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Ovarian cancer (OC) is the most lethal gynecologic cancer, mainly due to late diagnosis with 
widespread peritoneal spread at first presentation. We performed metabolomic analyses of ovarian and 
paired control tissues using capillary electrophoresis-mass spectrometry and liquid chromatography-
mass spectrometry to understand its metabolomic dysregulation. Of the 130 quantified metabolites, 
96 metabolites of glycometabolism, including glycolysis, tricarboxylic acid cycles, urea cycles, and 
one-carbon metabolites, showed significant differences between the samples. To evaluate the 
local and systemic metabolomic differences in OC, we also analyzed low or non-invasively available 
biofluids, including plasma, urine, and saliva collected from patients with OC and benign gynecological 
diseases. All biofluids and tissue samples showed consistently elevated concentrations of N1,N12-
diacetylspermine compared to controls. Four metabolites, polyamines, and betaine, were significantly 
and consistently elevated in both plasma and tissue samples. These data indicate that plasma 
metabolic dysregulation, which the most reflected by those of OC tissues. Our metabolomic profiles 
contribute to our understanding of metabolomic abnormalities in OC and their effects on biofluids.
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Metabolomic reprogramming of cancer cells is cancer hallmarks and is acquired during its multistep 
development1. Metabolomic alterations such as increased rates of glycolysis, glutaminolysis and lipid synthesis 
in cancer provide a foundation for sustained tumor growth2. Metabolites are the end products of the complex 
effects of the actions of genes, proteins, and enzymes, as well as environmental exposure, and they reflect the 
disease phenotype3,4. Metabolomics can provide measurements of large numbers of metabolites in cells, tissues or 
biological fluids, and is used in studies including targeted analysis, metabolomic profiling, and fingerprinting5,6.

Ovarian cancer (OC) is the most lethal gynecological cancer, mainly due to late diagnosis accompanied 
by widespread peritoneal dissemination at first presentation. The 5-year survival rate of patients with distant 
metastases and disease localized to the ovary is 31.5% and 92.4%, respectively7; therefore, early diagnosis is 
crucial to improve patient prognosis. CA-125 and transvaginal sonography (TVS) are commonly used for OC 
screening. However, a meta-analysis of clinical trials showed that screening for CA-125 and/or TVS did not 
decrease OC mortality8. Recently, metabolomics has been used to identify new biomarkers and investigate 
the pathogenesis of OC. Mass spectrometric metabolomic profiling of plasma in combination with CA-125 
allows early detection of OC with high sensitivity9. Metabolomic profiling of 448 plasma samples related to 
OC identified piperine, 3-indolepropionic acid, 5-hydroxyindoleacetaldehyde, and hydroxyphenyllactate as 
OC metabolic biomarkers10. These metabolites could distinguish OC from benign ovarian tumors and uterine 
fibroids, and early-stage disease from late-stage disease. Another study using metabolomics of plasma, ascites and 
tumor tissues showed that low serum phospholipids and essential amino acids were predictors of worse survival 
in OC11. These findings suggest that exploring the metabolic characteristics of biological samples could facilitate 
early diagnosis and aid in understanding the underlying biological mechanisms of OC. Several previous studies 
focusing on metabolomic profiling for OC have evaluated blood9,10,12, urine13,14, and tissue15–17 separately as 
biological samples. Currently, salivary metabolomics is a well-established, novel, and non-invasive biological 
sampling technique. It has been used to distinguish patients with breast, pancreatic, and oral cancer18–20. 
However, whether metabolomic changes in tumors correlate with measurable changes in metabolites in the 
blood, urine, and saliva remains unknown.
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This study aimed to evaluate the local and systemic metabolomic differences in OC using targeted 
metabolomics of tumor tissues, preoperative plasma, urine, and saliva, and to identify the best biofluid associated 
with metabolic changes in tumors.

