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Abstract

In the clinical field of diagnosis and monitoring of bone diseases, high-resolution peripheral

quantitative computed tomography (HR-pQCT) is an important imaging modality. It provides

a resolution where quantitative bone morphometry can be extracted in vivo on patients. It is

known that HR-pQCT provides slight differences in morphometric indices compared to the

current standard approach micro-computed tomography (micro-CT). The most obvious rea-

son for this is the restriction of the radiation dose and with this a lower image resolution.

With advances in micro-CT evaluation techniques such as patient-specific remodeling simu-

lations or dynamic bone morphometry, a higher image resolution would potentially also

allow the application of such novel evaluation techniques to clinical HR-pQCT measure-

ments. Virtual supersampling as post-processing step was considered to increase the

image resolution of HR-pQCT scans. The hypothesis was that this technique preserves the

structural bone morphometry. Supersampling from 82 μm to virtual 41 μm by trilinear inter-

polation of the grayscale values of 42 human cadaveric forearms resulted in strong correla-

tions of structural parameters (R2: 0.96–1.00). BV/TV was slightly overestimated (4.3%, R2:

1.00) compared to the HR-pQCT resolution. Tb.N was overestimated (7.47%; R2: 0.99) and

Tb.Th was slightly underestimated (-4.20%; R2: 0.98). The technique was reproducible with

PE%CV between 1.96% (SMI) and 7.88% (Conn.D). In a clinical setting with 205 human fore-

arms with or without fracture measured at 82 μm resolution HR-pQCT, the technique was

sensitive to changes between groups in all parameters (p < 0.05) except trabecular thick-

ness. In conclusion, we demonstrated that supersampling preserves the bone morphometry

from HR-pQCT scans and is reproducible and sensitive to changes between groups. Super-

sampling can be used to investigate on the resolution dependency of HR-pQCT images and

gain more insight into this imaging modality.
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Introduction

Quantitative assessment of the trabecular bone microstructure is a valuable tool in bone

research because a number of bone diseases act directly on the trabecular bone surface which

causes alterations in the bone microstructure.

The current standard technology to quantify human three-dimensional bone morphology

is micro-computed tomography (micro-CT) ex vivo where no radiation issues have to be

respected. With advances in in vivo imaging technologies, the quantitative determination of the

bone morphology has entered the clinical setting. High-resolution, peripheral quantitative com-

puted tomography (HR-pQCT) is a promising clinical tool for the monitoring of the microstruc-

ture in bone diseases and their treatments in vivo in patients. HR-pQCT provides an image

resolution where single trabeculae can be resolved and the bone microstructure can be quanti-

fied using the techniques originally developed for micro-CT [1,2]. Trabecular and cortical micro-

structural and biomechanical parameters gained from HR-pQCT scans have been validated in

comparison to scans obtained using micro-CT at distal radius, tibia and calcaneus [1,3–7]. Met-

calf et al. [3] found, comparing trabecular structural parameters of HR-pQCT with micro-CT,

very strong correlations of BV/TV, and moderate correlations for Tb.Th and Tb.N. Christen

et al. [4] developed a biomechanical analysis tool for micro-CT resolutions [5] which provides

detailed insight into the reasons for a certain form of the bone microstructure. Assuming bone

forms tissue at high-load locations and resorbs tissue at low-load locations, the approach finds a

set of load cases that lead to the most uniform tissue loading using optimization [6–8]. Christen

et al. investigated the tool’s voxel size dependency, reproducibility, and sensitivity on HR-pQCT

data and showed with this that their tool can be applied at HR-pQCT resolutions.

Further image processing techniques that were developed for micro-CT images at nominal

image resolutions of about 10 μm require voxel sizes smaller than provided by HR-pQCT. This

concerns the assessment of three-dimensional bone formation and resorption rates that has been

validated for in vivo micro-CT [9]. With the availability of time-lapsed scans of a patient, it would

be great to have access to his dynamic local bone changes per week or month. However, assuming

human mineral apposition rates of about 10 μm per week [10], it would take 8 weeks of continu-

ous bone growth until a full new voxel (82 μm) was filled with bone mass. Only dividing the voxel

size by two would generate a huge benefit in reducing the error caused by partial volumes effects.

