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Abstract

We present methods to construct phylogenetic models of tumor progression at the cellular level that include copy number
changes at the scale of single genes, entire chromosomes, and the whole genome. The methods are designed for data
collected by fluorescence in situ hybridization (FISH), an experimental technique especially well suited to characterizing
intratumor heterogeneity using counts of probes to genetic regions frequently gained or lost in tumor development. Here,
we develop new provably optimal methods for computing an edit distance between the copy number states of two cells
given evolution by copy number changes of single probes, all probes on a chromosome, or all probes in the genome. We
then apply this theory to develop a practical heuristic algorithm, implemented in publicly available software, for inferring
tumor phylogenies on data from potentially hundreds of single cells by this evolutionary model. We demonstrate and
validate the methods on simulated data and published FISH data from cervical cancers and breast cancers. Our
computational experiments show that the new model and algorithm lead to more parsimonious trees than prior methods
for single-tumor phylogenetics and to improved performance on various classification tasks, such as distinguishing primary
tumors from metastases obtained from the same patient population.
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Introduction

In this paper, we develop new methods to advance the theory

of phylogenetic inference for reconstructing evolutionary histories

of cell populations in solid tumors. The work is specifically

designed for use in tracking tumor evolution by gain and loss of

genomic regions as assessed by multicolor fluorescence in situ
hybridization (FISH), which measures the copy numbers of

targeted genes and chromosomes in potentially hundreds of

individual cells of a tumor. This technology was the basis of the

earliest methods for phylogenetic reconstruction of single tumors

[1,2]. FISH remains uniquely valuable for such studies because

the large number of cells that FISH can profile makes it possible

to collect data on enough tumors in enough detail to build cell-

by-cell phylogenies for populations of tumors and begin to study

the common features of these phylogenies. In the present work,

we specifically extend our previously developed inference

algorithms to encompass a more complicated but realistic model

of evolution of FISH probe counts, accounting for gain and loss

of genetic material at the level of single gene probes, multiple

probes on a single chromosome, or a probe set distributed across

the whole genome. We demonstrate the value of these

algorithmic improvements to more accurate phylogenetic infer-

ence and improved effectiveness of the resulting phylogenies in

downstream prediction tasks.

The present work adds to the growing list of phylogenetic

methods in cancer modeling, which were reviewed through 2008

in [3]. These include methods for analyzing comparative genomic

hybridization (CGH) or other genetic gain/loss data in a single

tumor type [4–11], for defining the cell type lineage of single

tumors [1,2,12,13], for organizing a taxonomy of tumor types

[14], for reconstructing a partial order of genetic changes in

multiple samples from one patient [15], and for reconstructing

progression from cell types inferred from bulk genomic assays [16].

Recent high-throughput sequencing studies have also used ad hoc

phylogenetic methods to infer putative tumor progression scenar-

ios, e.g., [17–20]. Like many of these methods, the present work is
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aimed at building tree models that provide a proposed partial

order on the observed cell states, a strategy motivated originally by

the work of Fearon and Vogelstein, proposing a linear order for

four types of events in colorectal cancer and associating each event

with a tumor stage [21]. Other ordering methods have been

proposed, mostly for CGH or breakpoint data [15,22–28] and,

more recently, sequencing data [29,30].

The present work specifically advances the reconstruction of

phylogenetic histories of single tumors from intratumor cellular

heterogeneity data. The use of phylogenetic methods to recon-

struct histories of single tumors was first developed in our prior

work [1,2] by taking advantage of the ability of FISH to profile

genetic changes in large numbers of single cells, allowing one to

survey hundreds of cells per tumor in populations of tens of tumors

[31]. This early work showed that even small numbers of markers

could reveal numerous genetically distinct cell populations in

single tumors, which could be resolved by phylogenetic inference

to reveal multiple distinct pathways of progression between tumors

and even within single tumors. Numerous studies since then, using

multicolor FISH [2,31–36] and, more recently, single-cell

sequencing [19,37–39] have greatly increased our ability to

identify distinct cell populations and, in the process, revealed far

more extensive intratumor heterogeneity than had been suspected

prior to 2010 (reviewed in [40]). The repeated observation of

intratumor heterogeneity has necessitated a reconsideration of

Nowell’s [41] theory that tumors evolve clonally, showing that a

tumor may contain many subpopulations relevant to the clinical

prognosis of the patient [42] and that rare subpopulations may be

more relevant to prognosis than the most common ones [43].

Furthermore, a simulation study has suggested that methods based

on average copy number data perform poorly when there is

substantial intratumor heterogeneity [44]. Such findings suggest a

need for improved methods for organizing the dozens or hundreds

of observed cell states in single tumors to infer the evolutionary

processes that produced them.

Despite extensive work on tumor phylogenetics, however, the

study of algorithms for reconstructing tumor evolution from large

numbers of single cells has lagged far behind advances in data

generation. The standard in practice for single-cell tumor

phylogenetics remains the use of simple generic phylogeny

algorithms (e.g., neighbor-joining [45]) that are not designed to

model the patterns of copy number changes one would expect

from evolution by chromosome abnormalities that largely drive

tumor evolution. Until recently, algorithms designed specifically

for inferring phylogenies of single tumors from FISH data have

been limited to just a few probes per cell and lacked robust,

publicly available software implementations [1,2,34]. In prior

work [46], we developed algorithms to find copy-number

phylogenies for in principle arbitrary numbers of probes and

cells. That work, however, was itself limited to a simple model in

which tumor cells evolve by events of gain or loss of a single copy

number of a single probe at each mutation step. In real tumors,

gene copy numbers can change due to a variety of mechanisms,

including:

1. Single gene duplication/loss events (SD), in which one copy of

a genetic region covered by a single probe is gained or lost.

2. Chromosome duplication/loss events (CD), in which entire

chromosomes are unequally distributed among daughter cells

during mitosis along with potentially several probes.

3. Whole genome duplication events (GD), in which a cell fails to

divide during mitosis leading to doubling of all genetic material

and all probe counts.

These events are illustrated schematically in Figure 1. While

more complex probabilistic models of tumor evolution have been

developed for inference of small phylogenies, with approximately

ten taxa per tumor corresponding to distinct biopsies (e.g., [47]),

the class of inference algorithms such models require would not be

expected to scale to phylogenies of hundreds of single cells per

tumor such as those examined in the present work.

The work presented here seeks to fill this need for scalable

phylogenetic algorithms capable of fitting more realistic models of

tumor-like evolution to data sets of hundreds of single cells per

tumor. We improve on our prior work for inferring tumor

evolutionary models considering only SD events [46] to now

include CD and GD events, which are also frequently observed in

tumor progression. We specifically focus on the problem of

accurately inferring evolutionary distances between distinct cells in

terms of maximum parsimony combinations of SD, CD, and GD

events. The major contributions of the work are:

1. algorithms to compute minimum evolutionary distances D
between pairs of cell states in terms of SD and CD events and

in terms of SD, CD, and GD events;

2. a heuristic Steiner tree method based on the median-joining

method [48] and our prior work on SD-only inference [46];

3. software implementation of the new methods to compute D
and use of those methods to construct tumor progression trees;

4. evaluation of the new methods on simulated data, which shows

that they do better than the SD-only approach at recovering

simulated tree topologies;

5. application of the methods to published data on cervical cancer

(CC, [49]) and breast cancer (BC, [36]);

6. demonstration of improved ability to classify tumor types from

phylogenetic features using a strategy in the spirit of the

genomic progression scores (GPS) of Rahnenführer et al. [50].

The new methods are implemented in version 2 of our software

FISHtrees (ftp://ftp.ncbi.nlm.nih.gov/pub/FISHtrees). The work

addresses a critical need in modern cancer research for algorithms

capable of inferring evolutionary trajectories of hundreds of single

cells per tumor under plausible models of evolution including both

Author Summary

Cancer is an evolutionary system whose growth and
development is attributed to aberrations in well-known
genes and to cancer-type specific genomic imbalances.
Here, we present methods for reconstructing the evolution
of individual tumors based on cell-to-cell variations
between copy numbers of targeted regions of the
genome. The methods are designed to work with
fluorescence in situ hybridization (FISH), a technique that
allows one to profile copy number changes in potentially
thousands of single cells per study. Our work advances the
prior art by developing theory and practical algorithms for
building evolutionary trees of single tumors that can
model gain or loss of genetic regions at the scale of single
genes, whole chromosomes, or the entire genome, all
common events in tumor evolution. We apply these
methods on simulated and real tumor data to demonstrate
substantial improvements in tree-building accuracy and in
our ability to accurately classify tumors from their inferred
evolutionary models. The newly developed algorithms
have been released through our publicly available
software, FISHtrees.
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gene-specific and chromosome abnormalities that are central

drivers of true tumor evolution.

