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Background. Porcine parvovirus (PPV) infection-induced apoptosis was recently identified as an important pathological factor in
PPV-induced placental tissue damage, resulting in reproduction failure. In the present study, we demonstrate the possible
involvement of toll-like receptor (TLR) 4 and nuclear factor (NF)-κB inflammasome activation in PPV infection-induced
apoptosis and the protective potential of ferulic acid (FA). PPV infection significantly activated the expression levels of TLR4, NF-
κB, MyD88, and interleukin (IL)-6. However, FA ameliorated the pathological process, prevented histological alterations, and
inhibited the apoptosis rate in porcine kidney (PK-15) cells infected with PPV. Results. FA inhibited PPV infection-induced
inflammasome activation as shown by decreases in the expression of NF-κB, MyD88, and IL-6. FA also downregulated non-
structural (NS) 1 protein expression in infected PK-15 cells. Conclusions. FA downregulated NS1 and TLR4 signaling, prevented
the overproduction of reactive oxygen species, and suppressed the NF-κB inflammasome axis to inhibit PPV-induced apoptosis in
PK-15 cells.

1. Introduction

Porcine parvovirus (PPV) infection has been acknowledged
as a primary cause of reproductive disorders in pregnant
cows. It is also a crucial causative agent of diarrhea, skin
disease, and arthritis in swine [1, 2]. Clinical pathological
changes characteristic of PPV infection include mummifi-
cation, infertility, embryonic death, stillbirth, and delayed
return to estrus [3–5]. PPV is one of the few viruses that is
refractory to most disinfectants, and can survive in the
environment for extended periods of time. Moreover, no
effective treatments are available to improve the outcome of
PPV infection in the pig industry, resulting in huge eco-
nomic losses [6]. Vaccination is an effective form of pre-
vention from PPV replication, but cost and safety issues have

been deterrents to routine vaccination in many regions of
the world [7]. )erefore, it is necessary to develop new
adjunctive drugs to attenuate the effects of PPV infection.

PPV is a single-stranded DNA molecule of approxi-
mately 5 kb that contains two major open reading frames
(ORFs) and one short, genus-specific ORF. )e upstream
major ORF encodes two nonstructural proteins (NS1 and
NS2) and the downstream major ORF encodes three capsid
proteins (VP1, VP2, and VP3) [8–10]. NS1 has helicase and
nickase activities and induces apoptosis and cell lysis by
participating in viral genome replication, transcriptional
regulation, and host cell pathogenicity [11, 12]. Previous
studies reported that PPV NS1 leading to DNA and mito-
chondrial damage induced apoptosis in porcine kidney cells
via the endogenous mitochondrial pathway through reactive
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oxygen species (ROS) accumulation [13]. ROS accumula-
tion was also shown to activate nuclear factor (NF)-κB,
resulting in the release of proinflammatory cytokines and
cell death [14, 15]. Zhou et al. showed that PPV infection
activates inflammatory cytokine production through toll-
like receptor (TLR) 9 and NF-κB signaling pathways in
porcine kidney cells [16]. Based on this knowledge of the
mechanism of PPV, we screened active substances suitable
for its targeting.

Compared with vaccines, natural products show low
toxicity and high potential clinical translation because of the
diversity and complexity of their molecular structure [17].
Such products, including active ingredients of traditional
Chinese medicine (TCM), also often exhibit specific high
selectivity and biological activities through their ability to
regulate multiple signaling pathways [18]. Ferulic acid (FA),
a natural product isolate from TCM, is a phenolic compound
with antioxidant, anti-inflammatory, antidiabetic, hep-
atoprotective, and antiviral properties [19–21]. We previ-
ously found that FA inhibited PPV replication through the
mitochondrial apoptosis pathway. In the present study, we
show that FA inhibited PPV-encoded NS1 to contribute to
PPV-induced apoptosis as part of the mitochondria-medi-
ated intrinsic apoptosis pathway.

2. Methods

2.1. Reagents. Monoclonal antibodies against NF-κB, tumor
necrosis factor receptor-associated factor (TRAF) 6, IκB
kinase (IKK) α, MyD88, c-jun N-terminal kinase (JNK), and
β-actin were purchased from Cell Signaling Technology
(Shanghai, China). )e DMEM medium and fetal bovine
serum (FBS) were from Gibco BRL (Grand Island, NY,
USA). )e FITC annexin V Apoptosis Detection Kit was
from BD Biosciences (San Jose, CA, USA). Lipofectamine™
2000, dichloro-dihydro-fluorescein diacetate (DCFH-DA),
MitoSOX™ Red, MitoTracker Deep Red FM, MitoTracker
Green FM, and Hoechst 33342 were from Invitrogen
(Carlsbad, CA, USA).