Also, having access to in silico simulation tools that use a patient’s microstructure as input

and predict how the bone evolves over time under a certain treatment can be of great use for

both physician and patient. Such subject-specific in silico simulations to predict and possibly

adapt a subject’s treatment regime have been explored on preclinical in vivo micro-CT datasets

at resolutions of about 10 μm [11].

A number of studies have used downscaling to investigate on the resolution dependency of

the bone morphometry [12–16]. Little attention has been paid to the reverse effect, i.e. the

upscaling of reconstructed images. Such upscaling could provide a technique so that pQCT

scans get access to tools currently not applicable at clinical image resolutions. Further, the inves-

tigation of such analysis can help gain more insight into the direct effects of the image resolution

on bone morphometry. Here we propose a technique to supersample HR-pQCT images. We

hypothesize that the structural bone morphometry is preserved by the proposed technique and

we investigate the effect on bone morphometry in terms of precision and sensitivity.

Materials and methods

Precision

To test for the precision of bone morphometry parameters on supersampled images, a study

consisting of repeated HR-pQCT scans of 14 human radii was re-used [17]. In short, the 14
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formalin-fixed intact human cadaveric forearms had been imaged each 3 times with reposi-

tioning after each measurement with a HR-pQCT scanner (XtremeCT, Scanco Medical AG,

Brüttisellen, Switzerland) providing an isotropic nominal resolution of 82 μm.

All raw datasets underwent a 3D Laplace-Hamming filter (Hamming cut-off frequency = 0.4,

weighting factor = 0.5) [17]. The repeated scans were registered to allow evaluation of the

same regions of interest. The registered images were supersampled by a factor of 2 (using tri-

linear interpolation), resulting in a virtual 41 μm image resolution (Fig 1). Both the original

(82 μm) and the supersampled (41 μm) grayscale images were segmented at a global threshold

of 400/1000 of the maximal gray scale value.

The trabecular compartment was separated from the cortex using a distance-based segmen-

tation algorithm [18]. Static morphometry parameters bone volume fraction (BV/TV), specific

bone surface (BS/BV), trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), trabecular

number (Tb.N), structural model index (SMI), degree of anisotropy (DA) and connectivity-

density (Conn.D) were calculated in both the measured 82 μm and the supersampled 41 μm

resolution images.

The reproducibility of bone morphometric indices at both image resolutions was expressed

in precision errors PESD, PE%CV, the intraclass correlation coefficient ICC and the 95%-confi-

dence intervals ICClower and ICCupper [19]. Furthermore, the bone morphometry of images at

virtual 41 μm was compared to the original image resolution of 82 μm. Significant differences

to the measured image resolution of 82 μm were calculated by paired Students t-test. Further-

more, linear regression analysis was performed between bone morphometry from the 82 μm

and 41 μm image resolutions. All statistical comparisons were performed using R (Statistical

Software package, Vienna, Austria [20]). P-values less than 0.05 were considered significant.

Sensitivity

Sensitivity of the proposed method was assessed by reanalysis of a prior study, where 100 post-

menopausal women experienced a Colles’ fracture at median age 63 years [21]. The fracture

cases were frequency-matched to 105 age-matched control women at median age 62 years.

Written informed consent was obtained from all subjects before participation in the study.

The study was approved by the Mayo Clinics Institutional Review Board and the present

reanalysis was based on de-identified data. The distal radius of the study subjects was mea-

sured by HR-pQCT at an isotropic voxel size of 82 μm (XtremeCT, Scanco Medical AG, Brüt-

tisellen, Switzerland). In all study subjects, the non-fractured side (fractured subjects) or the

non-dominant arm (controls) was assessed.

All raw datasets underwent a 3D Laplace-Hamming filter (Hamming cut-off frequency = 0.4,

weighting factor = 0.5) [17]. Afterwards, the images were upscaled (supersampled) by a factor

of 2 using trilinear interpolation. Both the original and the interpolated grayscale images were

segmented at a global threshold of 400/1000 of the maximal gray scale value [21]. A trabecular

mask was used to extract morphometric parameters in the trabecular compartment. The struc-

tural parameters BV/TV, BS/BV, Tb.Th, Tb.Sp, Tb.N, SMI, DA and Conn.D were calculated.