Results

We used data collected from cervical cancer (CC) [49] and breast

cancer (BC) [36] patients to evaluate our methods. Figure 2(A)

shows a tumor progression tree inferred from one of the cervical

cancer samples. For comparison, Figure 2(B) shows a progression

tree inferred on the same sample using our prior SD model [46].

Visual inspection shows that large regions of the two trees are

identical but that allowing CD and GD events leads to some

rearrangement and a reduction in tree depth and overall size. Next

we evaluate the changes induced by adding SD, CD and GD events,

using simulated data to show effectiveness of the methods in finding

more parsimonious solutions to the broader model and using the

real CC and BC data to show the biological relevance of the

improvements. We further show that our algorithms infer trees with

higher accuracy than the prevailing alternative algorithms for

single-tumor phylogenetic inference. Finally, we perform statistical

experiments to evaluate the effects of tumor sample size on the

performance of our tree building algorithm.

Simulation experiments
To measure accuracy of the methods for FISH datasets with a

known ground truth, we generated a dataset of 100 trees with six

probes, two of which were treated as being on the same

chromosome. Each tree was generated by starting from a diploid

root node and executing a branching process in which each node

was recursively assigned a number of children drawn from a

geometrically distributed random variable with mean 0:50. Each

child was distinguished from its parent by selecting an SD, CD, or

GD event with probability 0:1167 for each of the six possible SD

events, 0:18 of a CD event, and 0:12 of a GD event. This process

terminated when all leaf nodes had been assigned zero children by

the sampling. We then generated simulated FISH data for each tree

by uniformly sampling 300 cells from the nodes in this topology.

The simulated data corresponds to counts of probes for each

sampled cell in the tree. We applied Algorithm 3 (see Methods) to

find a minimum-cost tree for each of four event models: (i) SD only,

(ii) SD and CD, (iii) SD and GD, and (iv) SD, CD and GD.

We quantified the accuracy of tree inference by comparing each

simulated true tree to its corresponding inferred tree derived from

the sampled cells. This assessment was performed at the level of

accuracy of tree edges by the following procedure:

1. We pruned the real tree so as to remove any subtree for which

no cell in the tree was sampled. This step was intended to avoid

penalizing for ‘‘impossible’’ inferences of subtrees unsupported

by any data.

2. We computed a maximum matching of edges between the real

subtree and the inferred tree, with each pair of edges weighted

by the maximum number of nodes in agreement between the

corresponding parts of the bipartitions that the two edges define

[46,51]. We used the Hungarian algorithm [52] for computing

the maximum matching (applying the function‘‘Hungarian’’ by

Alexander Melin from the Matlab Central File Exchange).

3. We calculated a reconstruction error R of the inferred tree

using the following formula:

3.

R~ 1{
W

DT D|(DPrDzDPi D){W

� �
|100

where W is the weight of the maximum matching, T is set of

taxa in common between the real and inferred trees, and Pr

and Pi represent the sets of nontrivial bipartitions in the real

and inferred trees, respectively.

Intuitively, this formula measures the fractional agreement

between bipartitions of the trees relative to the total number of

bipartitions. We use a matching-based formula, rather than the

more familiar Robinson-Foulds metric [53], both because of its

greater sensitivity to small changes in trees and because the

Robinson-Foulds measure is not defined for trees with different

node sets. We also note that we use a different normalization

factor than in our prior work [46], normalizing essentially by

the total number of edges between the two trees, to control

properly for the fact that different inference methods may infer

different numbers of tree edges. The reconstruction error R

Figure 1. Example showing the three mechanisms of copy
number changes in a hypothetical cell. A copy number profile of
four genes is shown as an ordered set for homologous chromosome
pairs P1,P2 and P3,P4 respectively, where the gene located on the top
position in the chromosome precedes the gene located on the bottom
position in the ordering. After the (A) Single gene duplication event, the
copy number of a gene located on P4 gets increased by 1. After the (B)
Single chromosome duplication event, the chromosome P4 gets
duplicated and the cell has one extra copy of that chromosome as
chromosome P5. After the (C) Whole genome duplication event, all the
chromosomes are duplicated and the total number of chromosomes in
the daughter cell is twice the number of chromosomes in the mother
cell.
doi:10.1371/journal.pcbi.1003740.g001
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ranges in value from 0, if the real and inferred trees are

isomorphic, to an upper bound of 100 in the limit of complete

disagreement.

To illustrate the meanings of the terms of the equation for R,

we present a simple example using a hypothetical ground truth

and an inferred tree presented in Figure 3(A) and Figure 3(B),

respectively. The set of nontrivial bipartitions in the ground truth

are

fff1,3,6,7,8,9g, f2,4,5gg,ff3,6,7,8,9g,

f1,2,4,5gg,ff6,8,9g, f1,2,3,4,5ggg

Figure 2. Phylogenetic trees showing tumor progression in a cervical cancer patient. Trees are built considering (A) all of SD, CD and GD
and (B) only SD model of tumor evolution. Each node represents a configuration of the four gene probes LAMP3, PROX1, PRKAA1 and CCND1. Nodes
with solid and dotted borders represent cells present in the collected sample and inferred Steiner nodes respectively. Green and red edges model
gene gain and gene loss, respectively. The weight value on each edge connecting two nodes x and y is the distance between the states of x and y,
computed using the particular model of tumor progression under consideration. The weight on each node describes the fraction of cells in the
sample with the particular copy number profile modeled by that node; Steiner nodes are assigned weight 0.
doi:10.1371/journal.pcbi.1003740.g002
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and the nontrivial bipartitions in the inferred tree are

fff1,3,6,7g, f2,8,9gg, ff1,2,8,9g, f3,6,7ggg

If we apply the matching algorithm on these two sets of

bipartitions, the first and second bipartitions in the ground truth

tree are matched with the first and second bipartitions in the

inferred tree, respectively. The weight W of the matching is 10.

The number of common taxa between these two datasets is

DT D~7. The total number of nontrivial bipartitions in the real and

inferred trees are DPrD~3 and DPi D~2. Plugging these values into

the equation for R, we calculate R~60%.

A comparison of the four models is presented in Figure 4. The

SD model showed 17:43% reconstruction error with standard

deviation (s.d.) of 5:1% across the 100 trees. The SD+CD model

yielded 15:91% error with s.d. 4:59%. SD+GD yielded 12:01%
error with s.d. 6:4%. The full SD+CD+GD model yielded 10:84%
error with s.d. 3:88%. Collectively, the results suggest that one can

reconstruct reasonably accurate trees even from the SD-only

model, despite the fact that the trees were generated from a model

of all three event types, although accuracy improves with each

event type added. Accounting for GD events made a larger

difference in accuracy than accounting for CD events, presumably

because a missed GD event might require many SD or CD events

to explain it, while a missed CD event could be explained with just

two SD events. The reconstruction error for the full model is

reduced by more than 1.7-fold relative to the SD-only model

considered in our prior work.

We further compared these results to those derived using

generic phylogenetic methods that have been used in much of the

single tumor phylogenetics work to date [16,54]. We tested the

accuracy of reconstruction of the 100 simulated trees described

above using generic neighbor joining (NJ) with Euclidean

distance and pure maximum parsimony (MP) treating copy

numbers as arbitrary characters, approaches chosen because they

have been the primary alternatives to our specialized algorithms

in the single-tumor phylogeny literature. We omit here compar-

ison to more complicated Bayesian phylogenetic models (e.g.,

[47]) because such approaches are not scalable to the numbers of

cells we examine. We then used the weighted matching based

similarity method, described above, to calculate the mean

percentage reconstruction error R between the inferred and the

ground truth trees. The mean reconstruction errors for NJ and

MP were 43:23% (s.d. 4:24%) and 45:21% (s.d. 3:86%),

respectively, in contrast to the error of 10:84% (s.d. 3:88%) for

the SD+CD+GD algorithm proposed here. The test thus

demonstrates that when the underlying evolutionary process

includes cancer-like chromosome abnormalities, errors are

substantially reduced by using an algorithm designed for that

model relative to standard off-the-shelf algorithms still widely

used for single-tumor phylogenetics work.

