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Onset of meso-scale turbulence in active
nematics
Amin Doostmohammadi1,*, Tyler N. Shendruk1,2,*, Kristian Thijssen3,* & Julia M. Yeomans1

Meso-scale turbulence is an innate phenomenon, distinct from inertial turbulence, that

spontaneously occurs at low Reynolds number in fluidized biological systems. This

spatiotemporal disordered flow radically changes nutrient and molecular transport in living

fluids and can strongly affect the collective behaviour in prominent biological processes,

including biofilm formation, morphogenesis and cancer invasion. Despite its crucial role in

such physiological processes, understanding meso-scale turbulence and any relation to

classical inertial turbulence remains obscure. Here we show how the motion of active matter

along a micro-channel transitions to meso-scale turbulence through the evolution of locally

disordered patches (active puffs) from an ordered vortex-lattice flow state. We demonstrate

that the stationary critical exponents of this transition to meso-scale turbulence in a channel

coincide with the directed percolation universality class. This finding bridges our

understanding of the onset of low-Reynolds-number meso-scale turbulence and traditional

scale-invariant turbulence in confinement.
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L
ow-Reynolds-number turbulence is established through
continuous energy injection from the constituent elements
of an active fluid in many biological systems, including

bacterial suspensions1–6, cellular monolayers7–9 or sub-cellular
filament/motor protein mixtures10,11. Although the inertia is
negligible (Reynolds number 51) in such systems, active
turbulence is characterized by a highly disordered distribution
of vortices12,13. However, meso-scale turbulence in living fluids
possesses a characteristic vortex length scale, which distinguishes
it from scale-invariant inertial turbulence14, and it is considered
a new class of turbulent flow2,12,15.

Despite extensive implications for diverse fluid dynamical
systems and more than a century of research, the transition from
pressure-driven laminar flow to inertial turbulence in even the
simplest geometries remains one of the major unresolved
problems in fluid mechanics. Elaborate experiments have recently
shed new light on the nature of this transition by measuring
the decay and splitting of local turbulent domains/clusters (puffs)
in pipe flows and have determined the critical Reynolds
number—ratio of inertial to viscous forces—at which the
transition occurs16,17. Short-range interactions between the
locally turbulent puffs, which feed on surrounding laminar flow
as an absorbing state, drive a continuous transition to a fully
turbulent flow. Recent experimental evidence from channel and
circular Couette flows18,19, together with direct numerical
simulation studies and predator–prey models20, have provided
evidence that the transition at the critical Reynolds number is
characterized by the directed percolation universality class.

Strikingly, here we show that for a profoundly distinct class
of turbulence at low Reynolds number, the transition in a channel
can also be characterized by the emergence of puffs created
by microscopic activity of biological fluids. Even for this
low Reynolds number class of turbulent-like flows that apparently
lacks a perfectly unique absorbing state, we find that the
critical exponents correspond to the directed percolation
universality class subject to a small non-ordering, conjugated
and intrinsic field.

Results
Vortex lattice as an intermediate state. To study the transition
to low-Reynolds-number meso-scale turbulence, we computa-
tionally solve the continuum equations of active nematics
in micro-channels, which have successfully reproduced the
patterns of bacterial ordering in bulk5 and in confinement21,
the flow structure and correlation lengths of microtuble
bundles10,11,22 and the flow patterns of dividing cells8,23

(see Methods for the details of the model). Through this
continuum description, the transition to turbulence occurs by
increasing the amount of local energy injection (activity) in the
living fluids. In a confined environment, the activity leads to
spontaneous symmetry breaking and the generation of
unidirectional flow24, which is followed by an oscillatory regime
characterized by distorted streamlines25,26, upon increasing
the activity. Further increase in the activity leads to the
emergence of a stable lattice of vortices throughout the channel27

