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5 LaMS - Modeling and Simulation Lab, Università Roma Tre, Roma, Italy, 6 Dipartimento di Ingegneria strutturale e Geotecnica, Sapienza-Università di Roma, Roma, Italy,
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Abstract

The aim of this study is to investigate human left ventricular heart morphological changes in time among 17 healthy
subjects. Preliminarily, 2 patients with volumetric overload due to aortic insufficiency were added to our analyses. We
propose a special strategy to compare the shape, orientation and size of cardiac cycle’s morphological trajectories in time.
We used 3D data obtained by Speckle Tracking Echocardiography in order to detect semi-automated and homologous
landmarks clouds as proxies of left ventricular heart morphology. An extended Geometric Morphometrics toolkit in order to
distinguish between intra- and inter-individual shape variations was used. Shape of trajectories with inter-individual
variation were compared under the assumption that trajectories attributes, estimated at electrophysiologically homologous
times are expressions of left ventricular heart function. We found that shape analysis as commonly applied in Geometric
Morphometrics studies fails in identifying a proper morpho-space to compare the shape of morphological trajectories in
time. To overcome this problem, we performed a special type of Riemannian Parallel Transport, called ‘‘linear shift’’. Whereas
the two patients with aortic insufficiency were not differentiated in the static shape analysis from the healthy subjects, they
set apart significantly in the analyses of motion trajectory’s shape and orientation. We found that in healthy subjects, the
variations due to inter-individual morphological differences were not related to shape and orientation of morphological
trajectories. Principal Component Analysis showed that volumetric contraction, torsion and twist are differently distributed
on different axes. Moreover, global shape change appeared to be more correlated with endocardial shape change than with
the epicardial one. Finally, the total shape variation occurring among different subjects was significantly larger than that
observable across properly defined morphological trajectories.
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Introduction

Motion and function of the heart left ventricle (LV) in humans

are investigated using modern shape analysis by means of

Geometric Morphometrics (GM), a gold standard over the last

two decades in biology, evolutionary biology and biomedical

sciences [1–3]. GM was also used in a great variety of medical

fields such as neurosciences [4], orthopaedics [5] and orthodontics

[6], among others. There has been much interest in the cardiology

domain, although only point digitization and configuration

registration were adopted for statistical shape analysis of LV

motion [7,8], while neither Generalized Procrustes Analysis

(GPA), nor Principal Component Analysis (PCA) [9] were applied

to LV motion trajectories themselves. Yang et al. [7] adopted an

automated shape identification of LV morphology, but they did

not compare trajectories’ shape. More recently, Roohi and Zoorofi

[8] used automated landmark registration from Magnetic Reso-

nance Imaging, followed by GPA and Kernel PCA in order to

perform a 4-Dimensional (4D) statistical analysis of motion

trajectories. However, the contribution of rotation to morpholog-

ical LV changes was not quantified, nor were trajectories’ shape

variations themselves evaluated when related to inter-individual

differences.

Cardiac revolution represents an archetypal example of a 4D

motion trajectory as the 3D shape of the heart changes over time

during its beating: shape analysis applied to the beating heart may

thus reflect important physiological aspects, and the assessment of

LV shape changes could be a new step in clinical cardiology to

ease early diagnosis and treatment. However, in order to obtain

pertinent information, two distinct operations are needed: a) to

identify an appropriate morpho-space for studying shape over

time; b) to compare functionally homologous heart shapes at

electrophysiologically homologous time frames. It is what we did

in the present investigation, whereby LV shapes during motion in

healthy subjects were captured using 3-Dimensional Speckle

Tracking Echocardiography (3D-STE) [10,11], with post-process-

ing to apply modern statistical tools of shape analysis. Our key idea

was that of studying motion trajectories along the cardiac cycle
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using GPA and PCA in order to quantify motions, both intra- and

inter-individuals, using time as fourth parameter. In clinical,

motion is investigated by visual inspection, function is computed

by biplane Simpson’s formula for ejection fraction, and shape is

hardly considered. As a result, shape analysis in cardiology

remains confined to research: and GM was never used. One of the

latest methodological contributions to this field using 3D

echocardiography include what presented by Maffessanti et al.

[12]. Here we considered shape and orientation of motion

trajectories as representatives of LV function. The null hypothesis

tested was that in healthy subjects shape and orientation are

uncorrelated with inter-individual variability when contrasted in

an appropriate empirical morpho-space. In addition, the contri-

butions of rotation, twist and torsion were correlated with the main

deformation parameters found by PCA. Finally, the roles of

endocardium versus epicardium were quantified relative to the

whole shape change, based on the assumption that action potential

durations are larger in the epicardium as compared to the

endocardium and so might be contractility [11,13]. For prelim-

inary comparison, and in order to sustain the potential applica-

bility of these methods, we selected two patients with volume

overload due to aortic insufficiency.

Materials and Methods

Subjects and Ethic Statement
The study was conducted after approval of the ‘‘Dipartimento

di Scienze Cardiovascolari, Respiratorie, Nefrologiche, Anestesio-

logiche e Geriatriche, Sapienza-Università di Roma’’ review

board, and was performed in accordance with the ethical

guidelines of the Declaration of Helsinki. Written informed

consent was obtained from each subject. From April 2012 to

October 2013, a total of 19 subjects were enrolled. For 17 healthy

subjects we assessed, basing on an accurate cardiological visit, the

absence of any type of known cardiopathy. Two subjects with

manifest aortic insufficiency were added to this dataset in order to

map their placement in comparison to healthy subjects. Table 1

reports descriptive parameters for the sample used in this study.