2.2. Virus, Cells, and Plasmids. PPV-susceptible PK-15 cells
were purchased from the American Type Culture Collection
(Gibco BRL) and cultured in DMEM supplemented with
10% heat-inactivated FBS, 100U/mL penicillin, 100 μg/mL
streptomycin, and 2mM L-glutamine at 37°C in a 5% CO2
humidified atmosphere. )e PPV SD strain was a generous
gift from Professor Zhi Qiang Shen (Shandong Binzhou
Animal Science and Veterinary Medicine Academy, Binz-
hou, China). )e pcDNA3.1A plasmid used to construct
eukaryotic expression vectors for PPV-encoded genes was
purchased from Sangon Biotech Co., Ltd. (Shanghai, China).

2.3. Cell Infection and DNA Extraction. PK-15 cells were
seeded in 6-well plates at 1× 106 cells per well and cultured
in DMEM complete medium for 24 h. Next, 1000 μL of
diluted virus suspension containing a multiplicity of in-
fection (MOI)� 1 of the PPV stock was added to the cells for
4 h. FA at concentrations of 10, 20, or 30 μMwas then added

to the experimental groups. PPV-infected, mock-treated,
and FA-treated cultures were collected at 24 h after infection,
and DNA was extracted using the DNAprep pure cell/
bacteria kit (TianGen, Beijing, China) according to the
manufacturer’s instructions.

2.4. Quantitative Real-Time Reverse Transcription (RT)-PCR.
Primers used for RT-PCR were designed by querying Pri-
merBank with the Gene ID; sequences are listed in Addi-
tional file 1: Table 1. Total RNA was extracted from PK-15
cells using TRIzol reagent ()ermo Fisher Scientific,
Shanghai, China) according to the manufacturer’s protocol.
cDNA of each sample was transcribed by the PrimeScript RT
reagent kit (TaKaRa Biotechnology, Beijing, China), and
real-time PCR was conducted using SYBR Green I fluo-
rescent dye (TaKaRa Biotechnology, Beijing, China)
according to the manufacturer’s guidelines.

2.5. Western Blot Analysis. PK-15 cells were collected 48 h
after PPV infection and lysed in radioimmunoprecipitation
assay lysis buffer (50mM Tris pH 7.4, 150mM NaCl, 1%
Triton X-100, 1% sodium deoxycholate, 0.1% sodium
dodecyl sulfate (SDS), sodium orthovanadate, sodium
fluoride, EDTA, and leupeptin (Beyotime Institute of Bio-
technology, China) to extract total protein. Equal amounts of
protein were then subjected to SDS polyacrylamide gel
electrophoresis and transferred onto a polyvinylidene
fluoride membrane (Millipore, Billerica, MA). After
blocking with Tris-buffered saline with Tween 20 containing
5% nonfat dried milk (Becton, Dickinson and Company,
Franklin Lakes, NJ, USA), the membranes were incubated
with retinoic acid receptor beta polyclonal primary antibody
(ProteinTech, Beijing, China) and corresponding horse-
radish peroxidase-conjugated secondary antibodies (Pro-
teinTech). Protein bands were detected by enhanced
chemiluminescence (Millipore, Billerica, MA).

2.6. Construction of PPV NS1 Expression Vectors. NS1 genes
were PCR-amplified from the PPV genome using specific
primers (Table 1) according to a previously described vector
construction protocol [13].

2.7. PPV Infection and NS1 Expression Vector Transfection.
PK-15 cells were plated at 1× 106 per well in 6-well plates
and cultured in DMEM complete medium for 24 h and then
infected with PPV at a MOI of 1. After a further 24 h, the
DMEM medium was removed. NS1 vector (4 μg/μL) and
10 μL Lipofectamine 3000 reagent (Beyotime Biotechnology,
Shanghai, China) were separately mixed with 250 μL of the
DMEM complete medium, allowed to stand at room tem-
perature for 5min, and then lightly mixed together and
added to the cells for 20min of culture at room temperature.
Cells were then incubated with 500 μLmixedmedium for 8 h
at 37°C and recultured in complete medium for an additional
16 h at 37°C. Luciferase activities were detected using a TD-
20/20 luminometer (Turner BioSystems, Inc., Sunnyvale,
CA, USA). )e pcDNA3.1A vector was transfected as
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mentioned above as a negative control, and different con-
centrations of FA were applied to the experimental groups.

