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SUMMARY

The development of reliable biomarkers has been an urgent issue as well as a hot
spot of research on the diagnosis, treatment, and prognostic evaluation of hepa-
tocellular carcinoma (HCC). Here, we established and validated two field cancer-
ization profile-based prognostic signatures (gene expression score [GES] and
immune score [IS]) for HCC. Our study confirmed that field cancerization pro-
file-basedmodels outperform conventionalmodels on risk evaluation, offering in-
sights for further studies on prognostic model construction. The nomogram con-
structed by combining GES, IS, and TNM stage was proved effective in improving
the individualized prediction of the overall risk of patients. Distinct peritumoral
characteristics were observed in several immune cells (e.g., CD8 T cells and den-
dritic cells), which might explain the diversified prognosis and clinical benefit of
immunotherapy. Moreover, a series of drug targets, prognosis-associated genes,
and pathways were identified, which may contribute to molecular mechanism
studies as well as therapeutic target development of HCC.

INTRODUCTION

Hepatocellular carcinoma (HCC) is the fourth most common cause of cancer-related death worldwide, and

its incidence is steadily increasing throughout the world (Bray et al., 2018; Yang et al., 2019). Unlike other

solid malignancies, most HCC arises in a background of chronic liver disease, variably complicated with

hepatitis and fibrosis, which makes HCC an occult, highly malignant disease with a high recurrence rate

and poor prognosis (Zhu et al., 2013). Therefore, early screening and prevention, as well as outcome moni-

toring are of great importance to patient survival. The development of reliable biomarkers has been an ur-

gent issue as well as a hot spot of research on the diagnosis, treatment, and prognostic evaluation of HCC.

With advances in global molecular profiling based on high-throughput methods, gene expression profiling

came as a powerful diagnostic and prognostic tool in molecular medicine. Comparing to traditional stag-

ing system, the access to gene expression features enabled the development of specific biomarkers, thus

providing new opportunities to disentangle the diversity and heterogeneity of cancers (Dakubo et al.,

2007). Recently, gene expression profiling has been widely applied to the prediction of prognosis and

response to therapy in a range of cancers, e.g., prostate cancer and breast cancer (Hofmann et al., 2002;

Sorlie et al., 2003). In addition to gene expression profile, the immune microenvironment, which indicates

the infiltration level of immune cells (e.g., T cells, B cells, and macrophages) was also found to be an indi-

cator of clinical outcome and has been applied as biomarkers for multiple cancers (Bremnes et al., 2016;

Song et al., 2019; Wang et al., 2019). However, despite that a multitude of prognostic signatures have

been reported in HCC, none of these has become a tangible tool in clinical decision making owing to

poor clinical reproducibility (Li et al., 2017; Zucman-Rossi et al., 2015). Therefore, it is crucial to identify

new prognostic markers for HCC, thereby promoting individualized therapeutics for patients.

Owing to an increasing interest on tumor-host interactions, in-depth studies on the rewiring of biogenesis

and metabolic and signaling pathways in an integrated level is arousing more and more interest in the past

decade. The concept ‘‘field cancerization’’ was first proposed by Slaughter et al. by referring to the phe-

nomenon that the normal tissue peripheral to malignant cells was histologically abnormal and therefore

was part of the transformed cells in a particular tumor field, which may consequently lead to the recurrence

of the local tumor (Dakubo et al., 2007; Slaughter et al., 1953). According to field cancerization theory,
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cancerogenesis is characterized as a multi-step and multi-stage process. Before the appearance of

cancerous cells, the surrounding tissue might have suffered from dysregulation at the molecular or pheno-

typic level, resulting in cancerization fields. Consistent with this, related evidence in HCC had verified the

independent prognostic value of peritumor tissue and its contribution to HCC, suggesting its implication in

de novomulti-centric occurrence of HCC in cirrhotic tissue (Hoshida et al., 2008). Therefore, the character-

istic of peritumor tissue is pivotal for the comprehensive understanding of HCC, and the long neglect of

peritumor characteristics may contribute to the misclassification of patients with HCC as well as the lack

of reproducibility in conventional prognostic signatures.

In this study, we conducted prognostic model construction in HCC. We analyzed the gene expression and

immune cell infiltration landscape from the perspective of field cancerization, with the profile from both tu-

mor and its corresponding peritumor combined for feature selection. We attempt to acquire the following

results: (1) develop robust signatures that are applicable in the clinical application; (2) prove the advantage

of field cancerization profile in prognostic model construction; (3) compare the features (gene expression,

immune cell infiltration) identified in tumor and peritumor and analyze their association with patient sur-

vival; (4) identify peritumoral genes and pathways that play a role in tumorigenesis and therapy of HCC.

RESULTS

Construction of gene expression score signature

The experimental design of our study is shown in Figure 1. There were a total of 457 non-metastatic HCC

specimens from three independent studies, with the GSE14520 cohort as the training group, whereas the

other two (LIHC cohort and LIRI cohort) served as the validation group (Figure 1). According to the result of

univariate cox regression, we identified 3,816 genes (1,876 in tumor and 1,940 in peritumor) associated with

the survival of patients from the GSE14520 cohort (p < 0.05). Then we adopted a LASSO Cox regression

model to build a prognosis signature, with which we can establish a regression model with an optimal sub-

set of variables from high-dimensional data, avoiding the multi-collinearity of the model interference and

improving the robustness of the model. Finally, we obtained a gene expression score (GES) model with 70

genes (44 in tumor and 26 in peritumor), and the GES risk level can be estimated from the expression level

and its corresponding coefficients (Figure 2A, Table S1). The GES was associated with worse overall survival

(OS). Based on the result ofmaxstat, we classified the GSE14520 cohort into a risk high and a risk low group

with an optimum cutoff value of 0.067 (Figures 2B–2D). The Kaplan-Meier survival analysis demonstrated

that patients in the GES-low group had significantly longer OS than those in the GES-high group (hazard

ratio [HR] = 0.08, 95% confidence interval [CI] = 0.04–0.14, log rank test p < 0.001; Figure 2E). Examining the

accuracy of the GES model with receiver operating characteristic (ROC) curves analysis, we found it had an

area under curve (AUC) = 0.90 and 0.92 in predictingOS at 24 and 36months, respectively, higher than pop-

ular clinical prognosis markers, such as AFP levels (24months AUC= 0.64 (0.56–0.71), 36months AUC = 0.59

(0.52–0.67)) and TNM staging (24 months AUC = 0.77 (0.70–0.85), 36 months AUC = 0.74 (0.66–0.81))

(Figure 2F).