We performed additional experiments to evaluate the effects of

different evolutionary parameters on the accuracy of inference of

tumor progression trees by FISHtrees. For this experiment, we

selected five different combinations of probabilities of SD, CD and

GD events for generating the ground truth trees and then used

SD, SD+CD, SD+GD and SD+CD+GD models to infer the

tumor phylogenies. These data sets again each used six probes

with two of the six on a common chromosome. The selected five

combinations of (SD,CD,GD) event probabilities are: (0:125,0:05,
0:2), (0:1,0:2,0:2), (0:15,0:07,0:03), (0:1,0:3,0:1) and (0:1166,
0:18,0:12). These combinations of event probabilities were chosen

to yield trees of comparable complexity to the real data while

producing test sets enriched in distinct combinations of the three

event types. They thus allow us to consider how robust our

algorithms are to contributions from each of the three event types,

singly or in combination. We report the reconstruction error for

100 trees for each of these combinations of event probabilities in

Table 1. These results again show that accuracy improves with

each event type added. When the probability of SD events is high

(as in combination 3), the SD model results in highly accurate trees

(mean reconstruction error of 16:02% with s.d. 4:15%). Account-

ing for GD events in combination with SD events always result in

Figure 3. Example simulated and inferred trees illustrating key
terms in the formula for calculating the reconstruction error.
(A) A hypothetical simulated ground truth tree on the set of taxa
f1,2,3,4,5,6,7,8,9g. (B) Example inferred tree built on the sampled set of
taxa f1,2,3,6,7,8,9g on the dataset resulting from the ground truth tree.
doi:10.1371/journal.pcbi.1003740.g003

Figure 4. Accuracy of phylogenetic inference on simulated
copy number data for varying algorithms. Variants of our
phylogenetic algorithms and two competing methods from the
literature were applied to simulated FISH datasets describing evolution
by combinations of single-gene (SD), chromosome (CD), and whole-
genome (GD) duplication and loss events. Results are reported for
inference by our methods from 100 simulated trees, allowing for SD
events alone, SD+CD events, SD+GD events, and SD+CD+GD events. We
compared these results to inference by neighbor-joining (NJ) and pure
maximum parsimony (MP) as implemented in MEGA, version 6.
Accuracy is assessed by mean reconstruction error of bipartitions
between true and inferred trees. Error bars show plus or minus one
standard deviation across the samples for each method.
doi:10.1371/journal.pcbi.1003740.g004
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larger improvement in the reconstruction error in comparison to

the SD+CD models, even when the CD events are very frequent

(as in combinations 2 and 4). Finally, accounting for GD events in

combination with SD and CD events results in the largest

improvements when the probability ratio of GD events to SD+CD

events is highest, as can be seen from comparison of parameter sets

1 and 2.

Next, we performed simulation tests to evaluate the effects of

non-uniform distributions of cells across different levels of the

trees on the performance of our tree inference method. In our

initial simulation experiments described above, we assumed

that observed cells were sampled uniformly across clones. In

real tumors, the distribution of cells would not typically be

uniform due to differences in age and fitness of clones. In order

to test robustness of our method to non-uniformity of clone

frequencies, we sampled the cells following a non-uniform

model in which the sampling frequency of a clone varies

geometrically with its depth in the tree with a parameter . We

used values of 1:1 and 1:3 for in our experiments. When

~1:1, 25% of the total cells are located in the first three levels

of the trees, while for ~1:3, this fraction is 55%. We

generated 100 trees in each case with probabilities of SD, CD

and GD events fixed at 0:1167,0:18 and 0:12. We again used

SD, SD+CD, SD+GD and SD+CD+GD models to infer the

tumor progression trees. We present the results from this

experiment in Table 2, where we also show the results from the

uniform sampling of the cells. Additionally, we report the

results on the trees inferred using NJ and MP for these three

different cell distributions. From the table, we can see that the

reconstruction error increases with increasing for all

methods. The SD+CD+GD model, however, shows the best

performance among all the models for all three values of and

the least loss of performance with increasing .

Finally, we performed simulation experiments to understand

the effects of varying the numbers of chromosomes with

multiple probes. We created a simulated dataset of 100 trees

with eight probes where two pairs of probes each reside on two

different chromosomes and the remaining four probes reside

on four separate chromosomes. The probabilities of each of the

SD, CD and GD events were fixed at 0:1167, 0:09, and 0:12,

respectively. We report the results from this experiment in

Table 3, which compares the results from this experiment with

our earlier result using only a single chromosome with two

probes and four other probes located on separate chromo-

somes. The table shows that inclusion of the extra possible CD

event results in higher accuracy for all the models except for

the SD only model. The performance drop in the SD model is

expected, as it would require more SD events to explain a

greater number of missed CD events. The highest gain in

performance is observed for SD+CD+GD model. These results

show that our algorithm will tend to yield comparatively more

advantage over the earlier work with more complicated

scenarios of sharing probes across chromosomes, suggesting

its utility will increase as improvements in technology allow for

larger probe sets.

Application to real cervical and breast cancer data
We applied the algorithm to two sets of real data:

N A set of CC [49] FISH data consisting of 47 samples organized

into 16 primary samples of metastatic patients, 16 paired

metastasis samples from the same patients, and 15 primary

samples from patients who did not progress to metastasis. Each

sample consisted of 223{250 cells profiled on four FISH

probes: LAMP3 (Entrez Gene Id 27074) [55], PROX1 (5629)

[56], PRKAA1 (5562) [57] and CCND1 (595) [58]. All of these

four genes are oncogenes, which typically show copy number

gains in tumor cells. Each of the genes belongs to a distinct

chromosome.

N A set of BC [36] FISH data consisting of 13 paired (from the

same patient) ductal carcinoma in situ (DCIS) and invasive

ductal breast carcinoma (IDC) samples with 76{220 cells per

sample profiled on eight FISH probes: COX-2 (5743) [59],

MYC (4609) [60], CCND1 [58], HER-2 (2064) [61], ZNF217
(7764) [62], DBC2 (23221) [63], CDH1 (999) [64] and TP53
(7157) [65]. The first five genes in this list are oncogenes and

the last three genes are tumor suppressors. In tumor cells,

tumor suppressors are typically associated with loss in copy

numbers.

Among the eight genes in the BC dataset, DBC2 and MYC
reside on chromosome 8 and HER-2 and TP53 reside on

chromosome 17. The other four genes belong to distinct

chromosomes. The oncogene Cyclin D1 (CCND1), which plays

a role in many solid tumor types, is in both the BC and CC

datasets. However, in some other tumor types, such as oral cancer,

CCND1 is part of a larger region with recurrent copy number

gains on chromosome 11 and other nearby genes have also been

suggested to play a role in oncogenesis [66].

We evaluated the SD+CD+GD method by its effectiveness in

reducing the parsimony score (total number of mutation events) of

the resulting trees relative to the prior SD-only model. With the

primary CC samples, the SD+CD+GD method found a lower-cost

Table 1. Comparison of mean percentage reconstruction error (with standard deviation) of different phylogeny models on
simulated data for different combinations of SD, CD and GD event probabilities.

Probabilities of (SD,CD,GD) Events SD SD+CD SD+GD SD+CD+GD

(0.125,0.05,0.2) 17.97(4.49) 16.89(4.32) 9.85(3.51) 9.25(4.18)

(0.1,0.2,0.2) 25.58(4.50) 21.82(3.98) 13.81(3.62) 10.96(3.99)

(0.15,0.07,0.03) 16.02(4.15) 14.96(4.16) 11.92(4.29) 11.71(4.77)

(0.1,0.3,0.1) 23.13(4.37) 20.02(4.50) 15.43(4.60) 13.42(4.64)

(0.1166,0.18,0.12) 17.43(5.10) 15.91(4.59) 12.01(6.40) 10.84(3.88)

Mean percentage reconstruction error on 100 simulated samples are shown for four tree-building models considering (i) SD, (ii) SD+CD, (iii) SD+GD and (iv) SD+CD+GD
across five different combinations of SD, CD, and GD probabilities.
doi:10.1371/journal.pcbi.1003740.t001
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tree in 21 of 31 cases, a tree of equal weight in 4 cases, and a

higher-cost tree in 6 cases. In each case of increased weight, the

increase was by 1 and appears to result from the subtree regrafting

heuristic used in handling GD events (see Methods). These results

suggest that the heuristic tree search may more often yield a

suboptimal result for the SD+CD+GD model than it does for the

SD-only model. The benefit of the more realistic model, however,

outweighs the cost of this suboptimality in a large majority of

instances. For trees derived from metastatic samples, 12 of 16 trees

had lower weight for the full SD+CD+GD model and the

remainder all had equal weight for the two models. Metastatic

data sets tend to have fewer distinct cell types than do primary

trees and thus may represent an easier optimization challenge. For

the BC samples, 13 of 13 DCIS (samples 1–13) and 12 of 13 IDC

(samples 14–26) had lower weight for the full model, with the

remaining one sample having equal weight. Parsimony scores by

tree are provided in Figures 5 and 6.