(Fig. 1a), and this transitions to meso-scale turbulence at higher
activities (Fig. 1b). The emergence of the intermediate vortex
lattice in active matter has been observed experimentally in
motility assays of microtubles28, in bacterial suspension in a
channel confinement6, and also numerically by short-range
attraction of self-propelled particles29 and hydrodynamic
screening of activity-induced flows due to frictional damping30.
To focus on the effect of the confining channel on the transition to
meso-scale turbulence, we consider the ideal ‘wet’ limit and
neglect additional frictional damping11,31,32. This is because in

the experimental systems studied so far, there is no obvious
qualitative effect on the active turbulence, friction appears to
be a small effect, and the meso-scale turbulent state we
consider here is unaffected2,6,10,11. We find that the
intermediate vortex lattice is stable to impulsive perturbations,
which do not produce growing modes (see Methods). In stark
contrast to inertial turbulence, the Reynolds number is
irrelevant here and the transition between flow regimes is
governed by the dimensionless activity number A¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
zh2=K

p
(Fig. 2a). This parameter characterizes the ratio of the channel
height h, which here is equivalent to the hydrodynamic screening
length, to the characteristic activity-induced length scale
‘a¼

ffiffiffiffiffiffiffiffi
K=z

p
, which represents the relative importance of the

intrinsic activity z and the orientational elasticity K of the
nematic fluid33,34.

The marked difference between the various flow states is clearly
seen in the structure of the vorticity. Therefore, to characterize
the transition between the regimes, we measure the distribution
of the local enstrophy E, averaged across the channel. This
quantity represents the strength of vortices in the flow, and has
also been used for determining the nature of inertial turbulence.
The vortex-lattice state possesses a well-defined peak in the
enstrophy (Fig. 2b). As the active flow transitions at higher
activities, the enstrophy distribution broadens, demonstrating
that vorticity cascades down into meso-scale turbulence. The
gradual disappearance of the peak in the enstrophy distribution
(Fig. 2b) suggests a continuous transition from the vortex lattice
to meso-scale turbulence. But how does the active turbulence
develop from the vortex lattice?

Critical behaviour. Figure 1c shows a snapshot of the vorticity
field in a long channel close to the transition. The vortex lattice
predominantly occupies the entire channel. Locally, however, we
can identify regions of the channel where vortex pairs split into
smaller non-ordered vortices (Fig. 1d). This coexistence of the
global vortex lattice and clusters of local active turbulence
controls the transition to turbulence in the channel. We term
these localized domains of non-ordered vorticity active puffs,
in analogy to the inertial puffs observed in the experiments on
scale-invariant turbulence in long tubes16. Unlike the inertial
puffs that are externally initiated by perturbations to the flow
field (such as induced pressure jumps), active puffs are intrinsic
to our simulations.

The behaviour of these active puffs is clearly characterized in
the space-time kymograph of enstrophy (Fig. 3). An active puff
can split, giving birth to new puffs, or decay into the ordered
vortex-lattice state. Below some critical activity number, puffs
tend to decay back to the inactive vortex-lattice state (Fig. 3a).
On the other hand, active puffs span the entire system when
splitting occurs at a high enough rate to produce a statistical
steady state at the critical activity number (Fig. 3b). At higher
activities yet, the competition between splitting and decaying of
puffs results in a well-defined turbulence fraction within the
channel (Fig. 3c). The active flow approaches the fully turbulent
state with active puffs ultimately occupying the entire channel
when the decay time far exceeds the splitting time16.

We thus measure the turbulence fraction, the area fraction
occupied by active puffs in the channel, as a function of
the activity number (Fig. 4a). Well below the critical point,
active puffs have a short lifetime and rarely split (Fig. 3a), leading
to a negligible turbulence fraction in the steady state (Fig. 4a).
However, as the critical value of the activity is approached,
puff decay becomes less likely and splitting time decreases
substantially (Fig. 3b). Above the critical point, the puff
population does not die out, producing a steady-state, non-zero
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turbulence fraction (Fig. 3c), and we find the turbulence
fraction continuously increases with a power-law dependence
B(A�Acr)b (Fig. 4a). We measure the stationary exponent to be
b¼ 0.275±0.043, which closely matches the universal critical
exponent of the (1þ 1) directed percolation process (b¼ 0.276)35

and is in agreement with the value that has recently
been measured for inertial turbulence in Couette flow
(b¼ 0.28±0.03)19.