The final GES signature includes 44 tumoral genes and 26 peritumoral genes. The heatmap combining the

expression of selected genes and the tumor/peritumor origin of each gene indicated these genes in the

GSE14520 cohort grouped into two clusters (Figure 2A). Cluster I showed a negative correlation between

gene expression and GES score, including 18 tumoral genes and 6 peritumoral genes. Cluster II showed a

positive correlation between gene expression and GES score, including 26 tumoral genes and 20 peritu-

moral genes. The GES signature includes three immune-associated genes (CYLD, IRF1, and CXCL10) in

the tumor, and five (PIBF1, IDO1, NCAM1, ICOS, and CEBPD) in peritumor, which was consistent with

the immunogenic characteristic of HCC.

GES gives more robust prediction on patient survival

To confirm the robustness of the GES model in different populations, we validated its performance in two

validation cohorts with the same cutpoint. Our 70 gene-based GES model could effectively predict the OS

of patients from each of the three cohorts (GSE14520 cohort: HR = 0.08, 95% CI = 0.04-0.14, p < 0.001; LIHC

cohort: HR = 0.23, 95% CI = 0.10-0.49, p < 0.001; LIRI cohort: HR = 0.33, 95% CI = 0.14-0.78, log rank test p =

0.012) (Figures 3A and 3B).

ROC analyses were performed to study the sensitivity and specificity of survival prediction of the GES

model. The AUC indicates that, similar to the performance in the GSE14520 cohort (Figure 2F), the
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Figure 1. Study design

Our main objective was to explore the role of field cancerization profile in the risk evaluation of HCC. Prognostic models were established using a two-step

procedure. Gene expression and immune cell fraction profile were applied to the model construction separately. The training cohort was derived from

GSE14520. Two independent cohorts, the LIHC cohort from TCGA and the LIRI cohort from ICGA, were used to evaluate the external performance of each

model. Only the patients with expression information profiles from both tumor and peritumor were included in the study. GES, gene expression score; IS,

immune score; LASSO, least absolute shrinkage and selection operator; ROC, receiver operating characteristic; PEC, prediction error curve; DCA, decision

curve analysis; GSVA, gene set variation analysis.
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performance of the GES signature was also fully verified in two validation cohorts (LIHC cohort, 24-month

survival prediction AUC = 0.70 (95% CI 0.54–0.87), 36-month survival prediction AUC = 0.79 (95% CI 0.64–

0.93); LIRI cohort, 24-month survival prediction AUC = 0.65 (95% CI 0.54–0.76), 36-month survival prediction

AUC = 0.59 (95% CI 0.46–0.71)) (Figures 3C and 3D).

To validate the superiority of the GES model over models constructed from tumor-only or peritumor-only

profiles, we constructed two types of control models. Type I control model was the tumoral or peritumoral

part of GES (namely, TGS1 and PGS1), consisting of the tumor or peritumoral genes from GES with the

same coefficient. Type II control model was built from the tumor or peritumoral expression profile (namely,

TGS2 and PGS2), with marker genes selected using the same two-step procedure as GES. These two types

of control models were necessary as they test the robustness of the field cancerization method in a com-

plementary way. According to the result, although four models could significantly predict the survival of

patients in the GSE14520 cohort (log rank test p < 0.001), none of them succeeded in splitting each valida-

tion cohort into groups with a significant difference in OS (Figure S1). As for PGS1, its optimal cutpoint

determined by maxstat was unable to separate the patients from the LIHC cohort into two datasets

(Figure S1).
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Figure 2. Establishment of GES signature based on field cancerization profile of GSE14520 cohort

(A) Expression profiles of the 70 genes across GSE14520 cohort;

(B) GES signature risk score distribution;

(C) Relationship between overall survival days and survival status of each patient as sorted by GES;

(D) Standardized log rank statistic across different cutpoints; the dotted line indicates the selected optimum GES cutpoint;

(E) Kaplan-Meier estimates of survival based on the GES signature in the GSE14520 cohort;

(F) ROC curves indicating the performance of GES in predicting 24- and 36-month OS of the patient in the GSE14520 cohort.
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Figure 3. Validation of GES signature and comparison with other signatures

(A and B) Kaplan-Meier estimates of survival based on the GES signature in the (A) LIHC cohort and (B) LIRI cohort;

(C and D) ROC curves indicating the performance of GES in predicting 24- and 36-month OS of the patient in the (C) LIHC cohort and (D) LIRI cohort;

(E) Performance in the prognostic classification of patients from the LIRI cohort using models constructed from 1,000 times replicated sampling of the

GSE14520 cohort;

(F) PEC analysis of GES and other HCC prognostic signatures in the LIHC cohort. Apparent error (AE) and 10-fold cross-validated cumulative prediction error

(PE) were computed using Kaplan-Meier estimation as reference. GES signature was compared with that from Yuan et al., Kim et al., Jiang et al., Kong et al.,

Liu et al., and four models constructed in this study.
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We further validate the superiority of field cancerization profile in model construction in an unbiased way.

With 1,000 training sets subsetted from the GSE14520 cohort, we reconstructed the five models (GES,

TGS1, TGS2, PGS1, and PGS2) and each was validated in two validation cohorts. During each validation,

we reassessed the optimum cutpoint of each model and calculated the p value between the survival of

two groups separated by the cutpoint. The p values of the GES model were compared with that of others

using the pairwise Wilcoxon rank-sum test. According to the result in the LIRI cohort, the p values of GES

models were significantly lower than that of other models (GES versus TGS1 p = 5.82e-19; GES versus

TGS2 p = 5.78e-39; GES versus PGS1 p = 1.09e-05; GES versus PGS2 p = 2.67e-14, Figure 3E). Similar results

were also obtained in the LIHC cohort (GES versus TGS1 p = 5e-24; GES versus TGS2 p = 8.58e-12; GES

versus PGS1 p = 0.0182; GES versus PGS2 p = 0.361, Figure S2). These results proved that the GES model

has better performance over models constructed from tumor-only or peritumor-only profiles.

With the development of microarray and RNA-seq technologies over the last decade, increasing prog-

nostic gene expression signature of HCC had been published. The GES signature developed in our study

was further compared against five reported HCC gene expression signatures. Through literature search,

five HCC gene expression signatures that contained validation cohorts were selected, including the 6-

gene signature from Yuan et al. (2017), 65-gene signature from Kim et al. (2012), 5-gene signature from

Jiang et al. (2019), 3-gene signature from Kong et al. (2019), and 7-gene signature from Li et al. (2020).