Results
Patient characteristics
Table 1 presents the participant characteristics, including 37 patients with ovarian cancer (OC) and 30 patients 
with benign gynecological diseases, defined as controls (C). The median ages of the OC and C groups were 
52 (33–86) and 43 (25–71), respectively. The two groups had no significant difference in median body mass 
index (BMI). No significant difference was observed in the proportion of diabetes, hyperlipidemia, and smokers 
between the two groups. The sample numbers of International Federation of Gynecology and Obstetrics (FIGO) 
I, II, III, and IV were 20, seven, nine and one, respectively. The histological types of OC included nine high-
grade serous carcinomas, 10 endometrioid carcinomas, 14 clear cell carcinomas, two mucinous carcinomas, one 
carcinosarcoma, and one small cell carcinoma. The C group consisted of eight benign ovarian tumors, 19 uterine 
myomas, one adenomyosis, one poly cystic ovary syndrome (PCOS), and one sterility.

Metabolic profile of ovarian cancer and normal tissues
Of the OC samples (n = 37), 24 paired ovarian tumor (OT) and normal tissues (NT) were used for subsequent 
analyses. Metabolomic analyses quantified 130 metabolites in the tissue samples. In totally, 96 metabolites 
significantly different between the OT and NT groups (Fig.  1A). Most of the metabolites showed higher 
concentrations in the OT group, including N1,N12-diacetylspermine, UDP-N-acetylglucosamine, and 
adenosine monophosphate (AMP), whearas only nine metabolites showed lower concentrations, such as 
phosphoenolpyruvate (PEP). The heat map shows the metabolomic profiles of the individual samples (Fig. 1B).

Multivariate analyses also revealed apparent profile-level differences between the OT and NT groups. The 
score and loading plots of the PCA are illustrated in Figure S1A and S1B, respectively. Score plots of PLS-DA 
and variable importance of prediction (VIP) scores are also shown in Figure S1C and S1D, respectively. For 
example, guanosine monophosphate (GMP) contributed the most to the separation according to the VIP score. 
The histological subtype and clinical stage had no apparent profile-level difference (Figures S2).

The pathway analysis revealed pathway-level differences between the two groups (Fig. 1C). The significantly 
different pathways included glucose and amino acids metabolism, such as (1) pyruvate metabolism, (2) glycolysis/
gluconeogenesis, (3) propanoate metabolism, (4) amino sugar and nucleotide sugar metabolism, (5) citrate cycle 
(TCA cycle), and (6) glycine, serine and threonine metabolism (Table  2). Individual data, including glucose 
metabolism and related pathways, were visualized in a pathway form (Fig. 2). Except for the two intermediate 
metabolites in glycolysis, most metabolites showed higher concentrations in the OT group.

Ovarian cancer Control p-value

Number of patients 37 30

Age (median, range) 52 (33–86) 43 (25–71) < 0.0001

BMI (median, range) 22.2 (18.5–34.1) 22.15 (19.4–35) 0.421

Diabetes 1 (2.7%) 1 (3.3%) 1

Hyperlipidemia 6 (16.2%) 2 (6.6%) 0.281

Smoking habit 4 (10.8%) 7 (23.3%) 0.199

Stage

I 20 (54.0%)

II 7 (18.9%)

III 9 (24.3%)

IV 1 (2.7%)

Histological type

High grade serous carcinoma 9 (24.3%)

Endometrioid carcinoma 10 (27.0%)

Clear cell carcinoma 14 (37.8%)

Mucinous carcinoma 2 (5.4%)

Carcinosarcoma 1 (2.7%)

Small cell carcinoma 1 (2.7%)

Disease

Ovarian tumor (benign) 8 (26.6%)

Uterine myoma 19 (63.3%)

Adenomyosis 1 (3.3%)

PCOS 1 (3.3%)

Sterility 1 (3.3%)

Table 1. Characteristics of subjects.
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Metabolic profile of biofluid samples
Plasma sample analyses quantified 84 metabolites and revealed that seven metabolites differed significantly 
between OC and C groups (Fig.  3A). For example, betaine and N1,N12-diacetylspermine had higher 
concentrations in the OC, whereas 4-methyl-2-oxopentanoate and histidine (His) had lower concentrations. A 
heat map of plasma metabolic profiles is shown in Fig. 3B.