2.8.CellViabilityAssay. PK-15 cell viability was evaluated by
using the CCK-8 kit (Beyotime Biotechnology) following the
manufacturer’s instructions.

2.9. Statistical Analysis. Results were analyzed by one-way
analysis of variance and the Student’s t-test with Bonferroni
correction. All numerical data were collected from at least
three separate experiments. Results were expressed as
means± standard deviation of the means. P< 0.05 was
considered statistically significant.

3. Results

3.1. FA Inhibition of PPV-InducedApoptosisMainlyOccurred
through NS1 Protein. PPV infection is known to induce
apoptosis in PK-15 cells, and we previously found that this
could be inhibited by FA [1, 2]. To further investigate the
mechanism by which FA inhibits PPV-induced apoptosis of
PK-15 cells, we examined the expression of PPV-encoded
genes by RT-PCR (Figure 1(a)). PPV infection significantly
upregulated the expression of NS1 compared with the mock
group, and this was significantly downregulated by treat-
ment with FA. However, FA had no significant effect on the
PPV-induced expression of VP1 or VP2 (Figures 1(b) and
1(c)). As shown in Figure 1(d), FA significantly inhibited
PPV-induced apoptosis of PK-15 cells. Together, these data
indicate that NS1 protein plays an important role in the
inhibition of PPV-induced apoptosis by FA.

3.2. FA Inhibition of Inflammatory Cytokine Production after
PPV Infection. Viral infection could induce the release of
inflammatory cytokines. To determine whether FA would
inhibit inflammatory cytokine production in PK-15 cells
after PPV infection, cell culture supernatants were harvested

and used to detect interleukin (IL)-6, IL-12, and tumor
necrosis factor (TNF)-α by ELISA (Boster Biotechnology,
Wuhan, China) following the manufacturer’s protocol. PPV
infection was found to stimulate IL-6 secretion and inhibit
TNF-α and IL-12 secretion (Figures 2(a)–2(c)), but signif-
icant downregulation of IL-6 secretion was observed fol-
lowing FA treatment. )is was further verified by
determining IL-6 mRNA and protein expression using
quantitative real-time PCR (Figure 2(d)) and western
blotting.

3.3. FA Inhibition of PPV-Induced Apoptosis Involved NF-κB
Signaling Pathway-Related Genes. FA was previously shown
to suppress excessive ROS production, NF-κB/NLRP3
inflammasome axis activation, and apoptosis [16]. To de-
termine the expression profile of NF-κB signaling pathway-
related genes in PK-15 cells, mRNA and protein expression
levels of NF-κB, TRAF6, IKKα, and MyD88 were examined
using quantitative real-time PCR and western blotting. PPV
infection significantly increased both the gene and protein
expression levels of NF-κB, TRAF6, IKKα, and MyD88
compared with the uninfected group. However, FA treat-
ment significantly suppressed this increase in a dose-de-
pendent manner (Figures 3(a)–3(d)).

3.4. FA Inhibition of PPV-Induced Apoptosis Involved NF-κB
SignalingPathwaysMediatedbyTLR4. TLRs are the first line
of defense against invading pathogens, and are important
pattern recognition receptors for the detection and response
of microbial ligands upstream of the NF-κB pathway [16].
Early PPV infection was previously shown to activate
TLR1–TLR10. To determine whether TLRs play key roles in
identifying the virus during FA inhibition of PPV-induced
apoptosis, we used RT-PCR and western blotting to in-
vestigate the transcription pattern of TLR1–10. As shown in
Figures 4(a) and 4(b), PPV could upregulate the gene and
protein expression levels of TLR4 and TLR9 compared with

Table 1: Primers for amplifying porcine parvovirus-encoded genes.

Gene Primer name Primer sequence (5’⟶3’) Size (bp)

