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Profiling of metabolic
dysregulation in ovarian cancer
tissues and biofluids
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Ovarian cancer (OC) is the most lethal gynecologic cancer, mainly due to late diagnosis with
widespread peritoneal spread at first presentation. We performed metabolomic analyses of ovarian and
paired control tissues using capillary electrophoresis-mass spectrometry and liquid chromatography-
mass spectrometry to understand its metabolomic dysregulation. Of the 130 quantified metabolites,
96 metabolites of glycometabolism, including glycolysis, tricarboxylic acid cycles, urea cycles, and
one-carbon metabolites, showed significant differences between the samples. To evaluate the

local and systemic metabolomic differences in OC, we also analyzed low or non-invasively available
biofluids, including plasma, urine, and saliva collected from patients with OC and benign gynecological
diseases. All biofluids and tissue samples showed consistently elevated concentrations of N*,N'2-
diacetylspermine compared to controls. Four metabolites, polyamines, and betaine, were significantly
and consistently elevated in both plasma and tissue samples. These data indicate that plasma
metabolic dysregulation, which the most reflected by those of OC tissues. Our metabolomic profiles
contribute to our understanding of metabolomic abnormalities in OC and their effects on biofluids.
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Metabolomic reprogramming of cancer cells is cancer hallmarks and is acquired during its multistep
development'. Metabolomic alterations such as increased rates of glycolysis, glutaminolysis and lipid synthesis
in cancer provide a foundation for sustained tumor growth?. Metabolites are the end products of the complex
effects of the actions of genes, proteins, and enzymes, as well as environmental exposure, and they reflect the
disease phenotype®?. Metabolomics can provide measurements of large numbers of metabolites in cells, tissues or
biological fluids, and is used in studies including targeted analysis, metabolomic profiling, and fingerprinting>®.

Ovarian cancer (OC) is the most lethal gynecological cancer, mainly due to late diagnosis accompanied
by widespread peritoneal dissemination at first presentation. The 5-year survival rate of patients with distant
metastases and disease localized to the ovary is 31.5% and 92.4%, respectively’; therefore, early diagnosis is
crucial to improve patient prognosis. CA-125 and transvaginal sonography (TVS) are commonly used for OC
screening. However, a meta-analysis of clinical trials showed that screening for CA-125 and/or TVS did not
decrease OC mortality®. Recently, metabolomics has been used to identify new biomarkers and investigate
the pathogenesis of OC. Mass spectrometric metabolomic profiling of plasma in combination with CA-125
allows early detection of OC with high sensitivity’. Metabolomic profiling of 448 plasma samples related to
OC identified piperine, 3-indolepropionic acid, 5-hydroxyindoleacetaldehyde, and hydroxyphenyllactate as
OC metabolic biomarkers!?. These metabolites could distinguish OC from benign ovarian tumors and uterine
fibroids, and early-stage disease from late-stage disease. Another study using metabolomics of plasma, ascites and
tumor tissues showed that low serum phospholipids and essential amino acids were predictors of worse survival
in OC!!. These findings suggest that exploring the metabolic characteristics of biological samples could facilitate
early diagnosis and aid in understanding the underlying biological mechanisms of OC. Several previous studies
focusing on metabolomic profiling for OC have evaluated blood*!*!2, urine'>!, and tissue'>~7 separately as
biological samples. Currently, salivary metabolomics is a well-established, novel, and non-invasive biological
sampling technique. It has been used to distinguish patients with breast, pancreatic, and oral cancer!®-2.
However, whether metabolomic changes in tumors correlate with measurable changes in metabolites in the
blood, urine, and saliva remains unknown.
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This study aimed to evaluate the local and systemic metabolomic differences in OC using targeted
metabolomics of tumor tissues, preoperative plasma, urine, and saliva, and to identify the best biofluid associated
with metabolic changes in tumors.