The entire dataset is available in Appendix S1.

3D Data Acquisition
We collected shape data by means of 3D-STE (PST–25SX

Artida, Toshiba Medical Systems Corp., Tokyo, Japan) as in

Evangelista et al [11]. 3D-STE is an application of pattern-

matching technology to ultrasound cine data and is based on the

tracking of ‘speckles’ in a 3D volume, which are disturbances in

ultrasounds caused by reflections in the ultrasound beam: each

structure in the body has a unique speckle pattern that moves with

the tissue (Fig. 1). The same operator (AE) acquired all data used

for this study in order to eliminate inter-observer data variation.

A cubic template image is created using a local myocardial

region in the initial frame of the image data; in the next frame, the

algorithm identifies the local speckle pattern that most closely

matches the template [14]. Our 3D-STE system uses a pyramidal

volume from 1 MHz to 4 MHz phased-array matrix transducer;

acquisition of a full volume dataset requires 4 smaller wedge-

shaped sub volumes from 4 consecutive cardiac cycles that are

combined to provide the larger pyramidal volume. Data are

acquired from one apical position during breath hold, using 4 sub-

volumes of 90u622.5u, which results in a 90u690u triggered full

volume in 4 heart cycles.

The final LV geometry is reconstructed by starting from a set of

6 homologous landmarks (Fig. 1a), manually detected by the

operator for all subjects under study. The manual detection for a

given set of landmarks is crucial because it allows recording spatial

coordinates in perfectly comparable anatomical structures of

Table 1. Physiological parameters for the subjects analyzed in this study.

Code
subject Age

H: Healthy; P: Pathological
(aortic insufficiency) Sex

Heart rate
(b/min)

Ejection
fraction ()

End-systolic
volume (ml)

End-diastolic
volume (ml)

1 29 H M 69 59 39.73 96.47

2 31 H M 59 56 47.93 109.92

3 27 H M 81 64 39.78 110.7

4 29 H M 72 54 57.49 125.95

5 50 H M 70 58 37.29 88.96

6 35 H M 65 58 38.13 91.33

7 39 H M 65 53 55.59 117.73

8 53 H F 69 58 42.1 99.81

9 34 H F 87 66 26.77 79.18

10 31 H F 69 61 47.1 120.08

11 15 H F 110 53 22.55 47.88

12 58 H F 95 57 39.35 90.87

13 31 H F 73 68 24.72 77.33

14 50 H F 67 53 50.01 105.53

15 30 H F 73 63 41.47 112.75

16 25 H F 84 60 28.7 72.88

17 71 P M 86 28 143.16 199.01

18 28 H M 64 55 49.04 109.69

19 68 P F 66 59 57.22 137.96

doi:10.1371/journal.pone.0086896.t001

Left Ventricular 4D Shape Analysis
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different subjects (following a homology principle). In fact,

completely automated approaches suffer from error of pattern

identification depending on specific algorithms used for recon-

struction. Similar but not identical approaches can be found in

Sugeng et al. [15], Kuhl et al. [16], Zheng et al. [17]; Yang et al.

[7].

Having a spatial resolution of about 2.5 mm, and a time

resolution of about 50 ms, it is possible to acquire the position of

thousands of points in a single frame, and to track their motion in

the subsequent frames during the beating. The results of our 3D-

STE system is a time-sequence of shapes, each constituted by 1297

landmarks-assumed to be homologous-for both the epicardial and

endocardial surfaces, positioned along 36 horizontal circles, each

comprised of 36 landmarks, plus the apex (Fig. 2a). It was possible

to obtain the landmark cloud (upon which the standard rotational,

torsional and strain parameters are computed and outputted by

each Artida machine) by an unlocked version of the software

equipping our PST–25SX Artida device, thanks to a special

opportunity provided in the context of an official research and

development agreement between the Dipartimento di Scienze

Cardiovascolari, Respiratorie, Nefrologiche Anestesiologiche e

Geriatriche, ‘‘Sapienza’’ Università di Roma and Toshiba Medical

System Europe, Zoetermeer, The Netherland.

We note that when the LV shape is acquired, 16 segments are

also automatically identified, according to the American Heart

Association standards for myocardial segmentation (Fig. 2b)

[18,19]; in particular, we have: 6 basal segments (basal anterior

(BA), basal antero-septum (BAS), basal infero-septum (BS), basal

inferior (BI), basal posterior (BP), basal lateral (BL)); 6 middle

segments (middle anterior (MA), middle antero-septum (MAS),

middle infero-septum (MS), middle inferior (MI), middle posterior

(MP), middle lateral (ML)); 4 apical segments (apical anterior (AA),

apical septal (AS), apical inferior (AI), apical lateral (AL)).