Urine sample analyses quantified 140 metabolites, of which 10 metabolites showed significant differences 
between the two groups (Fig. 4A and B). Salivary sample analyses quantified 82 metabolites and revealed that 
50 metabolites differed significantly between the two groups (Fig. 5A and B). In these samples, all significantly 
different metabolites showed high OC concentrations.

Metabolites consistently different among three biofluids and tissue samples
The number of metabolites showing significantly different concentrations between OT and NT samples and 
between OC and C plasma samples is shown in Fig. 6A. In totally, 12 metabolites were significantly different 
(P < 0.05) in both samples, and five metabolites were significantly different using an FDR-corrected P < 0.05. 

Fig. 1. Metabolomic profile of paired tumor (T) and normal (N) tissues. (A) Volcano plot of metabolite 
concentrations (µmol/g). X-axis indicates the log2-fold change (FC) of the averaged values of (T/N). Y-axis 
indicates the –log10(P-value) (Wilcoxon test corrected by FDR). Metabolites showing Y > 1.3, i.e., P < 0.05, 
were colored red or blue. Resentative metabolites were shown in box plots. (B) Heatmap of each metabolite’s 
higher (red) and lower (blue) concentration. Normalization by the sum, log transformation, and auto-scaling 
were used as options for data processing. Elucidation distance was used for clustering. (C) Pathway analysis. 
No normalization was used for data processing. X and Y-axes indicate the pathway impact and –log10(P-value). 
Ten representative pathways were labeled. (1) Pyruvate metabolism. (2) Glycolysis / Gluconeogenesis. (3) 
Propanoate metabolism. (4) Amino sugar and nucleotide sugar metabolism. (5) Citrate cycle (TCA cycle). (6) 
Glycine, serine and threonine metabolism. (7) Pentose and glucuronate interconversions. (8) Primary bile acid 
biosynthesis. (9) Cysteine and methionine metabolism. (10) Selenocompound metabolism.
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(Table S1). Two acetylated polyamines, –N-acetylasparate, betaine and His–were also included. Four of these 
metabolites were consistently elevated in the OT and OC groups (Figure S3).

The number of metabolites showing significantly different concentrations between OC and C in the 
three types of biofluids is shown in Fig. 6B. N1,N12-diacetylspermine levels were consistently elevated in the 
biofluids. The discriminatory abilities of this metabolite for tissues (OT vs. NT) and biofluids (OC vs. C) is 
shown in Fig. 6C. The AUC value for the tissue sample was the highest at 0.950 (95% confidence interval [CI]: 
0.889−1.000). The AUCs for plasma and urine were similar: 0.734 (95% CI: 0.612−0.857) for plasma and 0.755 
(95% CI: 0.633−0.876) for urine. The saliva showed the lowest value; 0.681 (95% CI: 0.547−0.815).

Discussion
This study is the first study to systematically investigate metabolic changes between OT and NT in tissue samples, 
and OC and C in plasma, urine, and saliva samples. Most previous studies have used one or two biological 

Fig. 2. Pathway visualization of metabolomic concentrations in paired ovarian tumor (OT) and normal tissues 
(NT). Individual data were visualized in dot plots. The left and right plots are the data of NT and OT. The 
metabolites showing P < 0.05 (Wilcoxon test corrected by FDR) were colored pink (higher in OT) and light 
blue (lower in OT). The Y-axis indicates the metabolite concentration (µmol/g).