This strong agreement is striking, as it draws a parallel
between the low-Reynolds-number meso-scale turbulence in
living fluids, which possesses a characteristic vorticity length
scale, and high-Reynolds-number inertial turbulence, which
is scale-invariant. Furthermore, the exponent is particularly
surprising as active puffs are generated at a small activity-
independent rate. In this way, the inactive vortex lattice is not
a perfectly absorbing state, and yet there is remarkable agreement
between the measured stationary exponent b and the critical
exponent of the directed percolation universality class. The
agreement with the universal critical exponent from directed
percolation can be understood by recognizing that the creation
of puffs corresponds to a weak, non-ordering field conjugated
to the turbulence fraction, which is known to have no detectable
effect on the stationary exponents sufficiently close to the
critical point36,37.

To further scrutinize the critical behaviour at the transition
point, we measure the spatial and temporal distributions of

vortex-lattice gaps (see Methods). These distributions of the
inactive state characterize correlations of the active puffs38 and
obey power laws with exponents m?, m|| for space and time,
respectively (Fig. 4b,c). The temporal exponent is measured to be
m||¼ 1.84±0.04 and the spatial exponent is m? ¼ 1.8±0.1. These
values also correspond to the critical exponents for (1þ 1)
directed percolation (m||¼ 1.84,m? ¼ 1.748)35. The values of the
exponents obtained from our measurements for meso-scale
turbulence in a channel and for (1þ 1) directed percolation
with spontaneous site activation are summarized in Table 1 and
are compared with the experimentally measured exponents for
the inertial turbulence in simple shear experiments in
one-dimensional geometries19. It would be of interest to see if
the critical exponents of the directed percolation universality
class will continue to be found in geometries with higher effective
dimensionality, as in experiments on inertial turbulence in
quasi-two-dimensional passive liquid crystals39,40, in channel
flows18 and in three-dimensional quantum turbulence41.

Discussion
Our findings present a first concrete connection between
turbulence in living fluids and classical scale-invariant turbulence,
beyond a superficial visual similarity, by showing that the
transitions to these two profoundly distinct types of spatiotem-
poral disorder in channel flows are characterized by the same

a b

c

d

Figure 1 | Emergence of puffs from a vortex-lattice controls the transition to active turbulence. (a) A highly ordered flow vortex lattice is formed at

lower activities and (b) active turbulence is fully established at higher activities. Lower panels in a,b show the height-averaged enstrophy signal along the

channel. (c) Coexistence of the vortex lattice and meso-scale turbulence close to the transition point. The zoomed-in panel in d illustrates the formation of

active puffs from the vortex lattice. Colour maps show vorticity contours with blue and red colours corresponding to clockwise and anti-clockwise vortices,

respectively. The average radius of vortices is 0.32h, where h denotes the channel height. Solid black lines illustrate streamlines of the flow.

40

30

20 0.5
0.5

Unidirectional flowVortex
lattice

Meso-scale
turbulence

100 0 0.02 0.04 0.06 0.08 0.1

A=34.2
A=36.4
A=37.0
A=41.0

K / �

h

10

a b

√   (enstrophy)

Figure 2 | Competing length scales control the transition to active turbulence. (a) Phase-space of control parameters corresponding to the vortex-lattice

state. The slope of 0.5 at the boundaries of the vortex-lattice state shows that the emergence of vortex lattice is controlled by two competing length scales:

the channel height h and the activity length scale
ffiffiffiffiffiffiffiffi
K=z

p
. (b) Transition from the vortex-lattice state to active turbulence is characterized by the channel-

averaged enstrophy E distribution for increasing values of activity number A¼
ffiffiffiffiffiffiffiffiffiffiffiffi
zh2=K

p
.
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scaling behaviour, corresponding to a critical directed percolation
process. While the transition to scale-invariant turbulence
corresponds to a critical absorbing phase transition, our results
suggest that meso-scale turbulence is driven away from criticality
by rare active puff creation that corresponds to directed

percolation in the presence of a conjugated field. This opens
new possibilities for further investigation of the nature of meso-
scale turbulence and using tools from non-equilibrium statistical
mechanics to explain transitionary behaviours in biological
systems. Future research should investigate the transitions