By knowing the position of thousands of landmarks at different

times, it is then possible to quantify wall displacements and to

measure global and regional strains, which is, strains relative to

Figure 1. 3D Speckle Tracking Ecocardiography (3D-STE). a) manual identification of homologous planes and landmarks on the
echocardiographic image; b) subsequent automatic generation of a series of semi-automated landmarks on the endo- and epicardium; color map
shows the amount of Twist in different cross sections of the LV as computed by postprocessing the position data of all landmarks.
doi:10.1371/journal.pone.0086896.g001

Figure 2. Cloud of landmarks at end diastolic frame as acquired by 3D-STE. a) In red the epicardium, in black the endocardium; two median
parallels (cyan circles) and two meridians (yellow) on both the epicardium and the endocardium, are depicted to help visualization. b) Colors identify
the 16 myocardial regions (6 basal +6 median +4 apical) according to the American Society of Echocardiography recommendations [17,18].
doi:10.1371/journal.pone.0086896.g002
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Figure 3. Pictorial view of the Parallel Transport of tangent spaces. Our procedure is aimed at comparing motion trajectories’ shapes once
removed the effect of inter-individual differences. In this picture it is shown the parallel transport of two different euclidean planes on the tangent
plane of the Grand Mean. See Figure 4 to test the eligibility of a common euclidean plane.
doi:10.1371/journal.pone.0086896.g003

Figure 4. The test for the assumption of eligibility of Euclidean tangent plane. a) all reciprocal pairs of Riemannian Procrustes distances of
the entire datasets (341 shapes for 19 individuals) plotted against the corresponding Euclidean Distances. Largest possible Procrustes d = 1.570796.
Regression through the origin for distance in tangent space, Y, regressed onto Procrustes distance (in radians). Slope: 0.998 Correlation (uncentered):
1.00 root MS error: 0.000242. b) Riemannian distances from the consensus, i.e. the Grand Mean, are plotted against the Euclidean ones. Y, regressed
onto Procrustes distance (in radians). Slope: 0.998 Correlation (uncentered): 0.999; root MS error: 0.000020.
doi:10.1371/journal.pone.0086896.g004
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specific sections; in particular, the rotation, twist and torsion of the

LV. In our study, these latter three parameters were correlated

with the shape change of the LV (see below) during motion.

Geometric Morphometrics and Procrustes Motion
Analysis

Recently, GPA was adapted to the study of motion, the so-called

Procrustes Motion Analysis [20]. This approach is basically the

multiple alignment of shapes ordered in a temporal sequence.

Successive implementation of this strategy led to methods suited

for studying phenotypic trajectories in evolutionary biology [9,21].

Adams and Collyer [9] pointed out that a ‘‘trajectory’’ has itself a

shape, a direction and a size, quantified as the sum of phenotypic

distances among an ordered sequence of shapes along a trajectory.

The data set for the ith subject comprises a sequence of ni LV

shapes, denoted with Sij, with i = 1,…11, j = 1,…,ni, and a times

sequence tsi = {t1, …, tni}; thus, Sij, denotes the LV shape of

subject i at time tj, and the set {Si1, … Sini} is the motion trajectory

of the LV of subject ith during an entire heart cycle. LV shapes

were acquired at almost constant time interval (approximately

50 ms) for all subjects used in the study, and depending on the

individuals’ beat-rate, the number of frames ni used to sample a

cycle depends on subject ith.

We aligned all Sij by using GPA [22–25]. This approach

eliminates differences among shapes due to position, scale and

Figure 5. The rationale behind the interpolation of PC values as a function of time for studying the shape of trajectories
themselves. Figure shows a sequence of acquisition times t*si (small black dots) and the corresponding sequence of homologous times hti, (large
red dots), superimposed on the time course of the PC1. The same was done for PC2 and PC3 (not shown here). We used three electric (R, T, and Q
peaks) and three mechanical events (end systolic volume, mitral valve opening and volume plateau); we additionally estimated three median points
between 1–2, 4–5 and 5–6 for a better rendering of the actual PC shape. Landmarks nomenclature follows that given in the text. We performed this
interpolation for the first three PC scores.
doi:10.1371/journal.pone.0086896.g005
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rotation, thus returning coordinates representing the sole shape

differences (called Procrustes Coordinates). Then, to explore shape

differences among trajectories, we used PCA, as usual in

Geometric Morphometrics studies, to find the axes of maximal

variation.

Assessment of Inter-individual Variability
Our first analysis regarded the quantification of inter-individual

variability irrespective of the intra-individual variation along the

LV cycle. To do that, we performed a GPA on the set Si1, i.e. the

initial time frame of all our subjects. This time frame is

electrophysiologically homologous and corresponds to the R peak

of the electrocardiogram. We then performed a PCA on these

aligned data, and we used the first ten Principal Component scores

(PC scores), explaining about the 95% of total variance, as a proxy

of inter-individual variability to be compared with the attributes of

LV trajectories.

Strategies for Comparing Motion Trajectories
It is worth noting that LV undergoes very large morphological

changes during the cardiac cycle, due to the soft structure of the

LV walls, and exhibits localized deformations too, that involve

different non-homologous landmarks. Moreover, common GPA

and PCA suffer for mixing intra- and inter- cycle shape differences.

In fact, under a common landmarks alignment, the aforemen-

tioned differences certainly affect the grand mean shape, thus

leading to an estimation of the shape of the trajectories that does

not account for the actual variation due to intra-individual cycle;

in fact, the total variation should account concomitantly for the

intra- and inter-cycle shape change. We note that PCA applied to

high dimensional Procrustes Coordinates of real data can be

thought of as the search of linear deformation parameters that

account for the largest shape variation in the data set.

Depending on the sign of these parameters, and on the ordinal

position of landmarks affected by them, different trajectories could

represent a shape change characterized by very different shapes.

However, the shapes of the trajectories themselves could be the

same independently from the parameter sign affecting each

trajectory. In this situation, a common GPA and PCA fails in

setting up the appropriate empirical morpho-space for comparing

the shape of the trajectories; even performing separate GPAs and

PCAs for each subject, would produce not comparable PC scores

as they would be associated to shape changes emerging from

different empirical morpho-spaces.