 

Rank Pathway Number of total compounds Hits
Raw
p-value

-LOG10
p-value Holm adjust FDR Impact

1 Pyruvate metabolism 22 4 4.13E-13 12.384 2.02E-11 1.01E-11 0.0311

2 Glycolysis / Gluconeogenesis 26 5 4.13E-13 12.384 2.02E-11 1.01E-11 0.14972

3 Propanoate metabolism 23 3 3.81E-12 11.419 1.79E-10 6.22E-11 0

4 Amino sugar and nucleotide sugar metabolism 37 10 1.23E-10 9.9118 5.64E-09 1.50E-09 0.32396

5 Citrate cycle
(TCA cycle) 20 5 6.63E-10 9.1787 2.98E-08 6.49E-09 0.19704

6 Glycine, serine and threonine metabolism 33 9 1.03E-09 8.9874 4.53E-08 8.41E-09 0.54222

7 Pentose and glucuronate interconversions 18 4 2.60E-09 8.585 1.12E-07 1.82E-08 0.20312

8 Primary bile acid biosynthesis 46 1 9.29E-09 8.0319 3.90E-07 5.69E-08 0.00758

9 Cysteine and methionine metabolism 33 8 1.31E-08 7.8821 5.38E-07 7.14E-08 0.34331

10 Selenocompound metabolism 20 1 1.88E-08 7.7252 7.53E-07 9.23E-08 0

Table 2. Pathway ranking for tissue. FDR, false discovery rate.
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samples for metabolic analysis to achieve early diagnosis and understand the underlying biological mechanisms 
of ovarian cancer.

Our metabolomic profiling of 24 paired OT and NT samples showed that the accumulation of lactate, an 
end product of glycolysis, and the reduction of intermediate metabolites in glycolysis, such as PEP and glycerate 
3-phosphate (3PG) in OT (Figs.  1A and 2), indicating that the Warburg effect, a well-known characteristic 
of cancer cell energy metabolism, was observed in OC tissues. The glutamine and glutamic acid levels were 
significantly higher in the OT group than the NT group. Levels of metabolites in the latter half of the TCA 
cycle, such as succinate, fumarate, and malate, were significantly elevated in the OT group (Figs. 1A and 2). 
The activation of glycolysis and glutaminolysis in OC tissues is consistent with previous studies that performed 
metabolic analyses using various cancer tissues20–22. One-carbon metabolism, including that of choline, betaine, 
methionine, S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) was higher in the OT group 
(Figs.  1A and 2). The metabolites produced are made available for nucleotide biosynthesis, methylation, 
regulation of redox status, which contribute to cell proliferation, chemoresistance, and survival in OC23. In 
our paired tissue samples, metabolites associated with the urea cycle and polyamine pathway were elevated in 
the OT group compared to those in the NT group (Figs. 1A and 2). These results are consistent with that of a 
previous study which investigated metabolic alterations in unpaired normal ovarian and primary OC tissues22. 
The alterations in the urea cycle are also associated with cancer progression24. Notably, polyamines have been 
reported to be more abundant in high-grade serous carcinomas (HGSC) than in non-HGCS17, implying that the 
polyamine pathway may be involved in the aggressive phenotype of OC.

To identify the best biofluid reflecting metabolic dysregulation in OC tissues, we compared the metabolomic 
profiles of plasma, urine, and saliva between OC and C groups. The number of metabolites showing significantly 

