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ABSTRACT

As key epigenetic regulators, polycomb group (PcG)
proteins are responsible for the control of cell pro-
liferation and differentiation as well as stem cell
pluripotency and self-renewal. Aberrant epigenetic
modification by PcG is strongly correlated with the
severity and invasiveness of many types of cancers.
Unfortunately, the molecular mechanism of PcG-
mediated epigenetic regulation remained elusive,
partly due to the extremely limited pool of experi-
mentally confirmed PcG target genes. In order to
facilitate experimental identification of PcG target
genes, here we propose a novel computational
method, EpiPredictor, that achieved significantly
higher matching ratios with several recent chroma-
tin immunoprecipitation studies than jPREdictor, an
existing computational method. We further
validated a subset of genes that were uniquely pre-
dicted by EpiPredictor by cross-referencing existing
literature and by experimental means. Our data
suggest that multiple transcription factor network-
ing at the cis-regulatory elements is critical for PcG
recruitment, while high GC content and high conser-
vation level are also important features of
PcG target genes. EpiPredictor should substantially
expedite experimental discovery of PcG target
genes by providing an effective initial screening
tool. From a computational standpoint, our
strategy of modelling transcription factor inter-
action with a non-linear kernel is original, effective
and transferable to many other applications.

INTRODUCTION

Originally discovered in Drosophila as the regulators of
homeotic (HOX) genes, polycomb group (PcG) proteins
are well-conserved epigenetic modifiers that repress the

expression of thousands of target genes in a given
genome (1–12). These target genes are essential for many
fundamental, evolutionarily conserved processes including
development, cell-fate determination, proliferation, stem-
cell pluripotency and self-renewal (1,4,7,8,13–16).
Mutations of PcG proteins are implicated in defects in
stem-cell fates and their abnormal levels exhibit a
striking correlation with the severity and invasiveness of
a number of cancer types including prostate cancer and
breast cancer (1,4,7,8,13–16).

PcG proteins impose gene silencing through their inter-
actions with polycomb response elements (PREs) that are
present on the promoter regions of polycomb target genes
(31). This interaction is mediated by three types of
multiprotein complexes, polycomb repressive complex 1
and 2 (PRC1 and PRC2) and a recently discovered
PhoRC that contains the DNA-binding protein Pleioho-
meotic (Pho) or Pleiohomeotic-like (PhoL) (17) in
Drosophila and Ying and Yang 1 and 2 (YY1 and YY2)
in mammals (18–20). The known members of Drosophila
PRC1 include Polycomb (PC), Polyhomeotic (PH),
Posterior sex combs (PSC) and dRing, whereas Drosophila
PRC2 contains at least three core components: Enhancer
of zeste (E(z)), Extra sex comb (Esc) and Suppressor of
zeste 12 (Su(z)12) (18). Since none of these PRC1 and
PRC2 proteins can bind to DNA directly, a hierarchical
recruitment model has been proposed stating that
DNA-binding transcription factors including Pho and
PhoL first bind to PREs on the target genes and recruit
the PRC2 complex to trimethylate the lysine 27 residue of
histone H3 (H3K27me3) that is later bound by the PRC1
complex for maintenance (21). Besides Pho and PhoL, the
best studied Drosophila transcription factors contributing
to PRC2 recruitment include GAGA factor (GAF)/
Pipsqueak (PSQ) (22,24,26), Zeste (25), Dorsal switch
protein (DSP) (23,28), Grainyhead (Grh) (28) and Sp1/
KLF (29), (reviewed in 30). In addition, several Drosophila
PREs have been identified through both computational
and experimental analyses (31–40). More recently, the
first two mammalian genomic regions have been
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discovered to confer PcG responsiveness, one in the
human HOXD cluster (41) and the other in the regulatory
region of the mouse MafB gene (9).