Unpaired Student’s t-test was used to detect differences in means between fracture cases and

controls. Linear correlations between 82 μm and 41 μm resolutions were assessed. Pairwise

comparisons between resolutions were calculated.

Results

Precision

All precision values including mean and standard deviation, PESD, PE%CV with its upper and

lower confidence intervals as well as the ICC values including their upper and lower
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confidence intervals can be found in Table 1. At 82 μm resolution, precision errors of repeated

human ex vivo forearm scans ranged from 2.05% (SMI) to 8.12% (Conn.D). The ICCs ranged

between 0.867 (Tb.Th) and 0.995 (BV/TV).

Supersampling (41 μm) led to precision errors between 1.96% (SMI) and 7.88% (Conn.D),

with ICCs between 0.817 (Tb.Th) and 0.995 (BV/TV). Fig 2 shows a representative forearm

structure at (A) 82 μm and at (B) 41 μm resolution. On the left, at 82 μm resolution, structures

present a more pixelated structure. Trabeculae seem thicker and prone to disconnections. On

the right, the virtually reconstructed image resembles more a micro-CT image with smooth

structures. Fig 3 represents the mean errors of structural indices at virtual 41 μm resolution

from the original indices at 82 μm resolution. Supersampled images lead to a higher BV/TV

Fig 1. Schematic illustration of the technical proceeding.

https://doi.org/10.1371/journal.pone.0212280.g001

Table 1. Reproducibility of static bone morphometric indices, expressed as precision error of the standard deviation (PESD), coefficient of variation (PE%CV) and

intra-class correlations (ICC). The upper part of the table shows the reproducibility at original image resolution (82 μm) and the lower part of the table the reproducibility

at virtual 41 μm resolution.

Parameter Mean ± SD PESD PE%CV PElower PEupper ICC ICClower ICCupper

Original image resolution (82 μm)

BV/TV [%] 17.67 ± 5.91 0.43 2.99 2.377 4.050 0.995 0.988 0.998

BS/BV [mm2/mm3] 13.77 ± 1.77 0.41 2.71 2.154 3.671 0.947 0.877 0.981

Tb.Th [mm] 0.22 ± 0.02 0.01 3.71 2.942 5.014 0.867 0.712 0.951

Tb.Sp [mm] 0.84 ± 0.38 0.05 3.79 3.011 5.131 0.984 0.960 0.994

Tb.N [1/mm] 1.26 ± 0.28 0.04 3.75 2.974 5.069 0.986 0.965 0.995

SMI 1.87 ± 0.37 0.04 2.05 1.625 2.770 0.989 0.974 0.996

DA 1.35 ± 0.08 0.03 2.06 1.636 2.787 0.880 0.736 0.956

Conn.D 2.24 ± 0.79 0.17 8.12 6.443 10.980 0.985 0.964 0.995

Virtual high resolution (41 μm)

BV/TV [%] 18.411± 6.1618 0.468 3.197 2.537 4.324 0.995 0.989 0.998

BS/BV [mm2/mm3] 13.494 ± 1.7371 0.415 2.737 2.172 3.702 0.945 0.871 0.980

Tb.Th [mm] 0.233 ± 0.0182 0.008 3.818 3.030 5.163 0.817 0.619 0.931

Tb.Sp [mm] 0.824 ± 0.3284 0.046 3.147 2.497 4.256 0.983 0.959 0.994

Tb.N [1/mm] 1.154 ± 0.2232 0.029 3.172 2.517 4.289 0.991 0.977 0.997

SMI 1.970 ± 0.4235 0.038 1.958 1.554 2.648 0.992 0.980 0.997

DA 1.367 ± 0.0814 0.033 2.204 1.749 2.981 0.872 0.720 0.953

Conn.D 1.983 ± 0.7581 0.150 7.882 6.255 10.660 0.983 0.960 0.994

https://doi.org/10.1371/journal.pone.0212280.t001
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(4.31%, R2: 1.00), higher Tb.Th (4.20%, R2: 0.98), lower Tb.N (-7.47%, R2: 0.99) and a lower

Conn.D (-12.31%, R2: 0.98). Table 2 lists the coefficients of determination R2, the absolute

%-errors between 41 μm and 82 μm resolution and the intercept functions by which the 41 μm

resolution parameters have to be scaled to fit the original 82 μm voxel size parameters.