A<Acr A=Acr A>Acr
a b c

Figure 3 | Active turbulence percolates over time as the active puffs split and decay. Spatiotemporal evolution of active puffs represented by space-time

kymograph of the height-averaged enstrophy (a) below the critical activity AoAcr, (b) at the critical activity A¼Acr and (c) above the critical activity

A4Acr. In a–c, left panels correspond to active turbulence and right panels show simulations from the Domany–Kinzel cellular automaton model of directed

percolation model with rare spontaneous activations.
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Figure 4 | Transition to active turbulence coincides with directed percolation universality class. (a) Turbulence fraction as a function of the activity

number. The red line corresponds to the turbulence fraction p(A�Ac)b with b¼0.276 for (1þ 1) directed percolation with spontaneous activation. The

error bars were calculated based on the s.d. from the mean value for simulations with different random initial conditions. Distribution of the vortex-lattice

gaps is shown in b time and (c) space at the critical activity number. The green lines in b,c show N||pT �m jj , N?pL�m? , respectively with

m||¼ 1.84,m? ¼ 1.748 for (1þ 1) directed percolation with rare spontaneous activations.
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between ordered flow states, the nature of the weak conjugated
field and the possibility of non-universal dynamical scaling
behaviour or super-exponential dependence of puff lifetime on
activity number.

Methods
Active nematohydrodynamics simulations. The spatiotemporal evolution of
a living fluid is described by active nematohydrodynamics equations based on the
theory of liquid crystals. This formulation has been extensively applied to biological
systems including bacterial suspensions21, microtuble/motor protein
mixtures10,22,42 and cellular monolayers8,43. The total density r and the velocity
field u of the active matter obey the incompressible Navier–Stokes equations

= � u¼0; ð1Þ

r @t þ u � =ð Þu¼= �P; ð2Þ
where P is the stress tensor. While several studies of meso-scale turbulence have
characterized the dynamics of the flow using only the velocity field as the relevant
order parameter2,15, an additional order parameter field is required to account for
the orientational order of active fluids. This is particularly important since several
experiments have established the existence and pivotal role of the orientational
order in the dynamics of bacterial suspensions5,21, microtuble bundles10,11,
assemblies of fibroblast cells44 and more recently in stem cell cultures9. To account
for the macroscopic orientational order of microscopic active and anisotropic
particles, the nematic tensor Q¼ 3q

2 nn� I=3ð Þ is considered, where q denotes the
coarse-grained magnitude of the orientational order, n is the director and I the
identity tensor. The nematic tensor evolves as

@t þ u � =ð ÞQ� S¼ GH; ð3Þ
where G is a rotational diffusivity and the co-rotation term

S¼ lEþOð Þ � Qþ I
3

� �
þ Qþ I

3

� �
� lE�Oð Þ

� 2l Qþ I
3

� �
Q : =uð Þ;

ð4Þ

accounts for the response of the orientation field to the extensional and rotational
components of the velocity gradients, as characterized by the strain rate
E¼ (=uTþ=u)/2 and vorticity O¼ (=uT�=u)/2 tensors, and weighted by the
tumbling parameter l. The relaxation of the orientational order is determined by
the molecular field,

H¼� @F
@Q
þ= � @F

@ =Qð Þ ; ð5Þ

where F¼F b þF el denotes the free energy. We use the Landau–de Gennes bulk
free energy45,

F b¼
A
2

Q2 þ B
3

Q3 þ C
4

Q4; ð6Þ

and Fel¼ K
2 =Qð Þ2, which describes the cost of spatial inhomogeneities in the order

parameter, assuming a single elastic constant K.
In addition to the viscous stress Pvisc¼ 2ZE, equation (2) must account for

contributions to the stress P from the nematic elasticity and the activity. The
nematic contribution to the stress is

�elastic ¼� PIþ 2lðQþ I=3ÞðQ : HÞ

� lH � Qþ I
3

� �
� l Qþ I

3

� �
�H

�=Q :
@F

@ð=QÞ þQ �H�H � Q;

ð7Þ

which includes the pressure P (ref. 46). The active contribution to the stress takes
the form Pact¼ � zQ (ref. 47), such that any gradient in Q generates a flow field,
with strength determined by the activity coefficient, z.