We next evaluated effects of the improved model on overall tree

topology, based on results of our prior work [46] that tree topology

can significantly distinguish trees drawn from distinct progression

stages of a given tumor type, with possible implications for the

varying balance of diversification and selection acting on different

stages of tumor progression. Figure 7 quantifies the topology for

each sample set based on fractions of cells inferred at each tree

depth from 1 to 12. The figure shows similar qualitative trends for

both SD and SD+CD+GD methods, although with small

quantitative differences. For example, both SD and SD+CD+
GD trees recapitulate a tendency for CC primary trees to show

relatively broad topology (Figure 7(A)) while CC metastatic trees

prune rapidly beyond the first few tree levels (Figure 7(B)). There

is, however, an overall shift to lower depth in the SD+CD+GD

trees. For CC primary trees, 92:6% of cells are located in the first

12 tree levels for SD versus 97:09% for SD+CD+GD. For CC

metastatic, 99:2% of cells are located in the first 12 tree levels for

SD versus 99:6% for SD+CD+GD. For BC, the comparable

numbers of cells in depths 1{12 are 86:5% for SD versus 93:9%
for SD+CD+GD in DCIS and 82:67% for SD versus 92:6% for

SD+CD+GD. These results suggest that the overall tree topology

is not greatly sensitive to the combination of event types,

although there is a noticeable shift towards lower depth in the

full model.

An additional evaluation was possible for the BC trees, because

for the BC data, a probabilistic model and expert annotation based

on two additional centromere probes made it possible to estimate

the cell ploidy [36], which we define as the mode among the

number of copies of the twenty-two autosomal chromosomes in a

cell. Each cell in that dataset is thus annotated with an expert-

curated overall ploidy estimate. We used these ploidy estimates to

validate our inference of GD events based on whether edges

assigned to GD events in our trees correspond to doubling of

annotated ploidy. The percentage agreement by edge between GD

events and annotated doubling in ploidy is 65% across DCIS trees

and 64:44% across IDC trees. In 31:6% of all inferred GD events,

at least one endpoint of the corresponding edge is a Steiner node,

and the uncertainty among whether a GD event occurred prior to

or after the emergence of the Steiner node may explain why the

per-edge agreement is not higher. Nonetheless, the data support

the conclusion that inferred GD events are correct in a majority of

cases.

As a final step, we repeated an approach developed in our prior

work [46] to both validate the biological relevance of the trees and

develop a practical application of them by treating the trees as

sources of features for classification tasks applied to the CC data.

For this purpose, we developed several sets of quantitative features

based on inferred trees as well as comparative features derived

from raw FISH probe counts. We used the following set of tree-

based features:

1. Edge count: 8 features corresponding to fraction of progression

tree edges showing gains and losses of each gene.

2. Tree level cell percentage: 10 features corresponding to the

fraction of cells at each of the first 10 levels for the progression

trees.

We omitted a third feature set, bin count, used in our prior work

because it is not easily comparable between SD and SD+CD+GD

Table 2. Comparison of mean percentage reconstruction error (with standard deviation) of different phylogeny models on
simulated data for different sampling distributions of the cells.

Distribution SD SD+CD SD+GD SD+CD+GD NJ MP

Uniform 17.43(5.10) 15.91(4.59) 12.01(6.40) 10.84(3.88) 43.23(4.24) 45.21(3.86)

Skewed (c~1:1) 22.74(4.49) 19.09(4.47) 14.75(4.64) 11.92(4.64) 47.00(3.76) 47.38(3.72)

Skewed (c~1:3) 29.93(7.37) 26.35(6.56) 18.89(7.24) 15.36(6.78) 50.63(5.89) 50.32(5.74)

Mean percentage reconstruction error on 100 simulated samples are shown for six tree-building models considering (i) SD, (ii) SD+CD, (iii) SD+GD, (iv) SD+CD+GD (v) NJ
and (vi) MP when the sampling distribution of cells is varied.
doi:10.1371/journal.pcbi.1003740.t002

Table 3. Comparison of mean percentage reconstruction error (with standard deviation) of different phylogeny models on
simulated data for two different probe settings.

Number of Chromosomes with 2 Genes SD SD+CD SD+GD SD+CD+GD

1 17.43(5.10) 15.91(4.59) 12.01(6.40) 10.84(3.88)

2 19.01(5.61) 15.65(5.26) 11.49(4.18) 8.94(3.46)

Mean percentage reconstruction error on 100 simulated samples are shown for four tree-building models considering (i) SD, (ii) SD+CD, (iii) SD+GD and (iv) SD+CD+GD
for two different cases when the number of chromosomes harboring two genes is 1 or 2.
doi:10.1371/journal.pcbi.1003740.t003
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trees. We compared these features to four features derived directly

from FISH probe counts without reference to the trees:

1. Mean gain and loss of individual genes.

2. Maximum copy number of individual genes.

3. An information theoretic measure, Shannon index [67]. For

each gene, each combination of gene copy number and cellular

ploidy represents a species. If we denote the frequency of

species i among all tumors by pi, then Shannon index is given

by the formula H~{
X

pi log2 (pi).

4. Simpson’s index [67], which is defined as
X

p2
i .

We used each feature set as input to the Matlab support vector

machine (SVM) classifier with a quadratic kernel using 500 rounds

of bootstrap replicates per test with leave-one-out cross-validation

to compute mean and standard deviation of accuracy. We used

Figure 5. Parsimony score comparison on the CC samples. Comparison of (A) Primary and (B) Metastatic CC tumor progression tree weights
built considering only SD and combined SD, CD and GD models. ‘‘Total Cell Type’’ refers to the total number of unique probe copy number
configurations in the dataset, providing a lower bound on the minimum possible parsimony score for a given data set.
doi:10.1371/journal.pcbi.1003740.g005
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Matlab functions ‘‘svmtrain’’ and ‘‘svmclassify’’ for training and

testing of the SVM classifier.

We then applied these methods for three classification tasks: (i)

distinguishing primary samples that progressed to metastasis from

their paired metastatic samples, (ii) distinguishing all primary

samples from all metastatic samples, and (iii) distinguishing

primary samples that metastasized from primary samples that

did not metastasize. The first two tasks are relevant to identifying

features that help us understand the differences in evolutionary

mechanisms of primary and metastatic samples. The third is

intended to model an important practical problem in cancer

treatment: determining whether a given primary tumor will

metastasize.

Figure 8 shows results on each task. For task (i), allowing SD+
CD+GD events increased accuracy relative to SD trees from

64:31% to 80:77% for edge counts and from 81:91% to 84:63%
for tree level cell count. The SD+CD+GD tree level cell count

was the most effective of all features, tree-based or not. For task

(ii), we similarly saw a substantial improvement in prediction

accuracy for SD+CD+GD trees relative to SD trees. Classifi-

cation accuracy improved from 68:87% to 84:06% for edge

count features and from 82:26% to 87:79% for tree level

features. In this case, both SD+CD+GD tree feature sets

outperformed all other features sets, tree-based or otherwise.

These results provide an indirect validation that using a more

general tree model gets closer to the biological ground truth. For

task (iii), we saw no improvement, with identical results for SD

and SD+CD+GD trees for either feature set. All tree-based

feature sets significantly outperformed all non-tree-based feature

sets for this task. We conclude that the more realistic

evolutionary models appear not to reveal any more information

to the classifiers for predicting which primary samples will go on

to metastasize than the SD trees, which were already quite

effective for that task.