Here, we followed a novel strategy in approaching GM studies:

basing on Kume et al. [26], and Huckeman [27], we performed

an approximated parallel transport of Sij, projected on the

Euclidean tangent space from the Riemannian manifold after a

common GPA. To sketch this procedure we recall that, once

aligned by eliminating translation, scaling and rotation, all the ni

shapes Sij of the subject ith can be represented as points of a

Riemannian manifold named Kendall’s shape space [3,28,29].

This space is not flat (Euclidean), neither homogeneous, being

characterized in each point by a non-vanishing and non-uniform

Riemann Curvature field. Anyway, every differentiable manifold

can be locally approximated by its tangent space. In particular,

given a shape S, we can consider a small shape variation, and

approximate this variation with a tangent vector belonging to the

tangent space at S. Thus, given a trajectory exploring a

neighbourhood of the shape space at S, we can assume this

trajectory to be well approximated in the tangent space at S. Being

the tangent space, by definition, a linear space, the PCA on a

trajectory lying on the tangent space is perfectly meaningful. On

the other hand, trajectories of different subjects could be correctly

Figure 6. The effect of interpolation. a) a PC1/PC2 scatterplot for
one motion trajectory is illustrated, b) the corresponding shape change
is plotted on the PC1/PC2 scatterplot, c) basing on the interpolation
procedure described in Fig. 4, all interpolated trajectories are depicted
here.
doi:10.1371/journal.pone.0086896.g006
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considered as lying on different tangent spaces. In particular, for

any subject i, we consider the mean shape Smi of its trajectory

{Si1, … Sini}, and project the trajectory on the tangent space at

Smi. To compare trajectories of different subjects, we need a tool

allowing comparison between vectors lying on different tangent

spaces. In differential geometry this tool is called parallel transport.

In particular, in Riemannian manifolds there is a natural parallel

transport based on the Levi-Civita connection. An explicit formula

for the parallel transport in the Kendal Shape Space can be found

in Le [30], Kume et al. [26], Huckeman [27], but only for 2D

shapes; for 3D shapes, the problem cannot be easily solved due to

the inhomogeneity of the shape space. Nonetheless, when the

mean shapes Smi of all subjects are not very different from each

other, it is possible to approximate the parallel transport with a

simple Euclidean translation, called linear shift, by considering the

immersion of the shape space in a multidimensional Euclidean

space. However, this procedure has the particular assumption that

shapes should not be very far from each other in the Riemannian

space. This assumption can be easily tested. We plotted the Full

(Riemannian) Procrustes distances from consensus after a common

GPA against Partial (Euclidean) Procrustes distances from the

same analysis. If the two distances lie on a straight line, the

Euclidean metrics can be used. Fig. 3 shows the results of this

analysis.

Thus, after a common GPA, we subtracted to any motion

trajectory its proper consensus (local mean) and we added the

global grand mean computed during the common GPA; in this

way, all Sij are transported towards the grand mean (Fig. 4).

At this point, we performed a common PCA. We specify here

that after the computation of local means all configurations (actual

data plus their local means) were re-aligned by a new GPA in

order to filter out any residual (even minimal) rotation. This was

achieved using the R function lshift() available in Appendix S2.

This allows visualizing the shapes of the trajectories cleaned up by

the inter-individual variation. Moreover, the PC scores so

calculated represent common deformation parameters that are

not influenced from the differences among parameters within

individual subjects.

Electromechanical Homologies and Trajectories
Attributes

As we want not only to compare LV shape changes, but also the

shape changes of the trajectories themselves, we adopted a specific

strategy to achieve this objective. First, we use the first three PC

scores to sample the shape of each trajectory; thus, the trajectory of

each subject is constituted by a time sequence of points in a 3D

space, points which are treated as true landmarks. As we need

homologous landmarks to compare different shapes, so we also

Figure 7. Inter-individual variability at R peak of the electrocardiogram. PC 1 and PC 2 are shown.
doi:10.1371/journal.pone.0086896.g007
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need homologous ‘‘points’’ for comparing the shape of trajectories.

We need to deal with two kinds of problems: i), each trajectory is

constituted by a different number of ‘‘landmarks’’ because any

subject has a different number of frames ni registered during a

single heart cycle; ii) we need to assess the ‘‘homology’’ of each

point, i.e., of the values of the first three PC scores.

As anatomical homology is essential when comparing shapes, so

it is temporal homology when comparing shapes along a motion.

Figure 8. PCA performed after a common GPA without the Parallel Transport, a) PC1/PC2 scatterplot, b) PC1/PC3 scatterplot. The
complete (non interpolated trajectories) are shown here. The PC scores shown here should account concomitantly for both intra- and inter-individual
variability and are not the best representation for the study of trajectories’ shapes.
doi:10.1371/journal.pone.0086896.g008
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From visual inspection of the electrocardiogram and echocardio-

graphic videos associated to each 3D-STE registration, we selected

three electrical events (onset of R, end of T, and Q min waves) and

three mechanical ones (end systolic volume, mitral-valve opening,

end of rapid filling/beginning of diastasis) to obtain a sequence of

electrophysiologically homologous times for each subject i: {t*1,

t*2, t*3, t*4, t*5, t*6}i, with t*1 = R peak; t*2 = end of T wave;

t*3 = end systolic volume; t*4 = mitral-valve opening; t*5 = end of

rapid filling/beginning of diastasis; t*6 = Q min. We specify here

that the end-systolic volume time has been considered as

coincident with that provided by the machine. Thus, LV shape

at this time coincides with that estimated by the machine at that

time. Given a temporal resolution of 50 ms it implies that the error

is 625 ms. This approximation is the same accepted by every

experimental study published till now worldwide, using a 3D STE.