Fig. 3. Metabolomic profiles in plasma collected from the patients with ovarian cancer (OC) and controls 
(C). (A) Volcano plot of metabolite concentrations (µmol/g). X-axis indicates the log2-fold change (FC) 
of the averaged values of (OC/C). Y-axis indicates the –log10(P-value) (Wilcoxon test corrected by FDR). 
Representative metabolites were shown in box plots. (B) Heatmap visualization.
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different concentrations in three types of biofluids between the two groups was less than that between the OT 
and NT groups in the tissue samples (Figs. 3A and 4A, and 5). Our metabolic profiling demonstrated that plasma 
could be the best biofluid to reflect metabolic dysregulation in OC tissues. In totally, 12 metabolites showed 
consistently significant differences in both the plasma and tissue samples (Supplementary Table S1). Four 
metabolites, His, Leu, Met, and Trp, showed higher concentrations in OT but not in plasma samples, indicating 
that these metabolites might be actively taken up from the plasma into the tissues. N1,N12-diacetylspermine 
was consistently elevated in cancer tissues and the three types of biofluids (Figs. 1A and 6B). The discriminant 
abilities of this metabolite for tissues (OT from NT) and the biofluids (OC from C) were significant (Fig. 6C). 
Elevation of N1,N12-diacetylspermine, a polyamine metabolite, indicates that the polyamine pathway may play 
an essential role in OC metabolism. Elevated polyamine levels are involved in the initial stage of neoplastic 
transformation and tumor progression25,26. Previous studies have reported that plasma polyamines are useful 
for detecting early-stage OC9, and urinary polyamines can distinguish between benign and malignant ovarian 
tumors in both early and advanced stage13. Ornithine decarboxylase (ODC) is the first enzyme in the polyamine 
synthesis pathway in mammals and is transcriptionally regulated by MYC27,28. Integrated genome analysis has 
demonstrated that MYC is amplified in 30–40% of human ovarian tumors29, thereby linking the polyamine 
pathway and OC carcinogenesis via MYC. Moreover, the interaction between polyamine metabolism and other 
cancer-driving pathways, including the PTEN-PI3K-mTOR, WNT signaling and RAS pathways, suggests that 
the polyamine pathway is a potential therapeutic target30. Furthermore, in malignant gliomas and colon cancers, 
difluoromethlyornithine (DFMO), a specific inhibitor of ODC, has progressed to clinical trials31,32. Similarly, 

Fig. 4. Metabolic profiles in urine. (A) Volcano plot of metabolite concentrations (no unit). X-axis indicates 
the log2-fold change (FC) of the averaged values of (OC/C). Y-axis indicates the –log10(P-value) (Wilcoxon test 
corrected by FDR). Representative metabolites were shown in box plots. (B) Heatmap visualization. Urinary 
metabolite concentration was calculated by dividing the creatinine concentration of each sample.
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our results showed that the polyamine pathway is activated in OC, and further study is necessary to evaluate the 
specificity of this activation.

Nonetheless, this study had some potential limitations. The median age in the OC group was significantly 
higher than that in the control group, indicating that age may be a confounding variable in our analyses. The 
metabolomic profiles of tissue samples were clustered to separate NT and OT rather than the age (Figure S4). 
The age-mapped score plots of PCA also showed no apparent age-dependent age (Figure S5). The metabolomic 
profiles of the plasma sample also showed no clear age-dependent cluster (Figure S6). Nevertheless, age-matched 
studies are preferred to avoid histological and tumor burden biases. The relationship between the metabolomic 
profile and prognosis was also not analyzed because of the few cases of recurrence. More extensive samples are 
necessary for such analyses and rigorous validations.

In summary, our metabolomic profiling of tissues, plasma, urine, and saliva demonstrated that plasma is 
the best biofluid for reflecting metabolic changes in OC tissues. N1,N12-diacetylspermine, a component of the 
polyamine metabolomic pathway, was consistently elevated in tissues and three types of biofluids, implying that 
polyamine pathway may play an essential role in OC metabolism.

Materials and methods
Study subjects
This study was conducted according to the study protocol and was approved by the Ethics Committee of Yamagata 
University School of Medicine (2019 − 385). Written informed consent was obtained from each participant 
prior to participation in the study. Patients with OC and benign gynecological diseases were recruited from the 

Fig. 5. Metabolic profiles in saliva. (A) Volcano plot of metabolite concentrations (µmol/g). X-axis indicates 
the log2-fold change (FC) of the averaged values of (OC/C). Y-axis indicates the –log10(P-value) (Wilcoxon test 
corrected by FDR). Resentative metabolites were shown in box plots. (B) Heatmap visualization.
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Department of Obstetrics and Gynecology at Yamagata University Hospital between March 2020 and December 
2021. None of the patients had received any prior treatment such as chemotherapy or radiotherapy. None of the 
patients had any history of malignancy.