Dependence on data size
A key advantage of FISH for profiling tumor heterogeneity is

that it makes it cost-effective to profile much larger numbers of

cells than alternatives such as single-cell sequencing. To assess the

practical importance of this advantage, we asked two related

questions: (1) how many cells do we need per tumor to accurately

reconstruct single-cell phylogenies and (2) how many tumors do we

need to examine to identify reproducible, statistically significant

features across trees.

We first assessed the number of cells needed per tumor by

using our first simulated dataset of 100 trees described above with

subsamples of varying numbers of cells per tumor, measuring

reconstruction error of our SD+CD+GD algorithm with the

weighted matching algorithm. The mean reconstruction errors

calculated across 100 cases for subsamples of 20, 50, 100, 150 and

200 cells were 33:66% (s.d. 14:40%), 20:43% (7:97%), 15:28%
(6:38%), 11:79% (4:03%), and 11:70% (4:4%) respectively. We

can thus conclude that accuracy improves noticeably with

increasing numbers of cells to at least 100 cells per tumor before

plateauing at approximately 10% error.

We next assessed numbers of tumors needed to identify

meaningful statistically significant properties of tumor classes by

analysis of the 32 CC paired and primary samples. We randomly

subsampled from among the 32 pairs and, for each subsample,

calculated the following three tree statistics on progression trees

inferred from our SD+CD+GD algorithm:

1. Shannon index based on distribution of cells across different

tree levels.

Figure 6. Parsimony score comparison on the BC samples. Comparison of DCIS (id 1–13) and IDC (id 14–26) BC tumor progression tree
weights built considering only SD and combined SD, CD and GD models. ‘‘Cell Types’’ refers to the total number of unique probe copy number
configurations in the dataset, providing a lower bound on the minimum possible parsimony score for a given data set.
doi:10.1371/journal.pcbi.1003740.g006
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2. Weighted mean depth of the trees.

3. Sum of differences of fractional gain and loss of each gene

across the tree edges.

We then compared distributions of each statistic on primary

vs. metastatic trees by a Wilcoxon signed rank test. As the

samples were selected randomly, no ordering among the

samples was considered. Figure 9 shows the 1-sided p-values

of the three statistical tests when the number of randomly

selected samples are increased from 5 to 32. The figure shows

that ability to distinguish the two tumor subsets improves with

increasing number of tumors. While the threshold for signifi-

cance varies by statistic, each reaches weak significance

(pv0.05) between 10 and 24 tumors. We can thus conclude

that finding reproducible features distinguishing the tree types

requires on the order of tens of tumors, at least for the candidate

probe sets examined here.

Taken together, these two results demonstrate that building

accurate trees on a large enough scale to distinguish meaningfully

primary from metastatic trees requires data sets with roughly the

order of thousands of single cells (hundreds of cells per tumor for

tens of tumors), a scale of data that has so far been achieved only

by FISH studies of tumor heterogeneity. We note, however, that

one would expect these numbers to vary depending on the degree

of tumor heterogeneity, the classes of trees one wishes to

distinguish, and the specific markers examined.

Discussion

This paper has presented novel theory and algorithms for

reconstructing evolutionary trajectories of gene copy numbers in

solid tumors in terms of a model of tumor evolution incorporating

changes at the scale of single gene probes, full chromosomes, or

all probes in the genome. We have derived algorithms to

reconstruct maximum parsimony sequences of events, and thus

estimates of evolutionary distance, between pairs of cells assayed

by FISH probes. We have further incorporated these inferences

into a method for building phylogenies of hundreds of cells in

single tumors. These methods have been added to FISHtrees

[46], our software for inferring tumor phylogenies from single-cell

copy number data. Experimental results on simulated data

confirm the ability of the new methods to improve phylogenetic

inference accuracy relative to simpler models by adding CD and

GD events that model chromosome-scale and whole-genome

copy number changes that are frequently observed in tumor

evolution. Application to observed human tumor data shows that

these extended evolutionary models are able to yield more

parsimonious tree reconstructions and that the resulting trees lead

Figure 7. Distribution of cells across different levels of tumor phylogenies. Distribution of cells across different levels are shown for (A)
Primary and (B) Metastatic CC, and (C) DCIS and (D) IDC BC tumor progression trees.
doi:10.1371/journal.pcbi.1003740.g007
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to improved accuracy in prediction tasks related to diagnosis and

prognosis.

In future work, we hope to extend the theory developed here

to handle even more realistic models and more challenging

data types. One important direction will be advancing the

theory developed here to improve upon the heuristic approx-

imations used in the Steiner tree inference to better approach

the goal of finding globally optimal trees for the most

computationally challenging FISH data sets. The evolutionary

models, likewise, might be further extended to go beyond the

three mutational event types considered here to better

approximate the numerous distinct mutational mechanisms

by which copy number profiles of tumor cells might evolve.

The data sets studied here do not include geographical

information about locations of individual cells in the tumor,

but other data sets for analyzing tumor heterogeneity do

include such geographical information [38,68]. We expect it

would be interesting to construct phylogenies with distance

functions that combine spatial distance in three dimensions

with combinatorial distance measures between the cell count

patterns, as we have studied here. Further, while FISH for the

moment retains a unique advantage in the large number of

cells it can profile, one can reasonably anticipate that single-

cell sequencing will eventually become practical for compara-

ble cross-tumor studies. There would thus be value in

extending the theory developed here to single-cell sequencing

data, a goal that would pose substantial algorithmic challenges

due to the much larger number and variety of markers it can

reveal as well as the more complicated error models it would

entail. Finally, we hope to make more use of these single-tumor

phylogenetic models in clinically relevant prediction tasks and

further explore the biological insights one can gain from more

accurate tumor phylogenies.

Methods

Our main theoretical result is a method for inferring minimum

distances between two states within a copy number phylogeny

when duplication/loss of single genes (SD), duplication/loss of all

genes on a common chromosome (CD), and duplication of all

genes in the full genome (GD) events are possible. We first

establish some mathematical results and then develop an

algorithm for accurate distance computation. This algorithm then

becomes a subroutine in a heuristic Steiner tree algorithm for

inferring copy number phylogenies in the presence of SD, CD,

and GD events. We introduce some notation required for

specifying and proving the theoretical results:

1. C(g1,g2, . . . ,gd ): A set of copy numbers of one or more genes

g1,g2 . . . ,gd , which we call a ‘‘configuration’’. When

g1,g2 . . . ,gd are clear from the context, we use C as shorthand.

2. L1(Ci,Cj): L1 or rectilinear distance between two configura-

tions Ci and Cj .

3. Ds,ch(Ci,Cj), Ds,g(Ci,Cj), Ds,ch,g(Ci,Cj): Distance between two

configurations Ci and Cj when considering SD+CD (s,ch),

SD+GD (s,g), or SD+CD+GD (s,ch,g) events, respectively.

4. Oc
g(Ci), Oc

l (Ci), Oc(Ci): Operations corresponding to single

chromosome (CD) events corresponding to either gain (g),

loss (l), or either (no subscript) of all genes belonging to the

same chromosome c from starting configuration Ci, while

keeping the copy numbers of genes on other chromosomes

unchanged.

5. Og(Ci), H(Ci): Operations corresponding to doubling (Og) or

halving (H) counts of all genes in configuration Ci. In the case

of halving, it is assumed that all genes in Ci have even counts.

6. even, odd configuration: A configuration (copy number profile)

C(g1,g2, . . . ,gd ) is denoted an even configuration if Vgi mod (gi,
2)~0. Otherwise, it is denoted an odd configuration.

7. GE(C(g1,g2, . . . ,gd )): The set of ‘‘nearest even’’ values for each gi

in C, i.e., if C(g1,g2, . . . ,gd )~(x1, . . . ,xd ) then GE(C(g1,g2, . . . ,
gd ))~f(y1, . . . ,yd )D((yi mod 2)~0) ^ ((yi~xi) _ (yi~xi+1)

_(yi~xi+2))g: For example, GE((7,2))~f(6,2),(8,2),(6,0),
(8,0),(6,4),(8,4)g.