Figure 9. PCA shape space for the 11 interpolated trajectories after the linear shift. a) PC1/PC2 scatterplot, b) PC1/PC3 scatterplot.
doi:10.1371/journal.pone.0086896.g009
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Additionally, for a better interpolation of the actual PC scores

over time, we added three median points to the above-mentioned

sequence: thk = median point between t*h and t*k. Thus, the final

sequence of homologous times for subject ith comprises 9 times:

hti = {t*1, t12, t*2, t*3, t*4, t45, t*5, t56, t*6}. We then predict the

values of first three PC scores at these homologous time frames,

and we use them as homologous landmarks to compare the shape

of the trajectories. We performed the prediction by using a cubic

spline interpolation (using spline() function in R package ‘‘stats’’) on

the relationships between time (in ms, as independent) and values

of the PC scores (as dependent), separately for each subject, using

the PC scores calculated after the GPA and PCA, following the

linear shift strategy explained above. We specify here, that in some

Figure 10. Details of shape changes associated with PCs.
doi:10.1371/journal.pone.0086896.g010
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Figure 11. GPA performed on trajectories shapes using the PC values interpolated as explained above and treated as homologous
landmarks. Median points were excluded during Procrustes Distance minimization process and were passively appended to transformations

Left Ventricular 4D Shape Analysis
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cases the homologous times are very close to the times at which the

machine acquires the data.

Although the 3D frame rate has a lower resolution as compared

to a 2D acquisition rate (,50 ms vs. ,20 ms, respectively), just by

chance some of our homologous times could coincide with the

actual acquisition by the machine and those who may not be

coincident might have a 25 ms maximum error, which in any case

is a very tiny difference as compared to the global systolic duration

(,450 ms). As for the end-systolic volume, we assume (as stated

before) that the machine acquisition represents the true value.

We use the PC scores interpolated at homologous time frames

in a GPA followed by a PCA in order to evaluate the shape, size

and orientation of trajectories themselves as done in Adams and

Collyer [9], and Collyer and Adams [21]. Median points cited

above were excluded during Procrustes Distance minimization

process and were passively appended to transformations (transla-

tion, scaling and rotation) applied to PC values estimated at the t*n

electromechanical moments. This strategy allows to compare

relatively complete shapes of trajectories without adding noise due

to non perfectly homologous physiologically-based event estima-

tion. Fig. 5 and 6 summarize in detail the complete procedure we

described here.

For size of trajectories we computed the sum of phenotypic

distances between any point interpolated for each trajectory, while

for orientation we choose the angles between PC1–PC2 (as

recommended in [21]) using the PC scores values interpolated at

the first and fourth times in hti, that correspond to R-peak and

end-systolic volume, respectively.

The Inclusion of the Two Pathological Subjects
The inclusion of the two patients with aortic insufficiency aimed

at presenting a preliminary approach in order to shed light on the

promise of the methods we present here for future studies

involving balanced samples of healthy and pathological individ-

uals. Eventually, we performed an outlier test based on ordered

squared robust Mahalanobis distances (using aq.plot() function in

the R package ‘‘mvoutlier’’, by Filzmoser and Gschwandtner [31]

for these two individuals along the distributions of the first two PC

scores of inter-individual variability and on the trajectory shape

analyses and on the corresponding PC1–PC2 angle. Thus, we

analyzed both the entire dataset including healthy subjects and the

two patients with aortic insufficiency and a reduced dataset of

healthy subjects only. Figures always bear the two patients with

aortic insufficiency, while all the linear models described below

and statistical tests were performed based on the healthy subjects

sample separately analyzed via the linear shift procedure described

above (and not just sub-setted from the entire dataset analysis).

Linear Models
As first, we performed a regression analysis between initial

variability (first ten PC scores, explaining about 95% of total

variance) and age or ejection fraction and between trajectories

shape (first ten PC scores, explaining about 95% of total variance)

and age or ejection fraction.

Then, before analyzing trajectory attributes, we focused our

attention on the shape changes of LV and on the relationship

between epicardium and endocardium. First, we correlated the

per-subject mean centered rotation, twist and torsion parameters

with the first three PCs extracted on the GM analysis performed

on the whole shape. This allows to evaluate the mechanical

meaning of each PC in the context of their empirical morpho-

space. Second, we tested the hypothesis that the endocardium and

epicardium show different behaviours during contraction. We then

evaluated how the whole shape change is correlated with that of

the epi- and endocardium. This is called ‘‘part-whole’’ analysis

[32] and it is aimed at identifying which module is more associated

to global shape change. We achieve this by calculating the RV

Escoufier coefficient, that represents the covariation between two

matrices [33,34]; this metric is often used in evolutionary biology

as a measure of morphological integration between two structures

[35].

According to Klingenberg [34], given two matrices x1 and x2,

the two sets of variables can be organized in the random vectors x1

and x2, consisting of p and q variables, and can be written as a

combined random vector x = (x1, x2) of length p+q. This

combined vector of variables defines a covariance matrix that is

patterned as follows:

A ~
A1 A12

A21 A2

� �

The diagonal blocks A1 and A2 correspond to the covariance

matrices of the two sets of variables each on its own, whereas the

(translation, scaling and rotation) estimated using PC values estimated only at the homologous electromechanical moments. This strategy allows to
compare relatively complete estimated shapes without adding noise due to non perfectly homologous physiologically-based event estimation. a)
Aligned PC values-based shapes; only first two PCs are showed here, while the actual alignment was performed using first three PCs, b) the shapes of
trajectories in the PCA shape space. This PCA is performed on aligned values of first three PCs extracted from the actual LV shape analysis.
doi:10.1371/journal.pone.0086896.g011

Table 2. Linear models involving Epicardium and Endocardium shapes as dependents and descriptive parameters as
independents for healthy subjects.