The prediction accuracy was analyzed on the LIHC cohort. Brier score, which indicates the prediction error

over time was calculated in each signature (Mogensen et al., 2012). Among all these signatures, the GES

had the lowest apparent error (AE) (0.195) and 10-fold cross-validated 40 months’ cumulative prediction

error (PE) (0.211), suggesting a higher prediction accuracy in GES signature than the others. Hence, the
iScience 25, 103747, February 18, 2022 5
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Figure 4. Forest plots of univariate and multivariate Cox regression based on GES classifier and clinical risk factors on three cohorts

Solid squares represent the HR (HR) of death, and horizontal lines represent the 95% CIs (CI). All p values were calculated using Cox regression hazards

analysis. An AFP cutoff of 300 ng/mL, ALT of 50 U/L, and tumor size of 5 cm were used in Cox regression analysis and are clinically relevant values used to

distinguish patient survival. HBV, hepatitis B virus; ALT, alanine aminotransferase; AFP, alpha fetoprotein; CC, chronic carrier; AVR-CC, active viral replication

chronic carrier.
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GES signature seems to be more promising in predicting the prognostic OS outcome of patients with HCC

(Figure 3F).

We obtained, in addition to gene expression information, a series of clinical indices for each patient,

e.g., age, gender, TNM stage, hepatitis B virus (HBV), alanine aminotransferase (ALT), multinodular,

cirrhosis, alpha-fetoprotein (AFP), and tumor size. Each clinical variable was applied for univariate Cox

regression analysis, and we found that patients from the TNM stage II and TNM stage III subgroups

got a significantly shorter OS than those from the TNM stage I subgroup (TNM stage II: HR = 2.04,

95% CI = 1.15–3.60, log-rank test p = 0.015; TNM stage III: HR = 5.89, 95% CI = 3.30–10.51, log-rank

test p < 0.001) (Figure 4). Several clinical features (e.g., TNM stage and AFP level) were significantly

different between the GES-high group and GES-low group (Table S2). Furthermore, GES levels were

included in multivariate Cox regression to test the independence of the GES score over clinical indices.

After correcting for TNM staging, age, gender, and other clinicopathological characteristics, the GES

score remained a significant prognostic risk factor (GSE14520 cohort, HR = 0.07, 95% CI = 0.04–0.13,

log-rank test p < 0.001; LIHC cohort, HR = 0.14, 95% CI = 0.04-0.46, log rank test p = 0.001; LIRI cohort,
6 iScience 25, 103747, February 18, 2022
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HR = 0.41, 95% CI = 0.17–0.99, log rank test p = 0.049), indicating the independence of GES signature in

predicting patient survival.
Immune cell infiltration spectrum across tumor and peritumor of HCC

With the CIBERSORTx algorithm, we systematically evaluated the fractions of 22 immune cells in both tu-

mor and peritumor samples (Figure 5). (Newman et al., 2019) Of the 22 immune cell components, 16 im-

mune cells got a biased immune fraction (p < 0.05, Wilcoxon test) between the tumor group and peritumor

group. Nine immune cells (plasma cells, naive CD4 T cells, activatedmemory CD4 T cells, regulatory T cells,

macrophages [M0], activated dendritic cells, resting mast cells, neutrophils, and resting NK cells) got a

significantly higher infiltration level in the tumor, and seven immune cells (CD8 T cells, T cells follicular help-

er, resting dendritic cells, macrophages (M1), activated NK cells, activatedmast cells, andmonocytes) got a

significantly higher infiltration level in peritumor. According to the correlation analysis, the pairwise asso-

ciation of infiltration level between immune cells was generally consistent in tumor and peritumor, with

several exceptions (Figure 5A). For example, the infiltration level of macrophages M0 in tumor was nega-

tively associated with tumoral activated dendritic cells, and it turned out to be a positive association in peri-

tumor. Together these results revealed the distinct immuno-characteristics in peritumor tissue, which

might contribute to a more precise prognosis prediction.

According to the analysis of association with clinical outcomes, 21 immune cells (13 in tumor and 8 in peri-

tumor) appear to be significantly correlated with patient survival in univariate Cox regression (Figure 5B).

For the 13 tumor prognosis-associated immune cells, the high infiltration level of 8 cells (B cells naive,

T cells CD8, T cells follicular helper, T cells regulatory, NK cells activated, macrophages M1, and macro-

phages M2) is associated with better prognosis, as opposed to the performance of plasma cells, T cells

CD4 naive, macrophages M0, dendritic cells resting, eosinophils, and neutrophils. For the eight peritumor

prognosis-associated immune cells, five cells (B cells naive, T cells CD8, dendritic cells resting, dendritic

cells activated, and mast cells resting) got a positive association between infiltration level and prognosis,

as opposed to the performance of macrophages M0, mast cells activated, and eosinophils. By comparison,

several distinctive features were observed in peritumoral immune cells. For example, macrophagesM1 and

macrophages M2 in tumor were both significantly associated with high OS of patients (p < 0.05); however,

this was not observed in peritumor immune cells. T cells CD8 were observed to have a beneficial effect on

patient survival (p = 0.02), and a higher significance was observed in peritumor (p < 0.001), suggesting that

T cells CD8 may play a greater role in peritumor (Figure 5B). Moreover, the fraction of tumoral dendritic

cells component was significantly (highly significant in dendritic cells resting (HR = 0.4 (0.23–0.69), p <

0.001) and marginally significant in dendritic cells activated (HR = 0.56 (0.30–1.04), p value = 0.067)) and

positively associated with poor prognosis, suggesting a deleterious effect on clinical outcome, whereas

a totally opposite beneficial effect was observed in peritumor samples (dendritic cells resting [HR = 1.97

(1.27–3.06), p value = 0.003]; dendritic cells activated [HR = 2.92 (1.07–7.98), p value = 0.037]) (Figure 5B).

Furthermore, we explored the interactions between gene expression and prognosis-associated immune

cells ratios. By GO enrichment analysis (Figure S3–S5), the gene sets that were significantly associated

with the level of infiltration of each cell type were analyzed. For T cells CD8, most enriched GO terms

were shared between tumor and peritumor (e.g., T cell activation, T cell receptor signaling pathway, and

cell chemotaxis), which may explain their similar role in HCC. In contrast, several unique features (e.g.,

gene sets associated with neutrophil activation and neutrophil degranulation) were observed in peritu-

moral dendritic cells (resting). These results demonstrated that aberrant immune infiltration in not only

the tumor itself, but also in the peritumor, might play important roles in the development of HCC.