8. An operation F is valid on a configuration C(g1,g2, . . . ,gd ) if

(x1,x2, . . . ,xd )~F (C(g1,g2, . . . ,gd )) satisfies LBƒxiƒUB for

all i~1, . . . ,d given predefined lower-bound LB and upper-

bound UB. Otherwise, F is invalid on C. LB = 0 and UB = 9 is

used in the sofware, but the theory only requires that UB w

LB.

9. A sequence of operations F1, . . . ,Fk is boundary-sensitive on

configuration C if (xj1,xj2, . . . ,xjd )~Fj(Fj{1( . . . F1(C(g1,

g2, . . . ,gd )))) satisfies LBƒxjiƒUB for all i~1, . . . ,d and

j~1, . . . ,k. We use boundary-insensitive to refer to a sequence

on which this condition has not been checked.

Progression model considering SD and CD events
We develop the theory for inference of the Steiner

(unsampled or extinct cell configurations) nodes in the paths

formed by the sequence of gene copy number gains and losses

from an initial configuration Cs(g1,g2, . . . ,gd ) to a final

configuration Ct(g1,g2, . . . ,gd ). We first extend the prior theory

to account for SD and CD events. Our model assumes that on

division of a tumor cell, the configuration can change either by

gain or loss of one copy of a single gene (SD event) or by gain or

loss of one copy of each gene on a single chromosome (CD

event). For example, a configuration of four genes (2,2,2,2) with

Figure 8. Classification results on the CC dataset. Prediction
accuracy on three different classification tasks of CC samples of an SVM
classifier using tree-based and cell-based features. Each of the two tree-
based features, edge count and tree level cell percentage, is derived
from phylogenetic trees built using two different models of tumor
progression, namely SD and combination of SD, CD and GD. Two cell-
based features, average gain/loss and maximum copy number of each
gene, and two information theoretic measures of cell heterogeneity,
Shannon entropy and Simpson’s index, are used.
doi:10.1371/journal.pcbi.1003740.g008
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the first two genes on the same chromosome might evolve in a

single mutational event to (3,2,2,2) by an SD event or to

(3,3,2,2) by a CD event. We propose Algorithm 1, provided in

Figure 10, to calculate the minimum number of steps required

to transform Cs(gi,giz1, . . . ,gj) into Ct(gi,giz1, . . . ,gj) consid-

ering SD and CD events, where, without loss of generality, we

assume that the genes on a common chromosome have

consecutive indices (gi,giz1, . . . ,gj) in C. Algorithm 1 also

identifies a minimum-length sequence of events, although this

sequence is not necessarily unique. For example, if there are

four genes on one chromosome and we want to get from

configuration (1,1,1,1) to configuration (2,4,3,2), then a shortest

sequence of SD and CD events would be CD to (2,2,2,2), SD to

(2,3,2,2), SD to (2,4,2,2), and SD to (2,4,3,2). Other orders of

the same four events are also possible.

The above example focuses on a single chromosome because as

explained below, the problem of finding the shortest SD+CD path

can be solved one chromosome at a time. We begin by establishing

the following lemmas:

Lemma 1. A minimum-length boundary-insensitive sequence
of CD and SD events cannot have both a gain of chromosome ci and
a loss of the same chromosome ci.

Proof. By contradiction. Suppose S is a sequence of events that

has both a gain and a loss of the same chromosome. Then

removing one gain and one loss produces a new sequence that is 2
shorter and has the same final state.

Lemma 2. For any gene gi, a minimum-length boundary-
insensitive sequence of events cannot have both a gain of gi and a
loss of gi.

Proof. By contradiction. Suppose S is a sequence of events that

has both a gain of G and a loss of G. Then removing one gain and

one loss produces a new sequence that is 2 shorter and has the

same final state.

Lemma 3. The following sequence of events describes a
minimum-length boundary-insensitive sequence of SD and CD
events for transforming Cs(gi,giz1, . . . ,gj) into Ct(gi,giz1, . . . ,gj):

1. Perform CD events in arbitrary order starting from Cs so that each
successive event decreases the L1 distance between the interme-
diate configurations Cint(gi,giz1, . . . ,gj) and Ct(gi,giz1,

. . . ,gj) until any further CD event will increase the L1 distance.
We define the final configuration reached after this step to be
Cf (gi,giz1, . . . ,gj).

2. Perform SD events in abitrary order starting at Cf (gi,giz1, . . . ,gj)

so that the L1 distance between Cint(gi,giz1, . . . ,gj) and
Ct(gi,giz1, . . . ,gj) decreases on each step until the distance
becomes zero. The total number of events required will be
L1(Cf ,Ct).

Proof. Since the sequence of events is boundary-insensitive and

addition is commutative, we can change the order of events

Figure 9. Wilcoxon signed rank test results for separating primary CC samples from the metastases. Wilcoxon signed rank test 1-sided
p-values for separating the primary CC samples from the metastases across subsets of increasing numbers of randomly selected tumor samples. For
each set of i tumors, i samples were randomly selected from 32 paired CC primary and metastatic tumors with atleast one of each type and then
Wilcoxon signed rank test was used to calculate the p-values for separating the primary from metastases based on three different statistics: (A)
Shannon index calculated using the distribution of cells across different tree levels, (B) weighted mean depth of the trees and (C) sum of differences
of fractional gain and loss of each gene across the tree edges.
doi:10.1371/journal.pcbi.1003740.g009
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without changing the endpoints or the cost. Therefore, we assume

that all CD events precede all SD events. The construction of the

above sequence of the events ensures that it uses a maximum

number of possible CD events. If we denote the number of genes

on the common chromosome by k and the number of CD events

by c, then the total number of events required is

L1(Cs,Ct){(k{1)c. If there exists a shorter sequences of events

to transform Cs to Ct, then that sequence must have a larger

number c of CD events, which is contradicted by the construction.

Thus, the number of events is minimized.

The above lemmas show how to construct a minimum-length

boundary-insensitive sequence of events. We now establish that

this sequence can be used to derive a minimum-length boundary-

sensitive sequence of events:

Lemma 4. For any boundary-insensitive minimum-length
sequence of SD and CD events S transforming Cs to Ct, there
exists a boundary-sensitive sequence of SD and CD events S’ such
that S and S’ have equal length.

Proof. We analyze one chromosome at a time because in this

section the events on different chromosomes are independent. By

Lemma 1, on any specific chromosome all the CD events are gains

or all the CD events are losses. We analyze in detail the case in

which all CD events are losses; the case of all gains is symmetric.

The proof is constructive. Specifically, we will show that the

upper part of Algorithm 1 will transform a boundary-insensitive S
to a boundary-sensitive S’ of equal cost solely by reordering events.

Without loss of generality, suppose the only CD events in S are

chromosome losses. There is a symmetric algorithm, shown as the

lower part of Algorithm 1, for the case where all the chromosome

events are gains. We add the following definition:

A gene G is defined as unidirectional with respect to S if there

are no gains of G in S. A gene G is defined as bidirectional with

respect to S if S includes gains of G. For unidirectional genes, the

order of chromosome losses and gene losses can never cause a

boundary to be crossed because the copy numbers are monoton-

ically decreasing. The situations we need to avoid are:

1. A bidirectional gene G has copy number UB and the next

operation affecting G is a gain of G.

2. A bidirectional gene G has copy number LB and the next

operation affecting G is a chromosome loss.

Chromosome gains are excluded by Lemma 1 and our

assumption without loss of generality that all CD events are losses.

Gene losses for bidirectional genes are exluded by Lemma 2.

To prove correctness of the algorithm, we note that S’ can

never cross LB for the unidirectional genes because their net

loss equals their total loss. S’ can never cross LB for the

bidirectional genes, because when their copy number is at LB,

a gene gain must still be pending and the gene gains alternate

in the first while loop until no chromosome losses or gene gains

are remaining. S’ can never cross UB for the unidirectional

genes because they have only losses. S’ can never cross UB for

the bidirectional genes because of the test Ngi vUB (line 8)

before any gene gain is done. Further, all the chromosome

losses will be used because one chromosome loss happens on

each pass through the first while loop, if any chromosome

losses remain. All gene gains in S will be used in the first while

loop because the net change for any gene must keep its copy

number below UB. All the gene losses for the unidirectional

genes are used in the second while loop. The unordered set

of events and total change in each gene is thus preserved

between S’ and S, while S’ guarantees that the sequence is

boundary-sensitive.