Recent advances in high-throughput techniques
such as chromatin immunoprecipitation in conjunction
with microarray (ChIP-on-chip), DNA adenine methy-
ltransferase identification (DamID) and ChIP-sequencing
(ChIP-seq), have greatly enriched our knowledge on
the scale of genes regulated by PcG (1,4–8,10,11,13–
16,42–49). However, the rather low overlaps of target
genes identified in separate ChIP studies, at �30% for
three ChIP studies on Drosophila melanogaster (4,14,15),
stress the need for additional experimental and computa-
tional verifications of individual PcG target genes. Ideally,
a powerful computational method that is able to predict/
screen, with a reasonable accuracy, PcG target genes in a
given genome would drastically expedite experimental
verification of these genes.

In the literature, there are considerable efforts in
developing computational methods to predict PRE
sequences and to locate the genes regulated by PcG
based upon their adjacency to PREs. For instance,
Ringrose et al. investigated the combinatorial pattern of
transcription factors known to be involved in PcG recruit-
ment and assigned to each genomic region of interest a
score equalling the weighted sum of the occurrence of
every possible transcription factor pairs (40). Fiedler and
Rehmsmeier extended this idea and developed jPREdictor
for PRE prediction (50). Hauenschild and colleagues used
the latest version of jPREdictor to perform a genome-wide
prediction on D. melanogaster and predicted 201 PREs
together with 243 associated genes (51). They
also incorporated the aspect of comparative genomics
and expanded their prediction to 285 PREs with 322
associated genes. More recently, Liu et al. integrated
data from a ChIP study and transcription factor binding
analysis to predict a set of PcG target genes in mouse
embryonic stem cells (52). Despite these efforts,
however, due to the plasticity of PRE sequences, develop-
ing a reliable computational PRE predictor remains a dif-
ficult task. For example, the overlaps between the top
target genes predicted by jPREdictor and those shown in
the three recent ChIP studies in D. melanogaster (4,14,15)
are strikingly low (at �8–20%).

We have addressed this challenge by developing a novel
computational approach, EpiPredictor, to predict PcG
target genes via the identification of PRE sites. With the
incorporation of novel features including the use of a
support vector machine (SVM)-based classifier, global
sequence information, conservation analysis and com-
parative genomics, our approach was able to predict
PcG target genes in the D. melanogaster genome with sub-
stantially improved accuracy. Most of the predicted PcG
target genes are transcription factors involved in key bio-
logical processes such as development, neurogenesis and
cell fate determination. Our results suggest that multiple
transcription factor networking at the cis-regulatory
elements is critical for PcG recruitment, and high GC
content and high conservation level are also important
features of PcG target genes.

MATERIALS AND METHODS

Selection of motifs

In Drosophila, several transcription factors responsible for
PcG recruitment have been identified, which, together
with the consensus sequences of their DNA binding
sites, are collectively referred to as motifs hereafter. We
used seven motifs corresponding to four transcription
factors, GAF (G, G10), Pho (PS, PM, PF), engrailed-1
(EN1) and Zeste (Z), all of which are known to be instru-
mental for PcG recruitment (Supplementary Table S1).
The same motif set was also used in jPREdictor (40,51).
Though a few other transcription factors, e.g. DSP, Grh,
Sp1/KLF, are also implicated in PcG recruitment in some
studies, we did not include them in our current system
because doing so did not lead to any performance im-
provement (data not shown) and also may not allow a
fair comparison with jPREdictor.

Construction of the validation sets

In order to validate our prediction of PcG target genes in
an objective way, we used the gene lists reported in three
recent ChIP studies in D. melanogaster, where Schwartz
et al. (4) used ChIP-on-chip technique on S2 cultured cell
line with antibodies to PC, E(z), PSC and H3K27me3;
Tolhuis et al. (15) used DamID approach on Kc cells to
identify binding sites of PC, Esc, Sex combs extra (Sce)
and H3K27me3; while Schuettengruber et al. (14) applied
ChIP-on-chip on Drosophila embryos and employed
antibodies to PC, PH and H3K27me3. Different choices
of cell lines and antibodies all had an impact on the results
of these experiments that differed from one another at
varying degrees. Since our in silico PRE prediction is
independent of any experimental conditions, we expected
that a comparison of our results with these three
well-annotated studies, which as a whole investigated a
range of antibodies and cell types, would provide a com-
prehensive evaluation of our system. To ensure that the
validation gene lists to be used were as reliable and
up-to-date as possible, we performed a post-processing
procedure on the published data using the following strin-
gent selection criteria. For all three validation sets, we
used the gene lists published by the authors as input and
removed duplicates if there was any. We also eliminated
the genes that were withdrawn in the newer release of the
gene annotation to ensure that the validation gene sets are
up-to-date. In particular, in processing Schwartz’s data
(4), we only selected the target genes with strong PcG
binding signals to all of the four PcG proteins [PC, PSC,
PH and Su(z)12] simultaneously as defined by the authors.
As a result, we obtained three lists consisting of 176
(Schwartz), 225 (Tolhuis) and 215 (Schuettengruber) pre-
dicted PcG target genes, respectively (Supplementary
Table S2). Among them, 38 genes appeared in all of the
three validation sets, denoted as Intersection, making the
degree of overlap in the range of �17–22%.