Results

Patient characteristics

Table 1 presents the participant characteristics, including 37 patients with ovarian cancer (OC) and 30 patients
with benign gynecological diseases, defined as controls (C). The median ages of the OC and C groups were
52 (33-86) and 43 (25-71), respectively. The two groups had no significant difference in median body mass
index (BMI). No significant difference was observed in the proportion of diabetes, hyperlipidemia, and smokers
between the two groups. The sample numbers of International Federation of Gynecology and Obstetrics (FIGO)
L, 11, 111, and IV were 20, seven, nine and one, respectively. The histological types of OC included nine high-
grade serous carcinomas, 10 endometrioid carcinomas, 14 clear cell carcinomas, two mucinous carcinomas, one
carcinosarcoma, and one small cell carcinoma. The C group consisted of eight benign ovarian tumors, 19 uterine
myomas, one adenomyosis, one poly cystic ovary syndrome (PCOS), and one sterility.

Metabolic profile of ovarian cancer and normal tissues

Of the OC samples (n=37), 24 paired ovarian tumor (OT) and normal tissues (NT) were used for subsequent
analyses. Metabolomic analyses quantified 130 metabolites in the tissue samples. In totally, 96 metabolites
significantly different between the OT and NT groups (Fig. 1A). Most of the metabolites showed higher
concentrations in the OT group, including N!,N'2-diacetylspermine, UDP-N-acetylglucosamine, and
adenosine monophosphate (AMP), whearas only nine metabolites showed lower concentrations, such as
phosphoenolpyruvate (PEP). The heat map shows the metabolomic profiles of the individual samples (Fig. 1B).

Multivariate analyses also revealed apparent profile-level differences between the OT and NT groups. The
score and loading plots of the PCA are illustrated in Figure S1A and S1B, respectively. Score plots of PLS-DA
and variable importance of prediction (VIP) scores are also shown in Figure SIC and S1D, respectively. For
example, guanosine monophosphate (GMP) contributed the most to the separation according to the VIP score.
The histological subtype and clinical stage had no apparent profile-level difference (Figures S2).

The pathway analysis revealed pathway-level differences between the two groups (Fig. 1C). The significantly
different pathways included glucose and amino acids metabolism, such as (1) pyruvate metabolism, (2) glycolysis/
gluconeogenesis, (3) propanoate metabolism, (4) amino sugar and nucleotide sugar metabolism, (5) citrate cycle
(TCA cycle), and (6) glycine, serine and threonine metabolism (Table 2). Individual data, including glucose
metabolism and related pathways, were visualized in a pathway form (Fig. 2). Except for the two intermediate
metabolites in glycolysis, most metabolites showed higher concentrations in the OT group.

Ovarian cancer | Control p-value
Number of patients 37 30
Age (median, range) 52 (33-86) 43 (25-71) <0.0001
BMI (median, range) 22.2(18.5-34.1) | 22.15(19.4-35) | 0.421
Diabetes 1(2.7%) 1(3.3%) 1
Hyperlipidemia 6(16.2%) 2 (6.6%) 0.281
Smoking habit 4 (10.8%) 7 (23.3%) 0.199
Stage
I 20 (54.0%)
I 7 (18.9%)
111 9 (24.3%)
v 1(2.7%)
Histological type
High grade serous carcinoma | 9 (24.3%)
Endometrioid carcinoma 10 (27.0%)
Clear cell carcinoma 14 (37.8%)
Mucinous carcinoma 2 (5.4%)
Carcinosarcoma 1(2.7%)
Small cell carcinoma 1(2.7%)
Disease
Ovarian tumor (benign) 8(26.6%)
Uterine myoma 19 (63.3%)
Adenomyosis 1(3.3%)
PCOS 1(3.3%)
Sterility 1(3.3%)