We use the preceding result to derive the main theorem of this

section, which estabishes a method to find a minimum-length

sequence of SD and CD events transforming Cs to Ct. As in the

proof of Lemma 4, we can consider each chromosome separately

since each SD and CD event affects only one chromosome.

Theorem 5. Assume we partition the gene list by chromosomes
such that each chromosome ci [ fc1, . . . ,cqg corresponds to a
consecutive subset of genes gi,1, . . . ,gi,di

. Further define Cs(g1,

g2, . . . ,gd )~(s1, . . . ,sd ) and Ct(g1,g2, . . . ,gd )~(t1, . . . ,td ). Then
we can construct a minimum-length boundary-sensitive sequence of
events transforming Cs(g1,g2, . . . ,gd ) to Ct(g1,g2, . . . ,gd ) by
constructing a minimum-length boundary-sensitive sequence of
events Si transforming (s1, . . . ,si,1, . . . ,si,di

, . . . ,sd ) to (s1, . . . ,

ti,1, . . . ,ti,di
, . . . ,sd ) for each chromosome ci and interleaving each

Si in arbitrary order.
Proof. The distance function can be decomposed into individual

parts for genes belonging to distinct chromosomes as follows:

Ds,ch(Cs,Ct)~
Xq

i~1
Ds,ch(Cs(si,1, . . . ,si,di

), Ct(si,1, . . . ,si,di
))

Because the distance cost can be decomposed in this way and

each CD or SD event contributes to only a single term of the outer

sum, we can minimize the cost of events for each chromosome

independently and combine the events from distinct chromosomes

in arbitrary order without changing the value of the objective

function. Likewise, since these each chromosome affects a disjoint

subset of genes, boundary-sensitive sequences for each chromo-

some will yield a boundary-sensitive sequence across all genes.

Progression model combining SD, CD and GD events
We now extend the theory from the prior section to include SD,

CD, and GD events. We assume in the proofs and discussion

below that Cs
[Ct, where [ denotes lexicographical ordering.

This assumption reduces the number of cases in several proofs. If

instead, Ct
[Cs, the proofs are identical or symmetric except that

GD events may be used in the wrong direction (halving instead of

doubling). The use of halving events is corrected heuristically by a

procedure of subtree pruning and regrafting at line 24 of the

pseudocode of Algorithm 3, described below, and in FISHtrees.

We will produce the complete proof by deriving a series of lemmas

for three cases that together will cover all possible Cs and Ct:

Lemma 6. For an an even configuration Ct, if there exists an
optimal sequence of copy number change events from Cs to Ct

composed of one or more SD and CD events and a single GD event,
then the following sequence of events is of minimum length:

1. SD and CD events to transform Cs into H(Ct), constructed as
described in the first named subsection of Methods

2. A single GD event to transform H(Ct) into Ct.

Proof. We prove the statement by considering the three

different ways that can be used to transform Cs to Ct using single

GD and multiple SD and CD events. The statement of the lemma

presents one case and the remaining two possibilities are as follows:

1. A single GD event to transform Cs into Og(Cs) and then

multiple SD and CD events to transform Og(Cs) into Ct.

2. Multiple SD and CD events to transform Cs to an intermediate

configuration Ci, a single GD event to transform Ci into Cj ,

and multiple SD and CD events to transform Cj into Ct.
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We show that for either of these alternative cases, we can

produce a sequence satisfying the conditions of the lemma with

equal or smaller length. For the first case, we have to show that

Ds,ch(Cs,H(Ct))vDs,ch(Ct,Og(Cs))

It can be seen that

L1(Cs,H(Ct))~
1

2
L1(Ct,Og(Cs))

If all genes are located on distinct chromosomes, then,

Ds,ch(Cs,H(Ct))~
1

2
Ds,ch(Ct,Og(Cs))

and the claim follows directly.

Now, assume the genes are partitioned into sets of chromosomes

such that each chromosome ci [ fc1, . . . ,cqg corresponds to a

consecutive subset of genes gi,1, . . . ,gi,di
. We focus on a specific

chromosome ci and consider the problem of updating just genes of

that chromosome from their values in Og(Cs) to their values in Ct.

Figure 10. Algorithm 1 pseudocode. Algorithm 1 converts a set of boundary-insensitive events to boundary-sensitive events; lines 3–17 are used
for chromosomes on which all CD events are losses and lines 18–32 are used for chromosomes on which all CD events are gains.
doi:10.1371/journal.pcbi.1003740.g010
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Either zero or a positive even number of CD events must be

performed to convert these genes from Og(Cs)) to Ct and along

with zero or a positive even number of SD operations on each

gene. If an odd number of CD operations are performed on

Og(Cs)), then we get an odd configuration and at least one or an

odd number of SD operations must be performed on each gene of

this odd configuration to convert it to the even configuration Ct.

But a combination of single SD operations acting on each of the

individual genes in gi,1, . . . ,gi,di
has the same effect as a single CD

operation on chromosome ci and this combination therefore

cannot be minimal. Therefore, the number of CD operations is

even. If a total of m CD operations and n SD operations are

needed to convert Ci to Cj , then a total of
1

2
m CD operations and

1

2
n SD operations are needed to convert

1

2
Ci to

1

2
Cj . So,

Ds,ch(Cs,H(Ct))vDs,ch(Ct,Og(Cs))

For alternative 2, we can write the distance function as:

D
s,ch,g
1 (Cs,Ct)~Ds,ch(Cs,Ci)z1zDs,ch(Og(Ci),Ct)

The distance function for our proposed optimal sequence can

be written as:

D
s,ch,g
2 (Cs,Ct)~Ds,ch(Cs,Ci)zDs,ch(Ci,H(Ct))z1

As shown for alternative 1, we can write:

Ds,ch(Og(Ci),Ct)wDs,ch(Ci,H(Ct))

which implies D
s,ch,g
1 (Cs,Ct)wD

s,ch,g
2 (Cs,Ct).

Lemma 7. For an odd configuration Ct, if the optimal
sequence of copy number change events from Cs to Ct is composed
of one or more SD and CD events, followed by a single GD event,
followed by one or more SD and CD events, then the configuration
from which the final set of SD and CD events take place is a member
of GE(Ct).

Proof. We denote the intermediate configuration following the

GD event to be Cint. We will show by contradiction that if there

exists any optimal sequence of events for which Cint 6[ GE(Ct)
then there must exist an alternative, shorter sequence of events.

Define the full sequence of events from Cs to Ct to be ~pp,

subdivided into the subsequences ~pp1,fGDg,~pp2. First, we note that

if there is any duplicated event in~pp2 then we can construct a more

parsimonious solution by replacing the duplicate in~pp2 with a single

copy of the event in ~pp1. Therefore, no event appears more than

once in ~pp2. There are exactly two SD and CD events that can

increase the count of any given probe (SD of that probe or CD of

its chromosome) and similarly exactly two events that can decrease

the count of any probe. Thus, no probe’s value changes by more

than +2 in the transition from Cint to Ct in ~pp2. Finally, we note

that since Cint immediately follows a GD event, it must be an even

configuration. Together, these assertions establish that

Cint [ GE(Ct) for any optimal path ~pp.

Lemma 8. For an odd configuration Ct, if the optimal
sequence of copy number change events from Cs to Ct is composed

of one or more SD and CD events and a single GD event, then the
optimum sequence of events follows the following path:

1. Generate Cint~GE(Ct).

2. SD and CD events to transform Cs into H(Cint).

3. A single GD event to transform H(Cint) into Cint.

4. SD and CD events to transform Cint into Ct.

The optimal sequence is an element of the set of sequences
generated using this procedure.

Proof. The proof follows from application of Lemma 6 and

Lemma 7. As Ct is an odd configuration, the final step cannot be a

GD event. So, the last steps have to be a combination of SD and/

or CD events; in that case, Lemma 7 shows that the configuration

reached as a result of GD must be a member of GE(Ct), which we

denote by Cint. Lemma 6 shows that to reach any member of

GE(Ct), which are even configurations, the optimal sequence of

events is to generate SD and CD events to transform Cs into

H(Cint) first and then to perform a GD event to transform H(Cint)

into Cint. This sequence of events matches the sequence proposed

in the lemma.