Epicardium Endocardium

Global volume Adj. R2: 0.24; p-value: 0.001 Adj. R2: 0.53; p-value: 0.001

Endocardial volume Adj. R2: 0.22; p-value: 0.001 Adj. R2: 0.48; p-value: 0.002

Epicardial volume Adj. R2: 0.23; p-value: 0.001 Adj. R2: 0.48; p-value: 0.001

Global Rotation Adj. R2: 0.14; p-value: 0.001 Adj. R2: 0.32; p-value: 0.001

Global Twist Adj. R2: 0.12; p-value: 0.001 Adj. R2: 0.28; p-value: 0.001

Adjusted R2 and p-values are reported. In bold significant results.
doi:10.1371/journal.pone.0086896.t002
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off-diagonal block A12 is the matrix of covariances between the

variables of the two sets (the matrix A21 is the transpose of A12).

The explicit formula of RV coefficient is:

RV ~ trace A12A21ð Þ=(sqrt trace A1A1ð Þtrace A2A2ð Þð Þ

.

Following Klingenberg [34], the RV coefficient can be

interpreted as an extension of the expression for the squared

correlation coefficient between two variables. The term trace(A12

A21) in the numerator is the sum of the squared covariances

between the two sets of variables. Similarly, the terms trace(A1 A1)

and trace(A2 A2) in the denominator can be interpreted as

measures of the total amounts of variation in the two sets of

variables. The entire expression therefore represents the amount of

covariation scaled by the amounts of variation within the two sets

of variables, which is analogous to the calculation of the

correlation coefficient between two variables. However, the RV

coefficient uses squared measures of variances and covariances,

and is therefore more directly comparable to a squared correlation

coefficient. We calculated the RV coefficient between the global

configuration (thus including both epicardium and endocardium)

vs. epicardium and endocardium separately aligned using the

linear shift strategy explained above.

Successively, we performed linear models between epicardium

and endocardium (separately, as dependents) and the per-group

mean centered global, epicardial and endocardial volume, global

rotation and global twist (separately, as independent parameters).

This allows to assess which submodule (among endocardium and

epicardium) is associated the most with these morphological

descriptors.

We assume that the function of LV motion is represented by the

attributes of its trajectory (shape, size and orientation). We tested

the hypothesis that in healthy subjects the function is not

influenced by the initial inter-individual variability. We then

regressed the three trajectories attributes described above (shape,

size and orientation) on the first ten PC scores of the initial

variability analysis. We performed these analyses by means of a

permutation-based non parametric approach using adonis() and

rda() functions of the R package ‘‘vegan’’ [36]; the trajectories

attributes were treated as dependent table, while the inter-

individual variability as the independent one.

We also tested the hypothesis that the variation due to inter-

individual variability is significantly larger than that due to LV

function. We then performed a morpho-space occupation analysis

by contrasting the total variation of a common GPA and PCA

with that following the linear shift strategy described above aimed

at eliminating the inter-individual variation. We performed this

analysis using the function betadisper() of the R package ‘‘vegan’’.

Results

LV Shape Change
Regression analyses between initial variability, age and ejection

fraction were not significant as well as those involving trajectories

shape. Fig. 7 shows the variability due to inter-individual

differences at R peak of the electrocardiogram. PCA shows that

a great variability exists among subjects, and the shape of LV

varies from elongated (at low PC1 values) to particularly massive

(at high PC1 values) or from visibly bended (at high PC2 values) to

relatively dorsoventrally straight (at low PC2 values). The two

patients with aortic insufficiency are placed at negative values of

PC2 but they are not visibly separated from healthy subjects. All

individuals are hugely scattered thus showing an extreme

morphological variation and the ordered squared robust Maha-

lanobis distances do not recognize any outlier. Thus, ‘‘static

shape’’ analysis does not discriminate healthy subjects from the

pathological ones. The analysis involving only healthy subjects

(scatterplot not shown) is identical to that shown in Fig. 7 except

for the presence of pathological individuals.

Fig. 8 shows the results of a simple common GPA followed by a

common PCA on the entire data set thus including intra-cycle

variability. As it can be seen, the trajectories appear deformed in

the PCA space as these PCs must account concomitantly for both

intra- and inter-individual variation. This morpho-space is not

the best choice to evaluate the trajectories attributes (shape,

orientation and size), nor the shape change associated to them.

By applying the linear shift strategy, the trajectories appear

much more uniformly distributed in the PCA space (Fig. 9). PC1

has basically an allometric meaning as it is highly correlated

with volume change during the cardiac revolution (correlation

Figure 12. Angle of trajectories depicted in Fig. 9. PC1/PC2 angle:
vectors are calculated by considering points 1 and 4 in Fig. 4 that
represent the extremes frames in terms of volume change during the
heart cycle. They are computed on the non aligned trajectories, as GPA
on trajectories is suited just for shapes of trajectories, while size and
orientation are evaluated before their alignment.
doi:10.1371/journal.pone.0086896.g012

Table 3. Linear models involving trajectories attributes of
healthy subjects.