Table 1. Characteristics of subjects.
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Fig. 1. Metabolomic profile of paired tumor (T) and normal (N) tissues. (A) Volcano plot of metabolite
concentrations (umol/g). X-axis indicates the log,-fold change (FC) of the averaged values of (T/N). Y-axis
indicates the —log, ,(P-value) (Wilcoxon test corrected by FDR). Metabolites showing Y > 1.3, i.e., P<0.05,
were colored red or blue. Resentative metabolites were shown in box plots. (B) Heatmap of each metabolite’s
higher (red) and lower (blue) concentration. Normalization by the sum, log transformation, and auto-scaling
were used as options for data processing. Elucidation distance was used for clustering. (C) Pathway analysis.
No normalization was used for data processing. X and Y-axes indicate the pathway impact and -log, ,(P-value).
Ten representative pathways were labeled. (1) Pyruvate metabolism. (2) Glycolysis / Gluconeogenesis. (3)
Propanoate metabolism. (4) Amino sugar and nucleotide sugar metabolism. (5) Citrate cycle (TCA cycle). (6)
Glycine, serine and threonine metabolism. (7) Pentose and glucuronate interconversions. (8) Primary bile acid
biosynthesis. (9) Cysteine and methionine metabolism. (10) Selenocompound metabolism.

Metabolic profile of biofluid samples

Plasma sample analyses quantified 84 metabolites and revealed that seven metabolites differed significantly
between OC and C groups (Fig. 3A). For example, betaine and N!,N'2-diacetylspermine had higher
concentrations in the OC, whereas 4-methyl-2-oxopentanoate and histidine (His) had lower concentrations. A
heat map of plasma metabolic profiles is shown in Fig. 3B.

Urine sample analyses quantified 140 metabolites, of which 10 metabolites showed significant differences
between the two groups (Fig. 4A and B). Salivary sample analyses quantified 82 metabolites and revealed that
50 metabolites differed significantly between the two groups (Fig. 5A and B). In these samples, all significantly
different metabolites showed high OC concentrations.

Metabolites consistently different among three biofluids and tissue samples

The number of metabolites showing significantly different concentrations between OT and NT samples and
between OC and C plasma samples is shown in Fig. 6A. In totally, 12 metabolites were significantly different
(P<0.05) in both samples, and five metabolites were significantly different using an FDR-corrected P <0.05.
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Raw -LOG10

Rank | Pathway Number of total compounds | Hits | p-value | p-value | Holm adjust | FDR Impact
1 Pyruvate metabolism 22 4 4.13E-13 | 12.384 2.02E-11 1.01E-11 | 0.0311
2 Glycolysis / Gluconeogenesis 26 5 | 4.13E-13 | 12.384 | 2.02E-11 1.01E-11 | 0.14972
3 Propanoate metabolism 23 3 3.81E-12 | 11.419 1.79E-10 6.22E-11 |0

4 Amino sugar and nucleotide sugar metabolism | 37 10 1.23E-10 | 9.9118 | 5.64E-09 1.50E-09 | 0.32396
5 (CT“Cf:tec;Zfel)e 20 5 |663E-10 | 9.1787 | 2.98E-08 6.49E-09 | 0.19704
6 Glycine, serine and threonine metabolism 33 9 1.03E-09 | 8.9874 | 4.53E-08 8.41E-09 | 0.54222
7 Pentose and glucuronate interconversions 18 4 2.60E-09 | 8.585 1.12E-07 1.82E-08 | 0.20312
8 Primary bile acid biosynthesis 46 1 9.29E-09 | 8.0319 | 3.90E-07 5.69E-08 | 0.00758
9 Cysteine and methionine metabolism 33 8 1.31E-08 | 7.8821 |5.38E-07 7.14E-08 | 0.34331
10 Selenocompound metabolism 20 1 1.88E-08 | 7.7252 | 7.53E-07 9.23E-08 | 0

Table 2. Pathway ranking for tissue. FDR, false discovery rate.
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Fig. 2. Pathway visualization of metabolomic concentrations in paired ovarian tumor (OT) and normal tissues
(NT). Individual data were visualized in dot plots. The left and right plots are the data of NT and OT. The
metabolites showing P < 0.05 (Wilcoxon test corrected by FDR) were colored pink (higher in OT) and light
blue (lower in OT). The Y-axis indicates the metabolite concentration (ptmol/g).