By using a LASSO Cox regression, an immune score (IS) prognostic model was built from 22 survival-asso-

ciated immune cells at the field cancerization level (Figure 6A, Table S3). Of the 22 candidate immune cells,

8 tumoral immune cells and 4 peritumor immune cells were selected for model construction. Immune

scores were then calculated for each patient using the infiltration level of each cell weighted by their regres-

sion coefficient (Table S3). The IS was associated with worse OS. We used R packagemaxstat to assess the

optimum cutoff for immune scores in the GSE14520 cohort, which results in the highest log-rank statistic at

1.96 (Figures 6B–6D). Patients with HCC in the GSE14520 cohort were then divided into risk low and risk

high immune score groups. Of the 12 immune cells, the higher fraction of 4 was beneficial to clinical

outcome and deleterious effect was observed in 7 immune cells. Kaplan-Meier survival analysis demon-

strated that patients in the IS-low group had significantly longer OS than those in the IS-high group

(HR = 0.28, 95% CI = 0.18–0.45, log-rank test p < 0.001; Figures 6E and 6F).
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Figure 5. Immune cell infiltration profiles in tumor and peritumor and their association with patient prognosis

(A) Related fraction profile of 22 infiltrated immune cells in tumor and peritumor GSE14520 cohort. For each group, the immune cell fraction in each patient

was estimated by CIBERSORTx, and patients were sorted by their GES level. Significant differences in cell type fractions between tumor and peritumor are

marked with an * indicating p < 0.05 (Wilcoxon rank-sum test). The color of circles in each grid indicates the significance for the pairwise test of Spearman

correlation, insignificant pairs were left empty;

(B) Forest plots showing the HRs (HR) and p values of each immune cell associated with patient prognosis in tumor and peritumor. HRs were calculated by

univariate Cox regression, with grouping based on the optimum cutpoint determined by R package maxstat. Solid squares represent the HR of beneficial

effect, and horizontal lines represent the 95% CIs (CI).
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Figure 6. Establishment of IS signature based on field cancerization profile of the GSE14520 cohort

(A) Infiltration level of the 12 immune cells across the GSE14520 cohort;

(B) IS signature risk score distribution;

(C) Relationship between survival days and survival status of each patient as sorted by IS;

(D) Standardized log rank statistic across different cutpoint, the dotted line indicates the selected optimum IS cutpoint;

(E) Kaplan-Meier estimates of survival based on the IS signature in the GSE14520 cohort;

(F) ROC curves indicating the performance of IS in predicting 24- and 36-month OS of the patient in the GSE14520 cohort.

ll
OPEN ACCESS

iScience
Article
Validation of the IS signature

As with GES signature, we sought to validate the robustness of IS signature from several aspects. In

the LIHC cohort, the patients could be stratified according to their IS score and OS time was mark-

edly elongated in the low-risk group (HR = 0.28, 95% CI = 0.18–0.45, log-rank test p = 0.001, Fig-

ure 7A). The risk score was further validated in the LIRI cohort (HR = 0.33, 95% CI = 0.18–0.62,

log-rank test p < 0.001, Figure 7B). We next carried out ROC analysis to assess the performance

of IS signature in predicting 24-, and 36-month OS of patients from each cohort. The AUC of IS signa-

ture was high in all three cohorts (GSE14520 cohort, 24-month AUC = 0.75 (0.67–0.83), 36-month

AUC = 0.76 (0.68–0.83); LIHC cohort, 24-month AUC = 0.67 (0.50-0.83), 36-month AUC = 0.83

(0.70–0.96); LIRI cohort, 24-month AUC = 0.66 (0.55–0.77), 36-month AUC = 0.65 (0.53–0.77). Figure 6F,

Figure 7C and 7D). These results proved the feasibility to determine patient prognosis based on im-

mune cell infiltration. More importantly, our work demonstrated the diagnostic potential of IS signa-

ture for survival prediction in clinical application.

We further compared the performance of IS model with four alternative models (TIS1, TIS2, PIS1, and

PIS2). Four models with their corresponding cutpoints were able to stratify the GSE14520 cohort into

two groups, and the patients from the low-risk group all got a significantly higher OS (p < 0.001). How-

ever, they failed to make proper stratification on the OS of patients from the LIHC and LIRI cohorts, with

no significant difference in OS in groups divided by each model (TIS1, LIHC p = 0.097, LIRI p = 0.051;

TIS2, LIHC p = 0.11, LIRI p = 0.11; PIS1, LIHC p = 0.86, LIRI p = 0.82; PIS2, LIHC p = 0.36, LIRI

p = 0.5, Figure S6), indicating the insufficiency of model construction from tumor-only and peritumor-

only profiles.
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Figure 7. Performance validation of IS signature

(A and B) Kaplan-Meier estimates of survival based on the IS signature in the (A) LIHC cohort and (B) LIRI cohort; (C-D) ROC curves indicating the performance

of IS in predicting 24- and 36-month OS of the patient in the (C) LIHC cohort and (D) LIRI cohort. ROC, receiver operating characteristic; OS, overall survival.
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We next assessed the prognostic association between IS signature and other known clinical risk factors. In the

analysis of univariate Cox regression, the IS signature was found to be a significant indicator for OS, together

with several already well-known risk factors (e.g., TNM stage, AFP, tumor size). Furthermore, we further analyzed

the independence of IS bymultivariateCox regression. After correcting for TNMstaging, age, gender, andother

clinicopathological characteristics, the IS score remained a significant prognostic risk factor (GSE14520 cohort,

HR = 0.33, 95% CI = 0.20–0.55, log-rank test p < 0.001; LIHC cohort, HR = 0.31, 95% CI = 0.12–0.82, p = 0.018;

LIRI cohort, HR = 0.38, 95% CI = 0.20–0.75, p = 0.005, Figure 8), indicating the independence of IS signature in

predicting patient survival. Taken together, these findings suggest that the risk score retains its prognostic rele-

vance even after the classical clinicopathological prognostic features have been taken into account.23

Construction and evaluation of a prognostic nomogram

To provide a clinically relevant quantitative method to predict the probability of 24- and 36-month OS in

patients with HCC, we constructed a nomogram that integrated the GES, IS, and TNM stages (Figure 9A).
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Figure 8. Forest plots of univariate and multivariate Cox regression based on IS classifier and clinical risk factors on three cohorts

Solid squares represent the HR (HR) of death, and horizontal lines represent the 95% CIs (CI). All p values were calculated using Cox regression hazards

analysis. An AFP cutoff of 300 ng/mL, ALT of 50 U/L, and tumor size of 5 cm were used in Cox regression analysis and are clinically relevant values used to

distinguish patient survival. HBV, hepatitis B virus; ALT, alanine aminotransferase; AFP, alpha fetoprotein; CC, chronic carrier; AVR-CC, active viral replication

chronic carrier.
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Calibration plots showed that the nomograms performed well compared with the performance of an ideal

model (Figure 9B). The C-index of the nomogram was 0.834 (SE = 0.02).

As expected, the result of decision curve analysis showed that the nomogram got a higher accuracy of pre-

diction on 24- and 36-month OS, indicating that the nomogram was more clinically useful than using GES

classifier, IS classifier, and TNM stage alone (Figures 9C and 9D). ROC analysis to compare the sensitivity

and specificity of the nomogram comprising the IS signature with clinicopathological risk factors showed

that overall survival was more accurately predicted by the nomogram than by the risk factors in all three

cohorts (Figures 9E–9J).