The equations of active nematohydrodynamics (equations (1–3)) are solved
using a hybrid lattice Boltzmann and finite difference method48–50. We model
a two-dimensional velocity field and nematic director22. While the director field
can theoretically develop out-of-plane components, for active experiments and the

parameter values used in this study, it does not move out of plane. Discrete space
and time steps are chosen as unity and all quantities can be converted to physical
units in a material-dependent manner22,51,52. Simulations are performed with
the parameters A¼ 0, B¼ 0.3, C¼ � 0.3, G¼ 0.34, K¼ 0.04, l¼ 0.3, r¼ 1 and
m¼ 2/3, in lattice Boltzmann units. Parameter fitting of the continuum equations to
physical active systems remains a topic of research; therefore, we consider a generic
parameter set that has been shown to reproduce the active turbulent state observed
in bacteria and microtuble/motor protein suspensions10,22. With the largest
observed average speed and vortex size, these parameters indicate a small Reynolds
number RetO(10� 1). Additional details can be found in refs 48–50,53.

We use a channel with a height h¼ 25 and length L¼ 3,000. No-slip boundary
conditions are applied to channel walls and periodic boundary conditions are used
at the channel extremities. The results reported here are for strong homogeneous
boundary conditions for the director field on the channel walls. In addition, we
have performed simulations with homeotropic and weak anchoring boundary
conditions and find that the transitions described in the main text are independent
of the anchoring boundary conditions on the walls. To obtain sufficient statistics
for the turbulence fraction (Fig. 4a), several instances (5–10) of each set of
parameters with initially randomized fields are simulated. A warm-up of 3� 105

time steps is allowed to reach the stationary state. Above the critical point, this
produces sample sizes of \100 puffs.

Directed percolation model with spontaneous activation. To examine the
behaviour of the (1þ 1) directed percolation universality class, we utilized
a Domany–Kinzel cellular automaton54 and chose probabilities to correspond to
site-directed percolation. This stochastic model is a discrete system on a diagonal
square lattice of linear spatial size L with periodic boundary conditions. The state
s(i,t) of site i at time t can be inactive (or empty) with s(i,t)¼ 0, or the site can be
activated (or occupied) s(i,t)¼ 1 (ref. 35). In confined active nematic flows, the
inactive state corresponds to the vortex-lattice state, and the activated phase
corresponds to the active puffs of meso-scale turbulence. At time t, each site is
occupied with some probability P2 if both backward sites (at time t� 1)
are occupied, and with probability P1 if only one backward site is occupied.
Site-directed percolation is recovered with the choice P¼P1¼ P2 (ref. 55). When
the probability P reaches the critical probability Pc, the system transitions from the
absorbing phase of entirely inactive states to one in which the stationary density of
active sites is non-zero and this transition is known to belong to the directed
percolation universality class35.

Table 1 | Critical exponents for the transition to the meso-scale turbulence in a micro-channel.

Critical exponents b l? l||

Active turbulence at low Reynolds number 0.275±0.043 1.80±0.10 1.84±0.04
Couette experiments for inertial turbulence19 0.28±0.03 1.72±0.05 1.84±0.02
(1þ 1) directed percolation35 0.276 1.748 1.84

Comparison to experimental measurements of inertial turbulence in Couette flow19 and directed percolation exponents35.
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In the confined active nematic, we find a small but non-zero rate of puff
creation P0. Puff creation destroys the absorbing state, driving the system away
from criticality. However, directed percolation in the presence of spontaneous site
activation has been well studied, and it is known that the transition point is only
weakly dependent on P0 (ref. 36), that spontaneous site activation is equivalent to
a weak external field conjugated to the order parameter35, and that the stationary
universal scalings of the directed percolation universality class continue to be found
for sufficiently small spontaneous site activation (P0t10� 3)56.