Sensitivity

Table 3 and Fig 4 show the results of the clinical data (fractured /non-fractured) measured at

82 μm image resolution and supersampled at virtual 41 μm resolution. At 82 μm resolution,

bone morphometry in the fractured group performed in all morphometric parameters signifi-

cantly worse than in the control group, i.e. lower BV/TV, Tb.Th, Tb.N and higher BS/BV,

Tb.Sp and Conn.D (p< 0.05). Tb.Th differed only 2.71% between groups but was still

significant.

At 41 μm resolution, the same structural parameters were assessed. In the between-groups-

comparison (fractured vs. non-fractured), the same significances as in the 81 μm comparison

were detected. Only the difference of Tb.Th was with 1.48% not significant any more.

Linear regression analysis between the original 82 μm and supersampled 41 μm resolution

images revealed R2-values between 0.94 and 0.99 (Table 4 and Fig 5). At 41 μm resolution, BV/

Fig 2. (A) Human forearm measured ex vivo at 82 μm resolution in 3D (upper) and 2D (lower) (B) same virtually reconstructed human

forearm at 41 μm resolution.

https://doi.org/10.1371/journal.pone.0212280.g002
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TV was overestimated at 4.3% (R2: 0.99). Specific bone surface (BS/BV) was 3.3% lower than at

82 μm resolution (R2: 0.96). Tb.Th was overestimated with 4.56% (R2: 0.94) and Tb.N was

underestimated with 9.39% (R2: 0.97). All pairwise comparisons between resolutions were sig-

nificant (p<0.05). The intercept functions by which the supersampled parameters have to be

scaled can be found in Table 4.

Discussion

In this study, we showed that linear supersampling of HR-pQCT scans at 82 μm voxel size to

virtual 41 μm voxel size as a post-processing step is reproducible and sensitive to changes

between groups. Human radius trabecular BV/TV and other trabecular parameters assessed at

an isotropic 82 μm resolution were used as input structures. They were supersampled at virtual

41 μm resolution by trilinear interpolation.

Fig 3. Absolute mean errors in % where the original resolution serves as baseline.

https://doi.org/10.1371/journal.pone.0212280.g003

Table 2. Coefficients of determination R2, intercept functions and absolute errors (mean ± standard deviation)

between 82 μm and 41 μm resolution (�p< 0.05, ��p< 0.01, ���p< 0.001).

Parameter R2 intercept function absolute error in % (p-value)

BV/TV [%] 1.00 1.00x + 0.0041 4.31 ± 1.95 (���)

BS/BV [mm2/mm3] 0.99 0.98x + 0.013 -2.03 ± 0.88 (���)

Tb.Th [mm] 0.98 0.91x+0.03 4.20 ± 1.66 (���)

Tb.Sp [mm] 0.99 0.87x + 0.093 -0.64 ± 3.62 (-)

Tb.N [1/mm] 0.99 0.79x+0.16 -7.47 ± 5.26 (���)

SMI 0.99 1.10x – 0.14 5.08 ± 2.55 (���)

DA 0.96 1.00x +0.017 1.18 ± 1.20 (���)

Conn.D 0.98 0.95x - 0.15 -12.31 ± 5.32 (���)

https://doi.org/10.1371/journal.pone.0212280.t002
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82 μm HR-pQCT BV/TV and supersampled BV/TV had a strong correlation (R2 = 0.99–

1.00) and an absolute error of 4.30% - 4.31%. BV/TV at 41 μm voxel size was consistently

higher than at 82 μm voxel size. This phenomenon supports the findings of previous studies

[3,13,22,23] which validated HR-pQCT BV/TV with ‘gold standard’ micro-CT at distal radius,

Table 3. Sensitivity. Comparison between 100 postmenopausal women and 105 controls in terms of their trabecular bone structure parameters; values are given as mean

± standard deviation and mean %-difference between groups (�p< 0.05, ��p< 0.01, ���p< 0.001).