Construction of the training set

Our PRE classifier is a supervised learner. Therefore we
needed to provide it with a training set of good quality.
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This consisted of two steps: (i) construction of a PRE/
non-PRE sequence collection and (ii) construction of the
training set containing examples of both PRE sites
(positive) and non-PRE sites (negative).
First, we constructed a sequence collection containing

12 known PRE sequences and 23 control (non-PRE)
sequences. Among them, the 12 PRE sequences and 16
control sequences were the same as those used by
Ringrose and colleagues (40,51). The 12 PRE sequences
had solid evidence to support the existence of PRE site(s)
within, whereas the 16 control sequences included pro-
moters of genes regulated by GAF and Zeste but not by
PcG proteins (40). To reflect the most recent progress in
the field, we followed the same methodology used by
Ringrose (40) and collected seven extra control sequences
(Supplementary Table S3) for our training set that were
bound by GAF, Pho and Zeste but did not have any
enrichment for PC, PH or H3K27me3 in a genome-wide
ChIP study (14). They were obtained by examining
whether a given locus bound by GAF, Pho and Zeste
was in the proximal promoter region of any gene, i.e.
�1000 to +1000 base pairs (bps) with respect to the
gene’s transcription start site (TSS). If so, we retained
the locus and the gene, otherwise, we discarded them.
To ensure that our control sequences did interact with
GAF, we consulted another list of GAF target genes by
an independent study (53). If the genes associated with any
retained loci under investigation were not included in the
second study, the loci were eliminated from our list. It was
evident that, despite the addition of seven new control
sequences in our study, the size of the sequence collection
remained rather small.
A PRE sequence containing PRE site(s) is much larger

than an actual PRE site. Due to the limited resolution of
the experimental verification process, most known PRE
sequences included in our sequence collection spanned
thousands of bps long whereas the core-PRE sites are
usually much shorter (<200 bps) (37). In other words, in
addition to core PRE sites, a known PRE sequence might
also contain non-PRE sites. Thus it was prudent to
identify the loci that were most likely the bona fide PRE
sites. For this purpose, we scanned each PRE/non-PRE
sequence in our collection with a sliding window of
200 bps that incrementally moved downstream with a
constant step of 20 bps. For each PRE sequence, we
chose the window(s) with the highest sum of motif occur-
rence (calculated by the Motif Analyzer in the following
section) as PRE sites. For every control (non-PRE)
sequence, all the windows from scanning a control
sequence were kept to ensure that the classifier was to be
trained under very stringent condition.

Our new system EpiPredictor

Our system consisted of six primary components including
Motif Analyzer, PRE Classifier, GC Analyzer, PRE-to-
gene Mapper, Conservation Level Analyzer and Compa-
rative Genomics Analyzer (Figure 1A). With the exception
of PRE-to-gene Mapper, which was a utility module, each
component rendered a unique perspective of investigating
the genomic sequence or gene of interest. The first three

units were centred around the prediction of PRE sites
(Figure 1A and B), whereas the last three were focused
on analyses at the gene level (Figure 1A).