The above lemmas allow us to derive Algorithm 2 to transform

Cs to Ct using a minimum-length combination of SD, CD and

GD events. The pseudocode of Algorithm 2 is presented in

Figure 11. To illustrate the algorithm, suppose Cs~(3,1) and

Ct~(7,5), where we will assume we have two probes on a single

chromosome. Since Ct is an odd configuration, we first generate

its nearest even neighbors GE(Ct)~((6,4),(6,6),(8:4),(8,6)) and

calculate H(GE(Ct))~((3,2),(3,3),(4,2),(4,3)). The algorithm

tests for two stopping conditions by which a solution can be

constructed (lines 22 and 24 in Algorithm 2), neither of which

applies to any of the solutions at this point. ((3,2),(3,3),(4,2),(4,3))
are therefore considered for the next iteration. (3,2), (3,3), and

(4,3) are odd configurations, so we generate their neighbor

sets GE((3,2))~f(2,2),(4,2),(2,0),(4,0),(2,4),(4,4)g, GE((3,3))~

f(2,2),(4,2),(2,4),(4,4)g, and GE((4,3))~f(2,2),(2,4),(4,2),(4,4),
(6,2),(6,4)g. One stopping condition is satisfied for each of the

elements of these neighbor sets, so (3,2),(3,3), and (4,3) are each

considered in turn as the next candidate neighbor. (4,2) is an even

configuration, so we only need to consider one possible stopping

condition (line 11), which it satisfies, so it is also considered as a

possible next candidate neighbor. Among the four possibilities, we

will conclude that using (3,2) as the immediate neighbor will lead

to the smallest possible number of steps when accumulating SD+
CD events from Cs to the candidate, a single GD event from the

candidate to its double, and SD+CD events from that double to

Ct. Following some postprocessing updates (procedure CheckSrc-

Neighbor), the algorithm computes a minimum-length solution of

(3,1)~w(3,2)~w(6,4)~w(7,5) and returns the corresponding

length 3.

Algorithm 2 satisfies the following theorem, which constitutes

the major result of this section:

Theorem 9. Algorithm 2 returns the minimum distance
between two configurations Cs and Ct, where Cs

[Ct.
Proof. We use induction on the minimum number of steps to

get from Cs to Ct, which we denote by M(Cs,Ct).

Base case. For the base case, we have M(Cs,Ct)~1. We must

consider two sub-cases: (i) Ct~2Cs and (ii) M(Cs,Ct)~1. For

case (i), Ct is an even configuration. The condition at line 11 in

Algorithm 2 fails and
1

2
Ct~Cs is considered for the next iteration.

In the next iteration, if Cs is an even configuration then the

condition at line 11 is now satisfied and M(Cs,Ct) is assigned the
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Figure 11. Algorithm 2 pseudocode. Algorithm 2 finds the shortest directed distance between two configurations using SD, CD, and GD events.
doi:10.1371/journal.pcbi.1003740.g011
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value 1 in CheckSrcNeighbor procedure called at line 12 in the

main procedure. If Cs is an odd configuration, then the condition

at line 22 is satisfied for each of the even neighbors of Cs and

M(Cs,Ct) is assigned the value 1 in the CheckSrcNeighbor

procedure called at line 23. For case (ii), one of the conditions at

line 11 or line 22 is satisified in the first iteration of the algorithm

depending on whether Ct is an even or odd configuration and

M(Cs,Ct) is assigned the value Ds,ch(Cs; Ct)~1 at line 12 or 23.

Induction step. For the induction hypothesis, we assume that

the the algorithm uses the minimum number of steps for all cases

where M(Cs,Ct)ƒm. Then, suppose that an adversary selects an

example that has complexity M(Cs,Ct)~mz1. Let us assume

that the penultimate configuration in the optimal solution is Cint.

If Ct is an even configuration, then it can be reached from Cint by

using (i) a GD event, (ii) an SD event, or (iii) a CD event.

According to the induction hypothesis, for each of these cases,

Algorithm 2 uses the minimum number of m steps to generate Cint

from Cs. If there is at least one GD event in the optimal solution,

then Algorithm 2 first calculates Cint~ 1
2

Ct. The induction

hypothesis ensures that M(Cs,Ct)ƒm and thus, Algorithm 2

returns a solution with a maximum length of mz1. If there is no

GD event in the optimal solution from Cs to Ct, then Algorithm 2

uses the procedure described in the first named subsection of

Methods to calculate the optimal path from Cint to Ct and

combining it with the optimal solution from Cs to Cint, it returns

the optimal path between Cs and Ct. Now, if Ct is an odd

configuration, then going from the penultimate configuration Cint

to Ct can only be achieved using either an SD or a CD event. For

odd Ct, Algorithm 2 first generates its even neighbors CN which

are steps §1 from Ct. If Cint [ CN , the proof follows directly from

the inductive hypothesis. If Cint 6[ CN , then there is a Cn [ CN

such that Cint is located on the optimal path between Cn and Ct

formed using SD and CD events only. If k is the total number of

genes with odd copy number values in Ct, then Ds,ch(Cn,Ct)~k

and Ds,ch(Cn,Cint)~k{1. Using the induction hypothesis, we can

write,

M(Cs,Cn)ƒm{kz1

As Algorithm 2 uses the procedure described in the first

named subsection of Methods to construct the optimal path

between Cn and Ct, we can see that it returns a path with

M(Cs,Ct)ƒmz1.

Runtime analysis of Algorithm 2
We provide an upper bound on the runtime of Algorithm 2 as a

function of the number of genes d and their copy numbers.

Considering all three events, where Cs
[Ct, the maximum

Figure 12. Algorithm 3 pseudocode. This figure provided the main steps in the algorithm to generate tumor progression trees;
generate_distance_matrix uses Algorithm 2 on each distinct pair of nodes in the set of nodes it is passed. To compute Minimum Spanning Tree
(function mst called at lines 4 and 16), we implemented Prim’s algorithm.
doi:10.1371/journal.pcbi.1003740.g012
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number of doublings required is qlog2 (
Ct(gi)

Cs(gi)
)r, where gi

denotes the copy number of the first gene where Cs(gi)vCt(gi)
and Cs(gi)w0. At each stage of the algorithm, the maximum

number of nodes generated as a result of a GE operation is 3d . d

SD and CD events are used to create each of those 3d nodes in the

case of an odd configuration. So, the maximum number of

required L1 operations is qlog2 (
Ct(gi)

Cs(gi)
)rd3d . Therefore, the

number of operations performed during the execution of

Algorithm 2 is O qlog2 (
Ct(gi)

Cs(gi)
)rd3d

� �
.

Generating tumor phylogenies
We implemented Algorithm 2 and integrated it with our

approximate median-joining-based algorithm from our prior SD-

only FISHtrees [46] code. The key steps of this algorithm are

summarized in Algorithm 3 (Figure 12), which we describe at a

high level here. The phylogeny algorithm first relies on Algorithm

2 to derive a matrix of pairwise distances between observed cell

configurations, which are treated as states on a truncated integer

lattice of dimension d with a maximum value (UB) set to 9 in the

current code. It then repeatedly samples triplets of nodes,

identifying as potential Steiner nodes those that agree in each

dimension with at least one of the triplet. Those Steiner nodes that

lead to reduced minimum spanning tree cost are added to the

node set, with the process is repeated until there is no further

improvement. Finally a series of post-processing steps are

performed to prune Steiner nodes that are not needed for the

final tree and to apply subtree regrafting to correct for a potential

source of suboptimality arising from the fact that the core

phylogeny algorithm assumes symmetric distances but GD

operations are asymmetric.

Inferring tumor phylogenies using Neighbor Joining (NJ)
and Maximum Parsimony (MP) methods

Neighbor Joining (NJ) and Maximum Parsimony (MP) methods

have been commonly used for building single-tumor phylogenies

[16,54] and we therefore compared their accuracy to that of our

own methods in inferring copy number phylogenies. We applied

these two traditional phylogenetic tree building methods to build

tumor progression trees using the individual copy number profiles

as taxa and compared them with the trees built using our

algorithms. We used implementations of both approaches in

MEGA version 6 [69]. For NJ, we used Euclidean distances

between cell copy number profiles to build the pairwise distance

matrix. For MP, we treated copy number profiles of the genes in

individual cells as sequences of arbitrary phylogenetic characters.

We used the ‘‘Close-Neighbor-Interchange on Random Trees’’

search method. For the parameters ‘‘Number of Initial Trees’’ and

‘‘MP search level’’, we used values of 10 and 1 respectively.
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