Functional relevance and clinical potential of diagnostic markers for HCC

To explore the clinical potential of peritumor genes, we searched drugs that target peritumoral GES genes

in GeneCards (https://www.genecards.org/). GeneCards integrated information of drugs from DrugBank,

ApexBio, DGIdb, FDA Approved Drugs, ClinicalTrials.gov, and PharmGKB; drugs that are marked with

Approved, Investigational, and Experimental were selected. With our search, eight targetable peritumoral
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Figure 9. Construction and validation of a nomogram to predict 24- and 36-month survival probability in HCC

(A) The clinico-molecular nomogram integrated the GES classifier, IS classifier, and TNM stage. The sum of the points calculated in each component gives a

linear predictor to 24- and 36-month survival.

(B) The calibration curve shows the agreement between predicted and observed outcomes; the 45-degree line represents perfect prediction.

(C and D) Decision curve analysis (DCA) comparing the 24- (C) and 36- (D) month survival prediction performance of the nomogramwith that of GES classifier,

IS classifier, and TNM stage alone;

(E–J) Time-dependent ROC curves by nomograms for 24- and 36-month overall survival probability in the GSE14520 cohort (E, F), LIHC cohort (G, H), and LIRI

cohort (I, J). ROC, receiver operating characteristic; OS, overall survival.
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genes were identified (Table S5). Of these drugs, melatonin was selected as a full agonist of IDO1. Many

studies have shown that melatonin’s co-administration improves the sensitivity of cancers to inhibition

by conventional drugs. For example, the combination of melatonin and an IDO inhibitor DL-1MT improves

the efficacy of an immunotherapy (gDE7) targeting HPV-associated tumors (Moreno et al., 2018). Moreover,

besides its effects on cancer cells, the protective effect of melatonin was observed in cells in the liver and

the immune systems (Calvo et al., 2013; Carrillo-Vico et al., 2013; Molpeceres et al., 2007; Ren et al., 2017;

Sardo et al., 2017), which further suggests the peritumoral effectiveness of melatonin on HCC.

To identify the pathophysiological mechanisms underlying the difference in survival time in patients with

HCC, we performed gene set variation analysis (GSVA) on both tumor and peritumor. From GSE14520

we selected 141 patients with consistently high or low risk levels in GES and IS classifiers, including 50

high-risk patients and 91 low-risk patients. From the tumor, we identified 36 gene sets with higher enrich-

ment score (ES) in low-risk patients and four gene sets with higher ES in high-risk patients. These gene sets

covered several proliferation-, angiogenesis-, and metastasis-associated pathways, e.g., WNT signaling

pathway, MDA5 signaling pathway, blood coagulation, and fatty acid metabolism-associated pathways

(Figure S7). As for peritumor, we observed 33 gene sets with higher ES in high-risk patients and 7 gene

sets with higher ES in low-risk patients (Figure 10). Two significantly enriched gene sets, IL-6-mediated

signaling pathway (log2 fold change = -0.50; padj = 2.91e-3) and G-protein-coupled receptor (GPCR)

signaling pathway (log2 fold change = 0.46; padj = 1.34e-3, Figure 10), were identified in peritumor,

whereas these two pathways were marginally significant in gene set variation analysis in tumor (padj =

5.8e-2 for IL-6-mediated signaling pathway and padj = 9.6e-2 for adenylate cyclase activating GPCR

signaling pathway, respectively). This indicates some similarities between tumor and peritumor during

tumorigenesis. Moreover, these two pathways got a higher log2 fold change than that in tumor (IL-6-medi-

ated signaling pathway, -0.34 in tumor versus -0.50 in peritumor; adenylate cyclase activating GPCR

signaling pathway, 0.30 in tumor versus 0.46 in peritumor), suggesting a stronger effect of these pathways

in peritumor. The Toll-like receptor 2 (TLR2) signaling pathway, which plays an essential role in the innate

immune response, got significantly higher expression in patients with high risk (log2 fold change = -0.38,

padj = 1.7e-4, Figure 10). Notably, such biased expression TLR2 pathway gene sets were not observed in

tumor (log2 fold change = -0.005, padj = 0.98). To some extent, the above-mentioned molecular charac-

teristics may provide a reasonable interpretation of the prognostic value of the two signatures in our study

and may further give us insights into the underlying mechanisms of tumor prognosis from the perspective

of both tumor and peritumor.

DISCUSSION

HCC is a leading cause of cancer-related death in many parts of the world. It is characterized as an occult,

highly malignant disease with a high recurrence rate and poor prognosis. Unlike other solid malignancies,

the coexistence of inflammation and cirrhosis makes the early diagnosis and prognostic assessment of HCC

much more difficult. Despite recent progress on the diagnosis of and therapy for HCC, its morbidity and

mortality is still rising in many countries, which indicates an urgent need for valuable biomarkers for the

diagnosis and treatment of HCC (Akoad and Pomfret, 2015; Zhu et al., 2013).

With the emergence of high-throughput technique as a powerful method for the profiling of gene expres-

sion, numerous genomic studies tried to provide gene expression-based prognostic markers for HCC (He

et al., 2020; Liang et al., 2020; Zhang et al., 2020). However, recent prognostic markers do not inform the

diagnosis, prognosis, or treatment decisions for HCC patients. Limitations of these markers include the

lack of large-scale, independent validation and, more importantly, the neglect of peritumor features. In

the current work, based on the theory of field cancerization, we selected candidate features from tumor

and peritumor simultaneously. Through univariate Cox regression, we were able to uncover the detail of

prognosis-associated gene and immune cell subsets in HCC. A series of prognosis-associated features
iScience 25, 103747, February 18, 2022 13
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were captured, including a significant association between the fraction of CD8 T cells and patient survival in

both tumor and peritumor tissue. More notably, a stronger association was observed between peritumor

CD8 T cells and patient survival (tumor, HR = 1.73, p = 0.02; peritumor, HR = 3.27, p < 0.001, Figure 5B),

suggesting a greater role of peripheral originated T cells CD8. Recent evidence showed that the clonotypic

expansion of effector-like T cells within not only the tumor but also in normal adjacent tissue, and patients

with gene signatures of such clonotypic expansion respond best to anti-PDL1 therapy, indicating that non-

exhausted T cells and T cell clones supplied from the periphery may be key factors in explaining patient

variability and clinical benefit from cancer immunotherapy (Wu et al., 2020). Put these together, a similar

mechanism is likely shared in a range of solid malignancies, including HCC, which may hold promise for

further therapies.