Our directed percolation simulations employ periodic boundary conditions and
a lattice size of 104 sites in the spatial dimension to coincide with the lattice
Boltzmann system. Data are obtained from 103 runs of 5� 103 time steps each. We
consider P0¼ {0, 10� 9, 10� 8, 10� 7, 10� 6} and find the critical probability
Pc¼ 0.64470±0.00002 as expected (0.6447001(1) (refs 35,57)). We have found that
the rate of puff creation does not depend on the activity coefficient x. Thus, at least
near the critical point, there does not appear to be a suitable control parameter for
P0. From the lattice Boltzmann simulations, we find that the rate of puff formation
is (0.54±0.10)� 10� 7B10� 7, which is the value used in the main text. Although
Pc moves the system slightly away from the critical point, the directed percolation
scaling exponents are not observed to change and are known to be independent of
P0 in this weak field limit32. Measuring N? and N||, as for the lattice Boltzmann
simulations, supplies the critical exponents reported in the main text.

Calculating the turbulence fraction. The enstrophy field e(x, y, t)¼O �O is
calculated from the vorticity field O(x, y, t). The field is averaged across the channel
Eðx; tÞ¼ e x; y; tð Þh iy to create a 1þ 1 dimensional kymographical space-time signal.
As described in the main text, the channel-averaged enstrophy in the vortex-lattice
phase shows regular periodic oscillations, while local active turbulence domains
(the active puffs) exhibit fluctuating, noisy enstrophy signals (Fig. 5a). To produce
the visual traces of the active puffs (Fig. 3), the kymographs are Fourier trans-
formed in both time and space. The primary peaks are masked in reciprocal space-
time using Gaussian fits to produce the kymographs without the structured
oscillations of the periodic background of the vortex lattice (Fig. 5b).

To quantitatively determine the turbulence fraction, the total simulation time is
divided into n windows of size t, creating a L� n array of space-time intervals,
with each window i ranging from ti� t to t(iþ 1)� t. Each of the temporal intervals is
analysed for periodicity using a discretized temporal autocorrelation function
ckðxÞ¼ðt� 1Þ� 1 Pt� k

j¼1 dEðx; itþ jÞ�dEðx; itþ jþ kÞ, where k runs from 0 to t,
dEðx; tÞ¼Eðx; tÞ��E, and �E is the enstrophy signal averaged over the interval. While
aperiodic signals decay to zero, oscillating functions possess periodic peaks. An
interval is defined to be periodic if the peak amplitude exceeds a threshold value set
by the 95 per cent confidence interval for a normal distribution with standard
deviation t� 1/2. The time interval t is chosen between three to five full oscillations
of the vortex lattice, which is long enough to detect periodicity but minimizes the
number of intervals containing both periodic and aperiodic regions. To reduce the
possibility of false-positives, we recognize that the vortex unit cells have a finite size
and duration. We filter the L� n kymograph of periodic/aperiodic windows,
demanding that each periodic interval must possess at least one neighbouring
periodic interval in time or space; otherwise, it is rejected.

The spatial interval distribution N? of the inactive state (the vortex lattice) is
measured from the processed kymographs by recording the length intervals
between active puff regions for fixed temporal coordinates. Similarly, the time
interval distribution N|| between puffs is found by recording the temporal duration
of the regions for fixed spatial coordinates. At short spatial intervals L, N? exhibits

oscillations, which represent the characteristic size of the repeating vortex-lattice
state.

Assessing finite-size effects. To test whether the critical exponents are affected
by finite-size effects and physical parameters, we measure the critical exponents for
various smaller lengths of the channel than those used in the main text, as well as
increased nematic elasticity (Fig. 6). Within the uncertainty of the measurements,
the stationary exponent b and the temporal correlations exponent m|| are
independent of these parameters.

Stability of the vortex lattice. To probe the stability of the vortex lattice, the flow
is subjected to instantaneous pulses at different times and locations along the
channel. Even near the transition point, the perturbation to the mean enstrophy
signal rapidly decays and the vortex lattice is not destroyed. The pulses only
instantaneously shift the vortex-lattice configuration in space, and are not observed
to grow into chaotic regions (active turbulence). Moreover, Fourier analysis of the
perturbed enstrophy fields only exhibits the well-defined peaks associated with the
vortex lattice and does not reveal growing modes that might indicate linear
instability (below, at or above the critical point).

Data availability. Source data and simulation materials are available from the
authors upon request.
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