(Table S1). Two acetylated polyamines, —N-acetylasparate, betaine and His-were also included. Four of these
metabolites were consistently elevated in the OT and OC groups (Figure S3).

The number of metabolites showing significantly different concentrations between OC and C in the
three types of biofluids is shown in Fig. 6B. N!,N'2-diacetylspermine levels were consistently elevated in the
biofluids. The discriminatory abilities of this metabolite for tissues (OT vs. NT) and biofluids (OC vs. C) is
shown in Fig. 6C. The AUC value for the tissue sample was the highest at 0.950 (95% confidence interval [CI]:
0.889—1.000). The AUCs for plasma and urine were similar: 0.734 (95% CI: 0.612—0.857) for plasma and 0.755
(95% CI: 0.633—0.876) for urine. The saliva showed the lowest value; 0.681 (95% CI: 0.547—0.815).

Discussion
This study is the first study to systematically investigate metabolic changes between OT and NT in tissue samples,
and OC and C in plasma, urine, and saliva samples. Most previous studies have used one or two biological
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Fig. 3. Metabolomic profiles in plasma collected from the patients with ovarian cancer (OC) and controls
(C). (A) Volcano plot of metabolite concentrations (umol/g). X-axis indicates the log,-fold change (FC)
of the averaged values of (OC/C). Y-axis indicates the —log, ,(P-value) (Wilcoxon test corrected by FDR).
Representative metabolites were shown in box plots. (B) Heatmap visualization.

samples for metabolic analysis to achieve early diagnosis and understand the underlying biological mechanisms
of ovarian cancer.

Our metabolomic profiling of 24 paired OT and NT samples showed that the accumulation of lactate, an
end product of glycolysis, and the reduction of intermediate metabolites in glycolysis, such as PEP and glycerate
3-phosphate (3PG) in OT (Figs. 1A and 2), indicating that the Warburg effect, a well-known characteristic
of cancer cell energy metabolism, was observed in OC tissues. The glutamine and glutamic acid levels were
significantly higher in the OT group than the NT group. Levels of metabolites in the latter half of the TCA
cycle, such as succinate, fumarate, and malate, were significantly elevated in the OT group (Figs. 1A and 2).
The activation of glycolysis and glutaminolysis in OC tissues is consistent with previous studies that performed
metabolic analyses using various cancer tissues?-?2. One-carbon metabolism, including that of choline, betaine,
methionine, S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH) was higher in the OT group
(Figs. 1A and 2). The metabolites produced are made available for nucleotide biosynthesis, methylation,
regulation of redox status, which contribute to cell proliferation, chemoresistance, and survival in OC?. In
our paired tissue samples, metabolites associated with the urea cycle and polyamine pathway were elevated in
the OT group compared to those in the NT group (Figs. 1A and 2). These results are consistent with that of a
previous study which investigated metabolic alterations in unpaired normal ovarian and primary OC tissues®?.
The alterations in the urea cycle are also associated with cancer progression?%. Notably, polyamines have been
reported to be more abundant in high-grade serous carcinomas (HGSC) than in non-HGCS'”, implying that the
polyamine pathway may be involved in the aggressive phenotype of OC.

To identify the best biofluid reflecting metabolic dysregulation in OC tissues, we compared the metabolomic
profiles of plasma, urine, and saliva between OC and C groups. The number of metabolites showing significantly
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Fig. 4. Metabolic profiles in urine. (A) Volcano plot of metabolite concentrations (no unit). X-axis indicates
the log,-fold change (FC) of the averaged values of (OC/C). Y-axis indicates the —log, ,(P-value) (Wilcoxon test
corrected by FDR). Representative metabolites were shown in box plots. (B) Heatmap visualization. Urinary
metabolite concentration was calculated by dividing the creatinine concentration of each sample.