As an effort to overcome the underlying risk of overfitting, we applied a Cox regression model with a LASSO

penalty for the selection of prognosis-associated features. Based on the cancerization field features from the

GSE14520 cohort, the expression of 70 genes and infiltration levels of 22 immune cells were selected for the con-

struction ofGES and IS, respectively. Both signatures were able to perform robust prognosis-based classification

in not only the training cohort but also two validation cohorts, indicating good reproducibility of the two
14 iScience 25, 103747, February 18, 2022
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signatures in HCC. Further analysis uncovered that the prognostic value of signature in our study was indepen-

dent of themain prognostic factors in HCC. For example, AFP ismost commonly employed in the clinic for HCC

screening and as an important predictor for patient survival (Peng et al., 2004). The TNM staging system reports

the pathological characteristics of patients (e.g., tumor grade, nodule, and metastasis), which had been widely

applied in various cancers (Marrero et al., 2018). By performing multivariable Cox regression analysis, we iden-

tified that the prognostic values GES and IS are independent of AFP and TNM stage, which strongly demon-

strated that each model could act as an independent prognostic factor for HCC. Furthermore, our study

confirmed that field cancerization profile-basedmodels could better predict a patient’s prognosis. In this study,

a series of tumor or peritumor profile-based models were trained and compared with GES and IS, which

confirmed the advantage of field cancerization profile-basedmodels.We also observed a lower prediction error

in GES compared with other published HCC prognosis models (Figures 3E and 3F). Considering that recent ef-

forts on prognostic model development aremostly based on tumor features alone, the neglect of the peritumor

profile might lead to their lack of robustness and limited clinical application. To provide a convenient and accu-

rate tool for the evaluation of overall risk (including tumor recurrence and metastasis) at the individual level, we

constructed a nomogramby integratingGES, IS, and TNM stage information. Although suchmethods generally

use traditional prognostic factors, such as TNM stage and sex, we propose including our field cancerization pro-

file-based model, which reflects the molecular heterogeneity of these tumors. The performance of the nomo-

gram was verified in all validation cohorts. Thus, our nomogram might provide a simple and accurate method

for predicting prognoses in HCC.

Cancer is a heterogeneousdisease, andexploring the dysregulatedgenes involved in carcinogenesis anddevel-

opment might help to improve prognostic and therapeutic strategies. According to MalaCards (Rappaport

et al., 2017), 28 genes from the GES signature are associated with human cancer, including 17 tumoral genes

(CYLD, TGM1, IL2RB, NEDD9, VEGFA, IRF1, MFGE8, CDH13, DAB2, MSX1, DAPK3, CXCL10, CD52, LSM1,

SMTN, NMB, and ZNF652) and 11 peritumoral genes (PIBF1, BAX, GPATCH2, CDKN3, ACE2, CUEDC2,

DNMT3A, EGR2, IDO1, NCAM1, and ICOS). Among the 11 peritumoral genes, Bax (Bcl2-associated X protein)

encoded by gene BAXwas reported as a central apoptosis-inducing protein that works through the induction of

permeabilization of the outer mitochondrial membrane (Benard et al., 2010). Bax interacts with Bcl-2 and their

ratio determines survival or death following an apoptotic stimulus (Oltvai et al., 1993). Specifically, the overex-

pression of BAX had been reported to induce autophagy and enhance drug sensitivity of HCC in cell experi-

ments. The CDKN3 gene encodes a cyclin-dependent kinase inhibitor, which dephosphorylates CDK2 kinase

to prevent its activation. It has been reported to be deleted, mutated, or overexpressed in several kinds of can-

cers. It has been reported that the overexpression of CDKN3 in HCC could promote cell proliferation by stim-

ulating G1-S transition. In this study, the high expression of peritumoral CDKN3 was associated with poor prog-

nosis (coefficient = 0.466). Two CDKN3 antagonists, AT7519 and Kenpaullone, were identified through the

search in GeneCards (Table S5). Our results suggest that these drugs may take effect in peritumor as well. In

our research, a limited number of drugs were identified in peritumor genes, which is mainly due to the lack of

study on the role of peritumor in cancerogenesis. Although the biological function of some of the marker genes

has not been reported in HCC, their underlying effects as targets for HCCmight be addressed in further biolog-

ical and mechanistic investigations.

According to the GSVA, a series of pathways associated with patient outcomes were uncovered. Some can-

cer-associated pathways (e.g., the IL-6 signal pathway and the adenylate cyclase activating GPCR signaling

pathway) were identified in both tumor and peritumor with varying degrees of enrichment. Moreover,

several pathways with clinical potential were identified. For example, high expression of gene sets from

the 30-phosphoadenosine 50-phosphosulfate (PAPS) biosynthetic process was observed in the peritumor

of risk-high patients (Figure 10). A previous family-based study in 240 families revealed that the 30-phos-
phoadenosine 50-phosphosulfate synthase 1 (PAPSS1) gene was a candidate HCC-susceptibility gene,

which was associated with elevated serum a-fetoprotein and with poor survival in familial cases. Studies

based on immunohistochemical analysis, western blot, and qRT-PCR revealed a significant change in the

expression of PAPSS1 protein in patients under the treatment of IFN-a, and its relation to relapse and prog-

nosis was also reported. Our study indicates that genes involved in this pathway (e.g., PAPSS1) may be

applicable in clinical practice.

In this multicenter, retrospective cohort study, we developed and validated two weighted prognostic

models (GES and IS) based on cancerization-field profile. Our study confirmed that field cancerization pro-

file-based models could better predict the patient’s prognosis, which offers insights for works on
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prognostic model construction. The nomogram constructed by combining GES, IS, and TNM stage has

been proved effective in improving the individualized prediction of the overall risk (e.g., recurrence and

metastasis) of patients. According to the peritumoral immune cell infiltration features, CD8 T cells in peri-

tumor tissues showed a stronger correlation with the patient’s prognosis than that in the tumor, suggesting

that T cells provided by peritumor tissues may be a key factor explaining the diversified prognosis and clin-

ical benefit of immunotherapy. Moreover, a series of prognosis-associated genes and pathways were iden-

tified in peritumor tissue, which may contribute to the study on the molecular mechanism of HCC as well as

the development of therapeutic targets. With the prevailing of these prognostic signatures applied in the

further classification of patients with HCC, they hold promise to reflect different biologic backgrounds with

potential implications in patient selection for therapies and prediction of clinical outcomes.