Collection of tissues and biofluids
All patients with OC provided tumor and normal tissues and plasma, urine, and saliva samples. Patients with 
benign gynecological diseases included plasma, urine, and saliva samples. OC and normal tissues were collected 
during surgery. Pathologically confirmed to be cancer-free, the healthy ovary was used as normal tissues. 
Biofluid samples were collected from all participants between 06:00am–9:30am the day before surgery. The study 
participants had not eaten or drunk since the night before biofluid collection. After collection, these samples 
were immediately stored at − 80 °C.

Metabolomics analysis
Metabolomic analyses were conducted using capillary electrophoresis time-of-flight mass spectrometry (CE-
TOFMS) and liquid chromatography triple quadrupole mass spectrometry (LC-QQQMS). CE-TOFMS was used 
to profile hydrophilic metabolites. LC-QQQMS was used for the highly sensitive quantification of polyamines. 
The parameters of analytical instruments were described for tissue samples20 and plasma, urine, and saliva33–35.

Sample processing for CE-TOFMS
The saliva sample (100 µl) was centrifuged through a 5-kDa-cutoff filter (Millipore, Bedford, MA, USA) at 9100 
× g for at least 2.5 h at 4 °C. The filtrate (45 µl) was transferred to a 1.5-ml Eppendorf tube with 2 mM of internal 
standards 1 (methionine sulfone, 2-[N-morpholino]-ethanesulfonic acid [MES], D-camphol-10-sulfonic acid, 
sodium salt, 3-aminopyrrolidine, and trimesate), mixed by Voltex, and used for CE-TOFMS analysis.

Fig. 6. Metabolites consistently elevated in tissue and multiple biofluids. (A) The number of significantly 
different metabolites between plasma and tissues (FDR-corrected P-value < 0.05). (B) The number of 
significantly different metabolites in saliva, plasma, and urine samples (FDR-corrected P-value < 0.05). (C) 
ROC curves to discriminate OT from NT (tissue) and OC from C (biofluids). AUC, 95% confidential intervals, 
and P-values are described.
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The urine sample (20 µl) was mixed 80 µL methanol and 250 µM each of internal standards 1 and centrifuged 
through a 5-kDa cutoff filter (Millipore) at 9100 × g for at 30 min at 4 °C. The filtrate was used for the CE-
TOFMS analysis.

Plasma sample (40 µL) was mixed with 360 µL methanol containing 20 µM each of internal standards 1. 
Deionized water (160 µL) and chloroform (400 µL) were added, and the solution was centrifuged at 10,000×g 
for 3  min at 4  °C. The upper aqueous layer was filtered through a 5-kDa cutoff filter (Millipore) at 9100×g 
for 180 min at 4 °C. The remaining solution was then centrifuged (960× g) for 3 h at 40 °C. Mill-Q water (40 
µL) containing internal standards 2 (200 µM of 3-aminopyrrolidine and trimesate) was used for CE-TOFMS 
analysis.

Tissue samples (approximately 50 mg) were plunged into methanol (500 µl) containing internal standards 
and 20 M each of internal standard 1 and homogenized at 1500 rpm for 1 min using a Shake Master Neo (BMS, 
Tokyo, Japan). Chloroform (500 µl) and of Milli-Q water (200 µl) were added to of the homogenized solution 
(500 µl), and the mixed solution was centrifuged at 4600×g for 15 min at 4 °C. The upper aqueous layer (300 µl) 
was centrifugally filtered at 9100×g for 3.5 h at 4 °C through a 5-kDa cutoff filter (Millipore). The 150 µl filtrate 
was lyophilized and dissolved in 50 µl of Milli-Q water containing 200 µM of internal standard 2 for CE-TOFMS 
analysis.