Parameter fracture cases (mean ± standard deviation) control cases (mean ± standard deviation) mean %-difference (p-value)

Original image resolution (82 μm)

BV/TV [%] 15.15±5.31 18.28±5.66 -17.16���

BS/BV [mm2/mm3] 14.79±1.56 14.25±1.56 5.06��

Tb.Th [mm] 0.22±0.02 0.23±0.02 -2.71�

Tb.Sp [mm] 0.81±0.27 0.72±0.31 13.26�

Tb.N 1.30±0.31 1.46±0.33 -11.32���

SMI 2.22±0.28 2.05±0.31 8.65���

DA 1.27±0.07 1.29±0.08 -1.63�

Conn.D 1.82±1.01 2.44±1.05 -25.39���

Supersampled resolution (41 μm)

BV/TV [%] 15.75±5.38 18.90±5.66 -16.63���

BS/BV [mm2/mm3] 14.39±1.41 13.82±1.37 4.13��

Tb.Th [mm] 0.23±0.02 0.23±0.02 -1.48

Tb.Sp [mm] 0.83±0.27 0.72±0.31 14.83��

Tb.N 1.17±0.25 1.31±0.27 -11.23���

SMI 2.28±0.31 2.10±0.33 8.42���

DA 1.31±0.07 1.33±0.08 -1.84�

Conn.D 1.53±0.85 2.04±0.89 -25.01���

https://doi.org/10.1371/journal.pone.0212280.t003

Fig 4. Means with standard deviation between controls and fractured cases at original 82 μm resolution and supersampled 41 μm resolution (�p< 0.05).

https://doi.org/10.1371/journal.pone.0212280.g004
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tibia and calcaneus. Metcalf et al. [3] suggested that the lower BV/TV at HR-pQCT resolution

results either from the global threshold, beam hardening artifacts or the lower signal-to-noise-

ratio resulting from a higher number of partial volume voxels. In our study, we can exclude

both beam hardening artifacts and threshold-related differences. Thus we can specify the rea-

son for the lower BV/TV in HR-pQCT images to the lower signal-to-noise-ratio where those

parts of the bone volume that do not fill up a whole voxel get lost.

In our study, Tb.Th was consistently overestimated (4.2% - 4.56%) at virtual 41 μm resolu-

tion and Tb.N was consistently underestimated (-7.47%—-9.3%). Again, these findings fit with

previous studies which found that HR-pQCT obtained Tb.Th is lower and Tb.N is higher than

micro-CT obtained parameters [3,24]. As our study scaled from lower to higher image resolu-

tion, again we can point the reason for those findings to the lower sampling frequency result-

ing where the partial volumes take more effect.

Conn.D was not affected by the sensitivity study but increased at 41 μm resolution at the

precision study. A reason for this can be that fine structures connected with each other can be

grasped better at a higher sampling frequency which is obtained by supersampling of the

image resolution.

Precision errors of HR-pQCT scanned volumes using registration have been reported

between 3% and 6% [17,25–28]. Our findings are consistent with the reportings in the litera-

ture (PE%CV: 2.05–3.79; Conn.D: 8.12). Supersampled 41 μm voxel sizes resulted in slightly

improved precision errors (PE%CV: 1.96–3.81; Conn.D: 7.88). With such small differences, we

conclude that the sampling frequency itself seems to play a minor role in the reproducibility of

HR-pQCT scans.

We recognize there are several limitations to the study. First, we validated the virtual

41 μm resolution by comparison to the original 82 μm HR-pQCT input. A comparison to

‘gold standard’ micro-CT scans would potentially have given even more insight into possible

benefits in terms of accuracy of the proposed technique. However, several studies have investi-

gated on the differences between micro-CT and HR-pQCT and found strong correlations

[3,13,23,29,30]. Nevertheless, with this constraint, our conclusions can only be drawn with

respect to HR-pQCT image quality. Second, we used the first generation Xtreme-CT device

which has an isotropic voxel size of 82 μm [31] while the second generation Xtreme-CT would

have an isotropic resolution of 61 μm itself [32]. Third, our analysis was restricted to structural

parameters and further evaluation is needed to investigate whether such supersampling can

also be applied for mechanical, dynamic or other structural parameters than those presented.