Limitations of the study

We acknowledge several limitations that could be addressed in our study. First, as a retrospective study

based on publicly available data, only a limited number of qualified studies were collected. As the role

of peritumor has attracted a rising interest in carcinogenesis, further validation on a greater scale would

be expected. In addition, the signatures were constructed based on a limited number of features, which

include only 12,749 protein-coding genes, and the immune cell component involved did not represent

all the HCC-associated immune features. As a growing number of researches have revealed the carcino-

genesis-associated role of various features (e.g., peptides, long noncoding RNA, microRNA, and circle

RNA), the inclusion of a wider range of features would not only enable the construction of a more robust

model but also bring us closer to the underlying mechanisms of HCC. Finally, the mechanisms of the signa-

ture genes have not been clearly identified here, and experimental studies on these genes may provide

important information to facilitate our understanding of their functional roles.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

mRNA microarray of 209 HCC patients Gene Expression Omnibus GEO: GSE14520

mRNA-seq of 49 HCC patients The Cancer Genome Atlas LIHC

mRNA-seq of 199 HCC patients International Cancer Genome Consortium LIRI-JP

Software and algorithms

TCGAbiolinks 2.14.1 (Colaprico et al., 2016) https://bioconductor.org/packages/release/

bioc/html/TCGAbiolinks.html

CIBERSORTx (Newman et al., 2019) https://cibersortx.stanford.edu/

clusterProfiler 3.14.3 (Yu et al., 2012) https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html

glmnet 4.1-2 (Friedman et al., 2010) https://cran.r-project.org/package=glmnet

maxstat 0.7-25 (Hothorn and Lausen, 2003) https://cran.r-project.org/package=maxstat

pec 2020.11.17 (Mogensen et al., 2012) https://cran.r-project.org/package=pec

survivalROC 1.0.3 (Heagerty et al., 2000) https://cran.r-project.org/

package=survivalROC

rms 6.2-0 (Núñez et al., 2011) https://cran.r-project.org/package=rms

gsva 1.34.0 (Hanzelmann et al., 2013) https://bioconductor.org/packages/release/

bioc/html/GSVA.html

limma 3.42.2 (Ritchie et al., 2015) https://bioconductor.org/packages/release/

bioc/html/limma.html
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Yuanyan Xiong (xyyan@mail.sysu.edu.cn).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� This paper analyzes existing, publicly available data. These accession numbers for the datasets are

listed in the key resources table.

� This paper does not report original code.

� Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.
METHOD DETAILS

HCC datasets preparation

Gene expression profiles for HCC were searched in publicly accessible databases. Datasets that i) from

paired tumor and non-tumor specimens, ii) include enough number of patients, and iii) with detailed clin-

ical data were included in our study. Finally, gene expression data from three centers were selected, namely

the GSE14520 cohort, the LIHC cohort, and the LIRI cohort. The GSE14520 cohort was selected from Gene

Expression Omnibus (https://www.ncbi.nlm.nih.gov/gds) under the accession number GSE14520, with

samples of 247 patients collected by Liver Cancer Institute, Fudan University, Shanghai, China (Roessler

et al., 2010). Patients with expression data from paired tumor and non-tumor samples were selected, which
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result in a set of 209 patients in the GSE14520 cohort. For the LIHC cohort, TCGA Level III gene expression

data of 377 patients with HCC were downloaded fromGenomic Data Commons Data Portal (https://portal.

gdc.cancer.gov/) using R package TCGAbiolinks (Colaprico et al., 2016), from which 49 patients with paired

expression profile were assigned to the LIHC cohort. Additionally, we obtained the gene expression data

from the LIRI-JP project in ICGC (https://icgc.org/). Of the 232 patients included in the LIRI-JP project,

paired expression profile was available in 199 patients, which were assigned to the LIRI cohort. For each

cohort, the clinical data of patients were obtained for further analysis. As our analyses were based on de-

identified data, institutional review board approval and informed consent were not required.
In silico decomposition of the immune microenvironment

We adopted CIBERSORTx, a gene expression-based deconvolution approach to estimate the relative im-

mune cell infiltration levels of tumor and peritumor of each patient. According to the CIBERSORTx algo-

rithm, Monte Carlo sampling was applied to derive the deconvoluted p value for each sample (Newman

et al., 2019). The proportions of 22 immune cells in both HCC tumor samples and peritumor samples

were quantified using the LM22 signature (consisting of 547 marker genes) under 1,000 permutations. Sig-

nificant cases (p < 0.05) which indicate accurate deconvolution were kept for further analysis. The fraction

distribution of each immune cell in tumor and peritumor was compared using Wilcoxon rank-sum test.

Spearman correlation test was applied to study the pairwise correlation in the 22 immune cells of tumor

samples and peritumor samples, respectively.

We further evaluated the association between immune cell infiltration and patient prognosis. Immune cells

significantly associated with patient survival (p < 0.05) were selected by univariate cox regression. For each

cell, we select infiltration level-associated gene sets for GO enrichment analysis using R package cluster-

Profiler (Yu et al., 2012).
Cancerization-field level GES prognosis signature

Unlike the previously published prognosis model constructed from tumor-only characteristics, we adopted

the expression profile of both tumor and peritumor into model construction. A two-step procedure was

used to select optimal marker genes for distinguishing risk-low patients from risk-high patients. In the first

step, a univariate Cox proportional hazards model was applied on each of the profiled 12,749 genes in

GSE14520 cohort to explore the association between gene expression and patient survival, significant

genes (p < 0.05) were selected as candidates to allow more efficient feature selection. The number of sig-

nificant genes was 1,876 and 1,940 in tumor and peritumor, respectively.

In the second step, candidate genes were subjected to further feature selection using the least absolute

shrinkage and selection operator (LASSO) regression. LASSO uses L1 regularization to make the variables

in the Cox regression collapsible. By changing the value of regularized parameter l, we are able to control

the number of the final model (Goeman, 2010). By this method, we further screen out the most useful prog-

nostic markers among the candidate genes. The R package glmnet was applied to perform the LASSO Cox

regression model analysis (Friedman et al., 2010). Finally, a gene expression score (GES) model was con-

structed and normalized to predict the prognosis of HCC patients, the risk score for each patient was calcu-

lated based on the regression coefficient of each gene in the signature.

To make GES comparable between different profiling platforms, e.g., the signal intensity of microarray

expression data and the FPKM value of RNAseq expression data, GES was calculated using the following

formula:

GES =

P
i˛nwixiP
i˛nxi

where n is the number of genes in the model, xi is the expression of the gene, and wi is the gene-specific

weight, i.e., the coefficient for each gene.
Cancerization-field level IS prognosis signature

For the construction of a cancerization-field level immune score (IS) prognosis signature, a similar two-step

procedure as GES was applied. Briefly, in the first step, univariate cox regression was performed on each of

the 44 infiltrated immune cells (22 in tumor and 22 in peritumor), and immune cells that were significantly
20 iScience 25, 103747, February 18, 2022
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associated patient survival (p < 0.05) were selected as candidates. In the second step, the infiltration level of

the candidate immune cells was subjected to LASSO Cox regression. Finally, an immune score (IS) model

was constructed for the prediction of patient prognosis. IS was calculated using the following formula:

IS =
X

i˛n

wixi

where n is the number of immune cells in the model, xi is the infiltration level of the immune cell, and wi is

the coefficient for each immune cell.
Assessment of the predictive value of the prognostic models

To figure out whether models constructed from cancerization-field profile (GES and IS) were more accurate

on the prediction of patient survival, additional models were constructed, and their capability of risk strat-

ification was compared.