Dependent table Independent table Adj. R2 p-value

Trajectories shape inter-individual varibility 0.26 0.107

Trajectories angle
PC1-PC2

inter- individual varibility 0.11 0.427

Trajectories size inter- individual varibility 0.64 0.06

Trajectories size volumetric endocardial
excursion

0.11 0.11

inter- individual
variability

volumetric endocardial
excursion

0.14 0.06

Adjusted R2 and p-values are reported.
doi:10.1371/journal.pone.0086896.t003
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coefficient: 20.77; spearman rank test p-value: 2.2216). Converse-

ly, PC2 and PC3 are not significantly correlated with volume

change. The deformation associated to PC1 reflects basically the

contraction (namely the change from end-diastolic to end-systolic

volumes), while that associated with PC2 explains a shearing

pattern. PC3 is associated with a rotation and torsion in some

particular segments (see linear model results). These shape changes

are illustrated in more detail in Fig. 10. The online Supporting

Information contains three animated GIF figures, Figs. S1, S2, S3,

showing the shape change associated to the first three PCs,

respectively, during the LV motion. by using three different points

of view.

LV Trajectories Attributes and Linear Models
Fig. 11 shows the shape analysis on trajectories after the

interpolation procedure explained above on the first three PC

scores of transported data. Here the two pathological individuals

are clearly separated from the healthy ones on both PC1 and PC2,

i.e. the dominant dimensions of trajectories shape analysis. This is

particular promising for future studies involving larger samples of

pathological individuals. The same analysis performed without

pathological individuals behave consistently for healthy subjects.

Four healthy subjects place at the extremes of PC1 or PC2 but the

other 13 are highly clustered together. We note that ordered

squared robust Mahalanobis distances test recognizes the patients

with aortic insufficiency as significant outliers (p-value,0.005) on

the negative side of both PC1 and PC2.

The trajectory shape is rounded at high PC1 values while it

becomes flat at negative (toward aortic insufficiency) ones. This

shape change is mainly due to differences in positions of

‘‘landmarks’’ 3,4,5 and 6, i.e. the values of morphological PCs

interpolated at 3th,4th, 5th and 6th homologous time frames that are

those involving the end-systolic volume, mitral valve opening and

the onset of diastasis. The placement of pathological individuals at

the negative extremes of PC1 (that corresponds to the end-diastolic

phase) agrees with the notion of LV volumetric overload that

characterizes this particular pathology.

Table S1 reports the results of correlation analyses between per-

subject mean centered 3D-STE descriptive variables and first

three PCs. As expected, PC1 is more related with 65 parameters

(out of 68) than the other two PCs. PC2, interestingly, is not more

correlated with any of the 68 parameters in comparison to PC1 or

PC3. PC3, instead is more related to the 3 parameters indicating

local rotation and torsion.

We found that the endocardium shape change is more

associated with global shape change (RV = 0.98; p-value: 0.0009)

than epicardium (RV = 0.87; p-value: 0.0009). Table 2 shows

differential association of endocardium and epicardium with some

global descriptive parameters. Endocardium is more associated

than epicardium with epicardial, endocardial or global volume, as

well as with global rotation, and global twist parameters.

Fig. 12 shows the centered vectors between first two PCs values

interpolated at the first and the fourth homologous time frames.

Orientation analysis, again, recognizes the two pathological

Figure 13. Results of morpho-space occupation analysis. In red the trajectories cleaned up from their inter-individual differences by means of
linear shift, in black the variation due to both intra and inter-individual variation. Only healthy individuals have been used for this figure. Including the
two pathological individuals lead to virtually indentical results.
doi:10.1371/journal.pone.0086896.g013
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individuals as outliers in comparison to the healthy subjects. This

can be easily appreciated in Fig. 12 where the patients with aortic

insufficiency are strongly shifted toward negative values.

The morpho-space constituted by the first ten PCs of

trajectories shape analysis has been used as proxy of trajectories

shape change. Table 3 shows the results of linear models: the

shape and orientation of trajectories are not related to inter-

individual variability in healthy subjects, thus suggesting a

constancy in LV function during motion.

Finally, Fig. 13 shows results of morpho-space occupation

analysis performed on healthy subjects spnly; when contrasted on

a common morpho-space, the variation due to inter-individual

variability (not shifted data) is significantly larger than that after

the linear shift (p-value,0.005).

Discussion

This is the first study presenting the computation of a trajectory-

based morpho-space by using 3D Geometric Morphometrics

applied to 3D-STE acquisition of the LV motion of healthy

subjects, in whom time is the fourth parameter contributing to 4D

analysis. We showed that the LV presents a high variability across

different subjects. Moreover, the patients with aortic insufficiency

do not separate from the other healthy subjects in the static shape

analysis (at R peak). But if the shape change is evaluated in its

fourth dimension, i.e. in time, they clearly set apart from the

functionally healthy subjects. This evidence is particular promising

and it is suggestive that our approach may potentially distinguish

motion paths that deviate from those of a healthy sample, also

representing a step forward when compared with the most recent

geometric assessment involving healthy subjects vs. patients with

cardiomyopathy [37].