different concentrations in three types of biofluids between the two groups was less than that between the OT
and NT groups in the tissue samples (Figs. 3A and 4A, and 5). Our metabolic profiling demonstrated that plasma
could be the best biofluid to reflect metabolic dysregulation in OC tissues. In totally, 12 metabolites showed
consistently significant differences in both the plasma and tissue samples (Supplementary Table S1). Four
metabolites, His, Leu, Met, and Trp, showed higher concentrations in OT but not in plasma samples, indicating
that these metabolites might be actively taken up from the plasma into the tissues. N',N'2-diacetylspermine
was consistently elevated in cancer tissues and the three types of biofluids (Figs. 1A and 6B). The discriminant
abilities of this metabolite for tissues (OT from NT) and the biofluids (OC from C) were significant (Fig. 6C).
Elevation of N',N'2-diacetylspermine, a polyamine metabolite, indicates that the polyamine pathway may play
an essential role in OC metabolism. Elevated polyamine levels are involved in the initial stage of neoplastic
transformation and tumor progression?>?. Previous studies have reported that plasma polyamines are useful
for detecting early-stage OC’, and urinary polyamines can distinguish between benign and malignant ovarian
tumors in both early and advanced stage!®. Ornithine decarboxylase (ODC) is the first enzyme in the polyamine
synthesis pathway in mammals and is transcriptionally regulated by MYC?"2%, Integrated genome analysis has
demonstrated that MYC is amplified in 30-40% of human ovarian tumors?, thereby linking the polyamine
pathway and OC carcinogenesis via MYC. Moreover, the interaction between polyamine metabolism and other
cancer-driving pathways, including the PTEN-PI3K-mTOR, WNT signaling and RAS pathways, suggests that
the polyamine pathway is a potential therapeutic target*’. Furthermore, in malignant gliomas and colon cancers,
difluoromethlyornithine (DFMO), a specific inhibitor of ODC, has progressed to clinical trials®132. Similarly,
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Fig. 5. Metabolic profiles in saliva. (A) Volcano plot of metabolite concentrations (umol/g). X-axis indicates
the log,-fold change (FC) of the averaged values of (OC/C). Y-axis indicates the —log, ,(P-value) (Wilcoxon test
corrected by FDR). Resentative metabolites were shown in box plots. (B) Heatmap visualization.

our results showed that the polyamine pathway is activated in OC, and further study is necessary to evaluate the
specificity of this activation.

Nonetheless, this study had some potential limitations. The median age in the OC group was significantly
higher than that in the control group, indicating that age may be a confounding variable in our analyses. The
metabolomic profiles of tissue samples were clustered to separate NT and OT rather than the age (Figure S4).
The age-mapped score plots of PCA also showed no apparent age-dependent age (Figure S5). The metabolomic
profiles of the plasma sample also showed no clear age-dependent cluster (Figure S6). Nevertheless, age-matched
studies are preferred to avoid histological and tumor burden biases. The relationship between the metabolomic
profile and prognosis was also not analyzed because of the few cases of recurrence. More extensive samples are
necessary for such analyses and rigorous validations.

In summary, our metabolomic profiling of tissues, plasma, urine, and saliva demonstrated that plasma is
the best biofluid for reflecting metabolic changes in OC tissues. N*,N'2-diacetylspermine, a component of the
polyamine metabolomic pathway, was consistently elevated in tissues and three types of biofluids, implying that
polyamine pathway may play an essential role in OC metabolism.

Materials and methods

Study subjects

This study was conducted according to the study protocol and was approved by the Ethics Committee of Yamagata
University School of Medicine (2019 —385). Written informed consent was obtained from each participant
prior to participation in the study. Patients with OC and benign gynecological diseases were recruited from the
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Fig. 6. Metabolites consistently elevated in tissue and multiple biofluids. (A) The number of significantly
different metabolites between plasma and tissues (FDR-corrected P-value < 0.05). (B) The number of
significantly different metabolites in saliva, plasma, and urine samples (FDR-corrected P-value <0.05). (C)
ROC curves to discriminate OT from NT (tissue) and OC from C (biofluids). AUC, 95% confidential intervals,
and P-values are described.