In conclusion, we have investigated the precision and sensitivity of a supersampling method

for human HR-pQCT scans at 82 μm voxel sizes. The investigation showed minimal

Table 4. Sensitivity. Linear regression analysis between 82 μm and 41 μm resolution is shown as coefficient of deter-

mination R2, the intercept functions of the structural parameters and mean %-errors (�p< 0.05, ��p< 0.01,
���p< 0.001).

Parameter R2 intercept function absolute error in % (p-value)

BV/TV [%] 0.99 1x + 0.6 4.30���

BS/BV [mm2/mm3] 0.96 0.88x + 1.3 -3.30���

Tb.Th [mm] 0.94 0.85x + 0.043 4.56���

Tb.Sp [mm] 0.98 0.99x + 0.017 1.15�

Tb.N [1/mm] 0.97 0.8x + 0.13 -9.39���

SMI 0.97 1.1x – 0.064 2.59���

DA 0.99 1x + 0.003 2.96���

Conn.D 0.98 0.83x + 0.017 -1.70���

https://doi.org/10.1371/journal.pone.0212280.t004
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differences between image resolutions of the static bone morphometry which can be assigned

to the sampling frequency. The advantage of this technique is that other disruptive factors than

the sampling frequency can be denied. In terms of sensitivity, all structural parameters except

trabecular thickness revealed the same differences between patient groups as at original HR-

pQCT resolution. We conclude that the proposed supersampling technique is reproducible

and sensitive to changes between groups.
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structural properties of cancellous bone based on three-dimensional mu-tomography. Technol Health

Care. 1996; 4: 113–119. PMID: 8773313

13. Tjong W, Kazakia GJ, Burghardt AJ, Majumdar S. The effect of voxel size on high-resolution peripheral

computed tomography measurements of trabecular and cortical bone microstructure. Med Phys. 2012;

39: 1893–1903. https://doi.org/10.1118/1.3689813 PMID: 22482611

Virtual supersampling preserves bone morphometry from peripheral quantitative computed tomography

PLOS ONE | https://doi.org/10.1371/journal.pone.0212280 February 13, 2019 10 / 11

http://www.ncbi.nlm.nih.gov/pubmed/10227372
http://www.ncbi.nlm.nih.gov/pubmed/8703575
https://doi.org/10.1016/j.bone.2017.09.013
https://doi.org/10.1016/j.bone.2017.09.013
http://www.ncbi.nlm.nih.gov/pubmed/28986143
https://doi.org/10.1098/rsif.2015.0991
http://www.ncbi.nlm.nih.gov/pubmed/26790999
https://doi.org/10.1007/s10237-011-0327-x
http://www.ncbi.nlm.nih.gov/pubmed/21735242
https://doi.org/10.1038/ncomms5855
http://www.ncbi.nlm.nih.gov/pubmed/25209333
https://doi.org/10.1371/journal.pone.0062172
https://doi.org/10.1371/journal.pone.0062172
http://www.ncbi.nlm.nih.gov/pubmed/23637993
https://doi.org/10.1002/jbmr.1599
http://www.ncbi.nlm.nih.gov/pubmed/22431329
https://doi.org/10.1016/j.bone.2010.10.007
http://www.ncbi.nlm.nih.gov/pubmed/20950723
https://doi.org/10.1002/jbmr.5650091103
https://doi.org/10.1002/jbmr.5650091103
http://www.ncbi.nlm.nih.gov/pubmed/7863818
https://doi.org/10.1016/j.clinbiomech.2013.12.019
http://www.ncbi.nlm.nih.gov/pubmed/24467970
http://www.ncbi.nlm.nih.gov/pubmed/8773313
https://doi.org/10.1118/1.3689813
http://www.ncbi.nlm.nih.gov/pubmed/22482611
https://doi.org/10.1371/journal.pone.0212280
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