NS1 NS1F CGGGGTACCACCATGGCAGCGGGAAACACTTAC 2007NS1R CCGACCGGTTTCAAGGTTTGTTGTGGGTGC

VP1 VP1F CGGGGTACCACCATGGCGCCTCCTGCAAAAAGAGCA 2179VP1R CCGACCGGTGTATAATTTTCTTGGTATAAGTTG

VP2 VP2F CGGGGTACCACCATGAGTGAAAATGTGGAACAAC 1758VP2R CCGACCGGTGTATAATTTTCTTGGTATAAGTTG

NF-κB NF-κBF GCAGCAAGCAGAAGAGCA 145NF-κBR CAGCCCACAGCAACAGAG

TRAF6 TRAF6F AGGGAACGATACGCCTTAC 118TRAF6R CGTGGGATTGTGGGTCT

MYD88 MYD88F CGTCGGATGGTAGTGGTTG 100MYD88R TCTGATGGGCACCTGGA

IL-6 IL-6F CTCAGCAATGTGGGCTGT 101IL-6R TCTTCCACGGGACTGTTCT

TLR4 TLR4F GCCTCCAAACCTTGAAAA 139TLR4R GAATGAAATGCCCTCTGG
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Figure 1: Inhibition of PPV infection-induced apoptosis via NS1. PPV (MOI� 1) was used to infect PK-15 cells with or without FA
treatment, and cell supernatants were harvested to determine the expression of NS1 (a), VP1 (b), and VP2 (c) by RT-PCR. Cell viability was
detected by using the CCK-8 kit (d). ∗∗P< 0.01 compared with the PPV but no-FA group. Cell cytopathic changes were observed mi-
croscopically (e), and red arrows were cell cytopathic changes.

∗∗

20

15

10

5

0

IL
-6

 co
nc

en
tr

at
io

n 
(p

g/
m

l)

PPV (MOI = 1)
FA (μm)

– + +
–– 30

(a)

∗∗

TN
F-
α 

co
nc

en
tr

at
io

n 
(p

g/
m

l) 150

100

50

0
PPV (MOI = 1)

FA (μm)
– + +

–– 30

(b)

Figure 2: Continued.
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Figure 2: Inhibition of PPV infection-induced IL-6, TNF-α, and IL-12 expression in PK-15 cells. PPV (MOI� 1) was used to infect PK-15
cells with or without FA treatment, and cell culture supernatants were harvested to determine the concentration of IL-6 ((a) and (d)), TNF-α
(b), and IL-12 (c) using ELISA kits and western blotting. ∗∗P< 0.01 compared with the PPV but no-FA group.
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Figure 3: Inhibition of PPV infection-induced transcription of NF-κB pathway-related genes in PK-15 cells. )e mRNA and protein
expression levels of P65 (a), TRAF6 (b), MyD88 (c), and IKKα (d) were detected by RT-PCR and western blotting. ∗∗P< 0.01 and ∗P< 0.05
compared with the PPV but no-FA group. All data are expressed as the mean± SD of three independent experiments.
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the uninfected group. FA significantly downregulated the
expression of TLR4; although the same effect was seen on
TLR9, 20 and 30 μM FA groups could downregulate the
expression of TLR9 compared with the uninfected group.
)ese results indicated that FA inhibited PPV-induced
apoptosis via TLR4.

Mitogen-activated kinases (MAPKs) including extra-
cellular signal-regulated JNK and p38 MAPK are important
signaling molecules following TLR4 activation [22]. As
shown in Figures 4(c) and 4(d), gene and protein expression
levels of P38 MAPK and JNK were significantly upregulated
in response to PPV infection, but this was inhibited by FA
treatment. Together, these data suggest that FA inhibited
PPV-induced apoptosis in PK-15 cells through the NF-κB
signaling pathway mediated by TLR4.

3.5. FA Inhibition of NS1 Protein-Activated NF-κB Signaling
Pathways and ROS Accumulation. NS1 plays an important
role in PPV infection of host cells. Previous work showed
that PPV infection actives NF-κB signaling pathways and
induces ROS accumulation, thereby inducing apoptosis in
host cells [16, 23]. However, it was unclear whether this
involved the NS1 protein. PK-15 cells were transfected with

NS1 vector (4 μg) and underwent FA treatment, and then
NS1 and NF-κB expression was analyzed by RT-PCR and
intracellular ROS levels were determined by the DCFH-DA
fluorescence assay. As shown in Figures 5(a) and 5(b), the
relative expression of NS1 in cells infected with PPV,
transfected with the NS1 vector, and receiving FA treatment
was significantly lower than that of cells not treated with FA;
moreover, cell proliferation was notably higher. )is indi-
cated that FA treatment significantly inhibited PPV and NS1
vector-induced apoptosis in PK-15 cells. FA treatment also
significantly downregulated the expression of NF-κB
(Figure 5(c)) and IL-6 (Figure 5(d)) induced by PPV and
NS1 vector coinfection and reduced the expression of ROS
(Figure 5(e)). )ese data indicate that FA inhibited NS1
protein-activated NF-κB signaling pathways and ROS
accumulation.