Sample processing for LC-QQQMS
Either saliva (10  µl) or urine (10  µl) was mixed with methanol (90  µl) containing 149.6 mM ammonium 
hydroxide [1% (v/v) ammonia solution] and 0.9 µM internal standards 3 (d8-spermine, d8-spermidine, d6-N1-
acetylspermidine, d3-N1-acetylspermine, d6-N1,N8-diacetylspermidine, d6-N1,N12-diacetylspermine, and 
1,6-diaminohexane). After centrifugation at 15,780×g for 10 min at 4 °C, the supernatant was transferred to a 
fresh tube and vacuum dried. The sample was reconstituted with 90% (v/v) methanol (10 µl) and water (30 µl) 
and then vortexed and centrifuged at 15,780 × g for 10 min at 4 °C. The 38 10 µl of supernatant was then injected 
into the LC-QQQMS. The urine sample was diluted 5000 fold and processed in the manner described above for 
the creatinine quantification.

Plasma (30 µl) was mixed with methanol (270 µl) containing 149.6 mM ammonium hydroxide [1% (v/v) 
ammonia solution] and internal standard 1 (0.2 µM). After centrifugation at 15,780 × g for 10 min at 4 °C, the 
supernatant was transferred to a fresh tube and vacuum dried. The sample was reconstituted with 90% methanol 
(10 µl) and water (20 µl) and then vortexed and centrifuged at 15,780 × g for 1 min at 4 °C, and supernatant 
(28 µl) was then injected into the LC-QQQMS.

Tissue samples (approximately 50 mg) were plunged into methanol (500 µl) containing internal standards 
and 20 M each of internal standard 1 and homogenized at 1500 rpm for 1 min using a Shake Master Neo (BMS). 
Homogenized solution (50 µl) was mixed with methanol (100 µl) containing 149.6 mM ammonium hydroxide 
[1% (v/v) ammonia solution] and 0.75 µM internal standard 3, and the mixed solution was centrifuged at 4600×g 
for 15 min at 4 °C. The supernatant was transferred to a fresh tube and centrifuged at 9100×g for 1 h at 40 °C. The 
sample was reconstituted with 90% (v/v) methanol (20 µl) and water (60 µl) and then vortexed and centrifuged 
at 15,780 × g for 1 min at 4 °C. The sample (75 µl) was transferred to a vial for LC-QQQMS analysis.

Data processing
The raw metabolomic data were processed using MasterHands (ver. 2.19.0.1, Keio University, Yamagata, Japan) to 
produce a data matrix (sample × metabolite) including absolute concentrations36. Briefly, migration time (MT) 
of each metabolite peak was corrected based on internal standards. The metabolites were identified based on the 
corrected MT and m/z values by matching those of the standard compounds. The peak area of each metabolite 
was integrated and divided by that of one of the internal standards to obtain the relative area. The ratio of the 
relative areas of the metabolites in a sample to the standard mixture was used to calculate the absolute metabolite 
concentrations in the samples37. The absolute concentration of each metabolite for saliva and plasma was used 
for subsequent analyses. The concentration of each metabolite was divided by creatinine concentrations for each 
urine sample. The metabolite concentration was divided by each tissue sample’s wet weight.

The quantitative and nominal scales of the subject characteristics were evaluated using the Mann-Whitney 
and Chi-square tests. Metabolite concentrations were evaluated using the Wilcoxon matched-pair test for pairs 
(tissue), Mann-Whitney tests, and non-paireds samples (plasma, urine, and saliva). P-values were corrected 
using the false discovery rate (FDR) for multiple independent tests.

The heatmap shows the relatively high (red) and low (blue) concentrations of each metabolite. Normalization 
by sum, log transformation, and auto-scaling (Z-score) was used for data processing. The elucidation distance 
was used for clustering. MetaboAnalyst (v. 5.0 and v 6.0) was used to visualize volcano plots and heatmaps 
and conduct principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and 
pathway analysis38. GraphPad Prism (v. 9.2.0, GraphPad Software, San Diego, CA, USA) and EZR (Saitama 
Medical Center, Jichi Medical University, Saitama, Japan) were used for all other analyses.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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