the case that the assemblies are missing some repetitive sequences

(especially V. riparia which a has highly repetitive genome), considering that for both species

there is a gap between reported total sequence length and total ungapped length.

(TIF)
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