Department of Obstetrics and Gynecology at Yamagata University Hospital between March 2020 and December
2021. None of the patients had received any prior treatment such as chemotherapy or radiotherapy. None of the
patients had any history of malignancy.

Collection of tissues and biofluids

All patients with OC provided tumor and normal tissues and plasma, urine, and saliva samples. Patients with
benign gynecological diseases included plasma, urine, and saliva samples. OC and normal tissues were collected
during surgery. Pathologically confirmed to be cancer-free, the healthy ovary was used as normal tissues.
Biofluid samples were collected from all participants between 06:00am-9:30am the day before surgery. The study
participants had not eaten or drunk since the night before biofluid collection. After collection, these samples
were immediately stored at — 80 °C.

Metabolomics analysis

Metabolomic analyses were conducted using capillary electrophoresis time-of-flight mass spectrometry (CE-
TOFMS) and liquid chromatography triple quadrupole mass spectrometry (LC-QQQMS). CE-TOFMS was used
to profile hydrophilic metabolites. LC-QQQMS was used for the highly sensitive quantification of polyamines.
The parameters of analytical instruments were described for tissue samples?” and plasma, urine, and saliva®-3.

Sample processing for CE-TOFMS

The saliva sample (100 pl) was centrifuged through a 5-kDa-cutoff filter (Millipore, Bedford, MA, USA) at 9100
X g for atleast 2.5 h at 4 °C. The filtrate (45 pl) was transferred to a 1.5-ml Eppendorf tube with 2 mM of internal
standards 1 (methionine sulfone, 2-[N-morpholino]-ethanesulfonic acid [MES], D-camphol-10-sulfonic acid,
sodium salt, 3-aminopyrrolidine, and trimesate), mixed by Voltex, and used for CE-TOFMS analysis.

Scientific Reports |

(2024) 14:21555 | https://doi.org/10.1038/s41598-024-72938-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

The urine sample (20 pl) was mixed 80 pL methanol and 250 uM each of internal standards 1 and centrifuged
through a 5-kDa cutoff filter (Millipore) at 9100 X g for at 30 min at 4 °C. The filtrate was used for the CE-
TOFMS analysis.

Plasma sample (40 pL) was mixed with 360 uL methanol containing 20 uM each of internal standards 1.
Deionized water (160 pL) and chloroform (400 uL) were added, and the solution was centrifuged at 10,000xg
for 3 min at 4 °C. The upper aqueous layer was filtered through a 5-kDa cutoff filter (Millipore) at 9100xg
for 180 min at 4 °C. The remaining solution was then centrifuged (960X g) for 3 h at 40 °C. Mill-Q water (40
uL) containing internal standards 2 (200 uM of 3-aminopyrrolidine and trimesate) was used for CE-TOFMS
analysis.

Tissue samples (approximately 50 mg) were plunged into methanol (500 pl) containing internal standards
and 20 M each of internal standard 1 and homogenized at 1500 rpm for 1 min using a Shake Master Neo (BMS,
Tokyo, Japan). Chloroform (500 pl) and of Milli-Q water (200 ul) were added to of the homogenized solution
(500 pl), and the mixed solution was centrifuged at 4600xg for 15 min at 4 °C. The upper aqueous layer (300 ul)
was centrifugally filtered at 9100xg for 3.5 h at 4 °C through a 5-kDa cutoft filter (Millipore). The 150 ul filtrate
was lyophilized and dissolved in 50 pl of Milli-Q water containing 200 uM of internal standard 2 for CE-TOFMS
analysis.