It is particularly interesting to note, from Fig. 11 where LV

shapes changing in time constitute the landmarks of trajectories

shape, that whereas healthy subjects have rounded trajectories

with roughly equally distant landmarks, the shape of the trajectory

corresponding to the position of both patients with aortic

insufficiency has the third and the fourth landmarks very close

each other. The pathophysiological interpretation of this is that

diastolic overload, characteristic of aortic insufficiency, reduces the

shape change magnitude when moving from end-systolic shape

(landmark 3) to that at mitral valve opening (landmark 4). When

looking at Table 1 the ‘‘standard approach’’ would enable the

conclusion that only one patient (nu 17) has a severely depressed

LV function and an extremely large diastolic overload. On the

contrary, trajectory analysis places them together in the ordination

plot of Fig. 11. It is for further studies in much larger samples and

different pathologies to assess whether our approach might provide

initial insights also in incumbent pathologies.

We found also that, despite this great variation, the shape and

orientation of trajectories in healthy subjects are not related to

initial variability, as expected in healthy individuals. The linear

shift procedure highlighted the importance of building the correct

morpho-space if one wants to compare trajectories’ attributes. In

fact, Figs. 8 and 9 clearly show the differences between not shifted

and shifted data. Morphological changes associated with the first

three PCs clearly illustrate that PC1 has an allometric meaning

obviously linked to volume changes. PC1, besides volume, is

associated with the most descriptive parameters listed in Table S1.

However, it is important to note that some local changes, such as

rotation and torsion, are more correlated with PC3, as illustrated

in animated GIF (magnified 5 times) of Figs. S1, S2, S3. The

shearing parameter explained by PC2 is not captured by 3D-STE

parameters. Nevertheless, this shape change could have an

important role during LV morphological trajectory of which the

clinical usefulness or significance call for further studies in patients.

This investigation has several methodological strengths. First,

the application of the linear shift demonstrated that if one wants to

compare the shape of trajectories, the initial inter-individual

variability should be taken into account before performing a

common PCA. Second, the interpolation of PC scores at

homologous electromechanical time frames is crucial for the

estimation of phenotypic trajectories. In fact, applying GPA using

PC scores predicted at non homologous time frames could lead to

a strong distortion of trajectories’ shapes during their alignment.

Compared to previous studies, we go beyond the simple 3D

acquisition of LV morphology or even its tracking during cardiac

revolution [7,37]. In fact, we tried to understand not only how the

deformation linear parameters affect LV during its cycle, but also

if the function of LV represented by trajectories’ shape and

orientation remains constant across different healthy subjects that

shows very different shapes of LV itself. The trajectories were

investigated for the first time in cardiac oriented research as were

the physiological homological reference time frames whereby the

PCs were obtained. In addition, the preliminary inclusion of two

patients with aortic insufficiency clearly showed the promise of this

approach.

An important insight from the physiological point of view was

that by these techniques we were able to assign to the

endocardium a primer role in the myocardial volume evolution

during the cardiac cycle. In fact, the endocardium is more

correlated with the volumetric variation, consistent with the notion

that in healthy subjects there is always a thickening of myocardial

wall during contraction [38]. This volume change, and the

consequent myocardial thickening, affects the endocardium more

than the epicardium.

We observed that the global parameters of torsion and twist

correlate with endocardium more than epicardium. This is

apparently inconsistent with a previous study whereby we made

the assumption that contractility, the primum movens, is higher at the

epicardial than at the endocardial level [11]. However, the

volumetric and torsional deformations are rather the consequences

of contraction and as such are more easily detectable on the

endocardium for it is adjacent to the LV cavity that undergoes

empting during systole while torsional properties and quantities

correlate with systolic function. The empting of LV cavity may be

a further element cooperating to these volume changes and to the

larger displacement that the endocardium undergoes as compared

to the epicardium.

A caveat should be made here about the potential limitations of

3D-STE. In fact, according to Mor-Avi et al. [39], this technique

is limited by the image quality during acquisition that influences

the recognition of endocardial and epicardial boundaries. More-

over, the entire LV morphology must be included in the pyramidal

volume. Some subjects can be discarded if their morphology

cannot be included in this window. For these reasons the operator

must take particular attention during acquisition in order to avoid

image low resolution and to ensure the entire LV morphology

inclusion in the full volume window, a situation that may need

even more attention or may be source of technical problems in

pathological conditions [10].

It is for further studies to test these new methods and techniques

to see whether the diagnostic accuracy might be improved in

clinical cardiology by adopting the trajectories based approach

described here.
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Supporting Information

Figure S1 Animated GIF illustrating the shape change associ-

ated to PC 1 of transported data. This shape change is magnified 2

times.

(GIF)

Figure S2 Animated GIF illustrating the shape change associ-

ated to PC 2 of transported data. This shape change is magnified 5

times.

(GIF)

Figure S3 Animated GIF illustrating the shape change associ-

ated to PC 3 of transported data. This shape change is magnified 5

times.

(GIF)

Table S1 Univariate correlations between the first three PCs

and descriptive STE variables for the healthy subject dataset.

(DOC)

Appendix S1 The dataset used for this study. The dataset is

contained in a R workspace. The objects included in the

workspace are the following: u: shape data; a matrix 34167782

representative of 341 shapes each of which constituted by 2594

landmarks in three dimensions: the form is: x1,y1,z1….xn,yn,zn.

The 341 shapes are the shapes recorded by the machine at any

time frame and belong to 19 individuals each of which constitued

by a varying number of frames indicated in the object ‘‘myfactor’’.

descr: a matrix 3416220 with descriptive data outputted by Artida

for any frame of any subject. myfactor: the first order factor for the

affiliation of any shape to the 19 subjects. patnopat: a second order

factor indicating the healthy/pathologic status of any shape in u.

myxout2: the matrix with homologous time frames corresponding

to Fig. 5.

(R)

Appendix S2 The R function for performing the linear shift.

(R)
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