1) For comparison with GES, four models were constructed, including tumor gene score 1 (TGS1), tumor

gene score 2 (TGS2), peritumor gene score 1 (PGS1), and peritumor gene score 2 (PGS2). Model TGS1 is

the tumoral part of GES, consisting of the tumor genes from GES with the same coefficient. Model TGS2

was built from tumor expression profile, with marker genes selected using the same two-step procedure

as GES. For model TGS2, regularized parameter l was adjusted to keep the number of marker genes iden-

tical or similar to GES, ensuring that the prognosis prediction power did not result from a different gene

number. Similar to that of TGS1 and TGS2, PGS1 and PGS2 were constructed using peritumor expression

profile.

2) For comparison with IS, we constructed four models, tumor immune score 1 (TIS1), tumor immune score 1

(TIS1), tumor immune score 2 (TIS2), peritumor immune score 1 (PIS1), and peritumor immune score 2 (PIS2).

Model TIS1 is the tumoral part of IS, consisting of the tumor immune cells from IS with the same coefficient.

Model TIS2 was built by multivariate Cox regression on the profile of tumor immune cells. Similar to that of

TIS1 and TIS2, PIS1 and PIS2 were constructed using peritumor immune cell infiltration profile.

To stratify patients of different risk scores into risk-high and risk-low groups, optimal cutpoint for each

model was detected using the maximally selected rank statistics implemented in the R package maxstat

(Hothorn and Lausen, 2003). The standardized log-rank statistic across different risk scores was calculated,

thus providing a value of a cutpoint that corresponds to the most significant relation with outcome. HCC

patients were then dichotomized into a risk-high and risk-low group according to the optimal cutpoint.

Each model with its corresponding cutpoint was then validated in validation cohorts, with the survival of

the high-risk and low-risk group estimated by the Kaplan-Meier method, and compared using the log-

rank test.

We further designed a random sampling approach to validate the superiority of cancerization-field profile-

derived models. For gene expression profile, 75% of patients in the GSE14520 cohort (156 individuals) were

randomly sampled for 1,000 trials, which makes up 1,000 sets of training sets. For each training set, five

prognostic models (GES, TGS1, TGS2, PGS1, and PGS2) were constructed, with corresponding optimal cut-

point determined based on the aforementioned methods. Each model was validated in LIHC and LIRI

cohort, and log-rank p values were compared across five models using the pairwise Wilcoxon rank-sum

test.

In an effort to compare GES and previously published models, the performance of prognosis prediction

over time was compared. We used R package pec to perform the inverse probability of censoring weight-

ing (IPCW) estimation of time-dependent Brier score based on ten-fold cross-validation, as well the compu-

tation of prediction error curves of each model (Mogensen et al., 2012).

We performed Cox multivariate regression to check whether GES and IS signature were independent of

conventional clinicopathological factors (age, gender, TNM stage, HBV, ALT, cirrhosis, AFP, and tumor

size). Furthermore, receiver operating characteristic (ROC) analysis was used in validating the GES and

IS signature of their performance in predicting 24- and 36- month OS. Using R package forestplot and sur-

vivalROC, the results were visualized by forest plots and ROC curves, respectively (Heagerty et al., 2000).
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We formulated a nomogram using the R package rms, which included GES classifier, IS classifier, and TNM

stage in the nomogram (Núñez et al., 2011). We use calibration curves to assess the performance of the

nomogram, which use the bootstrap method with 1000 resamples to get bias-corrected estimates of pre-

dicted versus Observed values, with a concordance index (C-index) calculated. Decision curve analysis was

used to assess the clinical practicability of the nomogram, which applied the net benefits of threshold prob-

abilities to quantitatively evaluate the clinical value of the nomogram (Vickers and Elkin, 2006). We further

adopted the receiver operating characteristic (ROC) analysis to compare the predictive accuracy of TNM

stage, GES classifier, IS classifier, and the nomogram on each of the three cohorts in our study.
Functional relevance exploration of diagnostic gene sets

To explore potential mechanisms underlying groups of distinct risk scores, patients with consistent high- or

low- risk in both GES signature and IS signature were selected to analyze their enrichment for gene sets and

pathways. The enrichment analysis was carried out by R package gsva, using gene sets from KEGG and GO

(Ashburner et al., 2000; Hanzelmann et al., 2013; Kanehisa and Goto, 2000; Kanehisa et al., 2016). The gene

sets were obtained from MSigDB database version 7.0 (Subramanian et al., 2005). Gene set enrichment

scores (ES) of individual samples were calculated from the gene expression data using a Kolmogorov-Smir-

nov (KS) like randomwalk statistic with classical maximumdeviation method (Subramanian et al., 2005). The

GSVA ES of selected samples were then applied to fit the same linear model using R package limma and

moderated t-statistics were estimated for each gene set (Ritchie et al., 2015). Significant gene sets were

filtered with FDR adjusted p value < 0.05, and the top 40 gene sets with the highest fold change between

groups were then visualized by heatmap and volcano plot, respectively.
QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed using R (version 4.0.5). Kaplan-Meier analysis or multivariate cox anal-

ysis was performed for survival analysis. The spearman coefficient was applied to analyze correlations. Wil-

coxon rank-sum test was used to compare the difference between the value from two groups. All reported

p Values are two-tailed, and for all analyses, p < 0.05 was considered statistically significant. FDR correction

was used for multiple test correction.
22 iScience 25, 103747, February 18, 2022


	ISCI103747_proof_v25i2.pdf
	Field cancerization profile-based prognosis signatures lead to more robust risk evaluation in hepatocellular carcinoma
	Introduction
	Results
	Construction of gene expression score signature
	GES gives more robust prediction on patient survival
	Immune cell infiltration spectrum across tumor and peritumor of HCC
	Validation of the IS signature
	Construction and evaluation of a prognostic nomogram
	Functional relevance and clinical potential of diagnostic markers for HCC

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Method details
	HCC datasets preparation
	In silico decomposition of the immune microenvironment
	Cancerization-field level GES prognosis signature
	Cancerization-field level IS prognosis signature
	Assessment of the predictive value of the prognostic models
	Development of nomogram and clinical use validation
	Functional relevance exploration of diagnostic gene sets

	Quantification and statistical analysis