Sample processing for LC-QQQMS

Either saliva (10 pl) or urine (10 pl) was mixed with methanol (90 pl) containing 149.6 mM ammonium
hydroxide [1% (v/v) ammonia solution] and 0.9 pM internal standards 3 (d8-spermine, d8-spermidine, d6-N1-
acetylspermidine, d3-Nl-acetylspermine, d6-N1,N8-diacetylspermidine, d6-N1,N12-diacetylspermine, and
1,6-diaminohexane). After centrifugation at 15,780xg for 10 min at 4 °C, the supernatant was transferred to a
fresh tube and vacuum dried. The sample was reconstituted with 90% (v/v) methanol (10 ul) and water (30 pl)
and then vortexed and centrifuged at 15,780 X g for 10 min at 4 °C. The 38 10 pl of supernatant was then injected
into the LC-QQQMS. The urine sample was diluted 5000 fold and processed in the manner described above for
the creatinine quantification.

Plasma (30 pl) was mixed with methanol (270 ul) containing 149.6 mM ammonium hydroxide [1% (v/v)
ammonia solution] and internal standard 1 (0.2 uM). After centrifugation at 15,780 X g for 10 min at 4 °C, the
supernatant was transferred to a fresh tube and vacuum dried. The sample was reconstituted with 90% methanol
(10 pl) and water (20 pl) and then vortexed and centrifuged at 15,780 X g for 1 min at 4 °C, and supernatant
(28 pl) was then injected into the LC-QQQMS.

Tissue samples (approximately 50 mg) were plunged into methanol (500 pl) containing internal standards
and 20 M each of internal standard 1 and homogenized at 1500 rpm for 1 min using a Shake Master Neo (BMS).
Homogenized solution (50 pl) was mixed with methanol (100 pl) containing 149.6 mM ammonium hydroxide
[1% (v/v) ammonia solution] and 0.75 uM internal standard 3, and the mixed solution was centrifuged at 4600xg
for 15 min at 4 °C. The supernatant was transferred to a fresh tube and centrifuged at 9100xg for 1 h at 40 °C. The
sample was reconstituted with 90% (v/v) methanol (20 pl) and water (60 pl) and then vortexed and centrifuged
at 15,780 X g for 1 min at 4 °C. The sample (75 pl) was transferred to a vial for LC-QQQMS analysis.

Data processing

The raw metabolomic data were processed using MasterHands (ver. 2.19.0.1, Keio University, Yamagata, Japan) to
produce a data matrix (sample X metabolite) including absolute concentrations®. Briefly, migration time (MT)
of each metabolite peak was corrected based on internal standards. The metabolites were identified based on the
corrected MT and m/z values by matching those of the standard compounds. The peak area of each metabolite
was integrated and divided by that of one of the internal standards to obtain the relative area. The ratio of the
relative areas of the metabolites in a sample to the standard mixture was used to calculate the absolute metabolite
concentrations in the samples®. The absolute concentration of each metabolite for saliva and plasma was used
for subsequent analyses. The concentration of each metabolite was divided by creatinine concentrations for each
urine sample. The metabolite concentration was divided by each tissue sample’s wet weight.

The quantitative and nominal scales of the subject characteristics were evaluated using the Mann-Whitney
and Chi-square tests. Metabolite concentrations were evaluated using the Wilcoxon matched-pair test for pairs
(tissue), Mann-Whitney tests, and non-paireds samples (plasma, urine, and saliva). P-values were corrected
using the false discovery rate (FDR) for multiple independent tests.

The heatmap shows the relatively high (red) and low (blue) concentrations of each metabolite. Normalization
by sum, log transformation, and auto-scaling (Z-score) was used for data processing. The elucidation distance
was used for clustering. MetaboAnalyst (v. 5.0 and v 6.0) was used to visualize volcano plots and heatmaps
and conduct principal component analysis (PCA), partial least squares-discriminant analysis (PLS-DA), and
pathway analysis®®. GraphPad Prism (v. 9.2.0, GraphPad Software, San Diego, CA, USA) and EZR (Saitama
Medical Center, Jichi Medical University, Saitama, Japan) were used for all other analyses.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding
author on reasonable request.
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