Prediction of PRE sites

Motif Analyzer. We employed a sliding window of 200
bps and a step size of 20 bps to scan the whole genome
where the DNA sequence overlapping with the window
was captured and analyzed at any given time by the
Motif Analyzer. Using a set of n motifs of transcription
factors that were known to be involved in PcG recruit-
ment, denoted by M1, M2, . . .,Mn, the Motif Analyzer
constructed a profile for each window sequence/locus
(denoted by Si) and represented it by a feature vector
Fi=(fi1, fi2, . . ., fin), where fij denoted the occurrence fre-
quency of motif Mj in sequence Si. This feature vector was
then analyzed by the pre-trained PRE classifier (below)
that predicted whether the test window/locus was a PRE
or not (Figure 1B).

SVM-based PRE Classifier. Ringrose et al. (40) examined
the occurrence of paired motifs at the putative PRE sites
and observed that the weighted sum of the occurrence
frequencies of all possible motif pairs were far more
effective than a linear sum up of the occurrence frequency
of single motifs. This suggested that the pattern of tran-
scription factor interactions at the PRE sites be combina-
torial. In order to abstractly model the multifaceted
interactions among transcription factors at PRE sites,
we incorporated an SVM-based PRE classifier, which is
a powerful supervised learning method for handling clas-
sification tasks. SVM has achieved prominent success in a
spectrum of biological applications including gene
selection (54,55), protein classification (56–58), cancer
tissue characterization (59,60), outperforming many
other classic machine learning techniques such as neural
network, decision tree, k-nearest neighbour (61,62).

There are four basic kernel functions in SVM, including
linear, polynomial, radial basis function (RBF) and
sigmoid. Given the context of PRE prediction, we
provided a further annotation to SVM coupled with
some of these kernels. For instance, in the case of a poly-
nomial kernel, the parameter d corresponded to the degree
of motif combinations, e.g. when d=1 (equivalent to a
linear kernel), only single motif occurrence was noted;
when d=2 (quadratic kernel), the occurrence of motif
pairs was considered; whereas when d=3 (cubic kernel),
the occurrence of motif triplets was analyzed. In the case
of the RBF kernel, the data was mapped to an infinite
dimensional Hilbert space where intuitively speaking, all
the motifs were mapped to a circle/hypersphere. Taken
together, we expected the polynomial (d> 1) and RBF
kernels to be best for modelling transcription factor inter-
action at the PRE sites. While the windows/loci classified
to be non-PREs were discarded, those classified to be
PREs had to undergo further scrutiny by GC Analyzer
(below).

GC Analyzer. Previous studies indicated that native DNA
sequence features, such as GC content, are associated
with epigenetic modification activities such as DNA
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Figure 1. Our EpiPredictor system. (A) Architecture of EpiPredictor. The modules of Motif Analyzer, PRE Classifier and GC Analyzer are dedicated
to the prediction of PRE sites and those of PRE-to-gene Mapper, Conservation Level Analyzer and Comparative Genomics Analyzer are focused on
the prediction of PcG target genes. (B) Flowchart of the PRE site prediction modules of EpiPredictor.
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methylation and PcG binding (63–65). In particular, the
work of Ku et al. (5) suggested that CpG islands influence
recruitment of PcG. Furthermore, GC-rich sequence
elements have been shown to recruit PRC2 in mammalian
embryonic stem cells (66) and high-CpG-density pro-
moters are associated with highly regulated key develop-
mental genes and are enriched with the H3K27me3 marks
(67). Therefore, we implemented a GC Analyzer to further
scrutinize the output from the PRE Classifier. For a
sequence window/locus Si that was positively predicted
by the PRE classifier, our GC Analyzer compared its
GC ratio Ri with a threshold value RT and discarded Si

if Ri <RT (Figure 1B). To decide on an appropriate
threshold for a region of 200-bps window size that we
used, we examined six experimentally verified PRE
sequences where short core PRE segments were identified
(37). The lowest GC ratio of these core PRE segments was
44%. We then chose this lower bound of the GC ratio as
our threshold in order to ensure that all the verified PRE
segments satisfy this GC ratio cut-off so that they can pass
the GC Analyzer’s scrutiny. We also compared the cut-off
values of 44, 42 or 40% on EpiPredictor, and found 44%
yielded the best performance. Therefore, we used the 44%
threshold in our subsequent analysis. Only the ones that
passed the GC content test were considered as the poten-
tial PRE loci. Each locus was given a numerical score SCi

by the Motif Analyzer that equalled the sum of motif oc-
currence in the sequence Si, i.e. SCi=

Pn
j¼1 fij (Figure 1B).