4. Discussion

FA is known to have pharmacological bioactivity, including
radioresistance, antioxidant, antibacterial, and antiviral
functions [24]. Our previous studies showed that FA could
inhibit PPV infection both in vitro and in vivo, but the
mechanism of action of this was unclear. In the present
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Figure 4: PPV bound to TLR4 and suppressed MAPK signaling pathway-related genes. TLR4 and TLR9 mRNA expression levels were
detected by RT-PCR ((a), (b)). TLR4 protein expression was measured by western blotting (a). MAPK signaling pathway-related genes ((c),
(d)) were analyzed by RT-PCR and western blotting. All data are expressed as the mean± SD of three independent experiments. ∗P< 0.05
and ∗P< 0.05 compared with the PPV but no-FA group.
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study, we revealed that FA interference of PPV NS1 protein
expression inhibited PPV-induced apoptosis in PK-15 cells
mainly via TLR4 and NF-κB signaling pathways.

Virus infection-induced apoptosis plays an important
role in viral pathogenesis. )e PPV NS1 protein mainly
induces apoptosis via the ROS/mitochondrial pathway [13],
and ROS-mediated NF-κB activation and subsequent
upregulation of inducible nitric oxide (NO) synthase in-
crease NO levels. Such increases in ROS and NO can lead to
DNA and protein damage, resulting in cell death [20]. At
different phases of the virus life cycle, viral infection affects
NF-κB signaling [25]. Indeed, the activation of NF-κB sig-
naling by PPV infection is well-documented [16]. In the
present study, the expression of ROS and NF-κB in PK-15
cells infected with PPV was increased. FA confers protection
against ROS-induced mitochondrial dysfunction and NF-κB

signaling-induced apoptosis, so suppressing NF-κB signal-
ing and enhancing cellular antioxidant defenses was pre-
dicted to prevent PPV infection-induced apoptosis. As
expected, treatment with FA could suppress PPV infection-
induced NF-κB signaling-related genes and the production
of ROS.

)e activation of inflammation has previously been
implicated in the development of PPV infection-induced
apoptosis [13, 14, 16]. In the present study, PPV infection-
induced apoptosis by activating the expression of P53 and
enhancing ROS, which is known to activate redox-sensitive
NF-κB and its downstream inflammatory mediators. Ad-
ditionally, ROS integrate different signals leading to
inflammasome activation [26]. PPV- and NS1-induced ROS
accumulation therefore appears to be a crucial factor for
PPV infection-induced apoptosis in PK-15 cells. In our
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Figure 5: Inhibition of NS1 protein-activated NF-κB signaling pathways and ROS accumulation. NS1 expression following NS1 vector
transfection and FA treatment (a). Cell survival rates under NS1 vector transfection and FA treatment (b). NF-κB (c) and IL-6 (d) expression
under NS1 vector transfection and FA treatment. ROS expression following NS1 vector transfection and FA treatment as detected by DCFH-
DA (e).
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study, PPV infection-induced ROS overproduction was also
associated with the activation of NF-κB, together with in-
creased secretion of IL-6. )e prevention of PPV-induced
NF-κB activation and ROS accumulation by FA subse-
quently ameliorated IL-6 levels.

To further verify the mechanisms underlying the ame-
liorative effect of FA on PPV-induced apoptosis, we de-
termined the expression levels of TLRs. )ese are key
initiators of innate immune responses to macrophage in-
fection and to cells in the adaptive immune system. TLR4
identifies exogenous pathogens by binding to lipopolysac-
charides of Gram-negative bacteria, stimulating the pro-
duction of antimicrobial peptides, and inducing nonspecific
immune responses such as activation of the NF-κB pathway
in macrophages. FA was previously documented to prevent
apoptotic cell death by suppressing oxidative stress and the
expression of Bax, TLR4, and caspase-3 genes [27]. Based on
our findings, we propose that FA inhibits NF-κB activation
by a downstream mechanism involving TLR4.

In conclusion, PPV infection activated the expression of
TLR4, the NF-κB inflammasome axis, and its downstream
molecule IL-6 in PK-15 cells. FA markedly prevented the
overproduction of ROS, inflammation, and apoptosis in
PPV-infected cells and enhanced their antioxidant defenses.
TLR4 was found to underlie these ameliorative effects in-
volving the suppression of ROS and NF-κB inflammasome
signaling, as shown by the mechanistic pathways. )us, FA
has potential as a promising protective agent against PPV
infection-induced apoptosis. However, further testing
should be conducted in vivo.
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