Uncertainty measurement. To characterize the probability
of a predicted PRE site being the real PRE site, we per-
formed a non-parametric analysis on 100 randomly
generated genomes whose size and nucleotide distribution
(A: 29%, C: 21%, T: 29%, G: 21%) are the same as the
D. melanogaster genome. We used our software to predict
PRE sites on these random genomes and for a given score
s we counted Os that denoted the occurrence of a score
that is higher or equal to s. We then calculated Es, i.e.
the E-value of score s by Os/100 and the corresponding
P-value would be Es/100.

Genome-wide prediction of PcG target genes

PRE-to-gene Mapper. From our genome-wide PRE site
prediction results, the PRE-to-gene Mapper first mapped
all of the predicted PRE sites to their genomic coordinates
on the genome. When several windows/loci adjacent to
each other were all predicted to be PRE sites, they were
all combined into a longer PRE. The Mapper then
analyzed every locus that had a positive PRE score S,
located its most adjacent gene G and credited G a score
equalling S. If the locus was positioned closely in between
two genes and if the second closest gene G2 was within
4000 bps away, the Mapper granted G2 a score equalling S
as well.

Conservation Level Analyzer. Due to their roles in
regulating key developmental processes, PcG target
genes were expected to be evolutionarily conserved. The
Conservation Level Analyzer considered six Drosophila
genomes that are close to D. melanogaster according
to the phylogenetic tree (68), including D. simulans,

D. sechellia, D. yakuba, D. erecta, D. pseudoobscura and
D. ananassae. For each annotated D. melanogaster gene, it
queried the Flybase database (www.flybase.org) to locate
its orthologues in any of the six related genomes. If a gene
failed to have any orthologue, it was eliminated from the
eligible gene list. That is, the Analyzer excluded the genes
that did not have any orthologue in any related species
from the pool of candidate genes to be considered as PcG
targets. Eventually all the remaining genes were ranked
according to the genes’ associated PRE scores. The
version of our EpiPredictor up to this point was termed
as EpiPredictor-Basic.

Comparative Genomics Analyzer. We investigated the
value of incorporating comparative genomics (69–71)
into PcG target gene prediction. For this, we constructed
a variant version of EpiPredictor, hereafter referred to as
EpiPredictor-CG, which integrated analyses on three
well-annotated Drosophila organisms (D. simulans,
D. yakuba and D. pseudoobscura) that are close to
D. melanogaster in the phylogenetic tree (68).

Our tactic in implementing EpiPredictor-CG was to con-
struct an ensemble system that employed the top-ranked
genes provided by our original EpiPredictor-Basic as the
base set and incorporated the information obtained from
our comparative genomics study for rank adjustment
when necessary. To be more specific, if our ultimate goal
was to retrieve N genes that were most likely the PcG
targets, we started our process with a gene list containing
the topM genes ranked by EpiPredictor-Basic (M= 1.5N)
and reordered the genes based upon the scores of the can-
didate genes’ orthologues in different Drosophila species.

In order to achieve this, we applied EpiPredictor-Basic
onto each of these three Drosophila genomes. For each
genome, all annotated genes were evaluated and ranked
according to their predicted PRE scores. If a gene is
orthologous to a D. melanogaster gene, the rank of that
gene was linked to its D. melanogaster gene orthologue.
Therefore, for any D. melanogaster gene included in the
top list, up to four ranks could be obtained, each repre-
senting the rank of the gene (or its orthologue) in the
respective species, i.e. D. melanogaster, D. simulans,
D. yakuba and D. pseudoobscura. A final rank was
calculated by averaging all the ranks. The gene list was
then re-sorted accordingly.

BART-based PRE classifier
BART (Bayesian Additive Regression Trees) is a
nonparametric regression method that can also be used
as a binary classifier. As a comparison to the
SVM-based PRE Classifier in our system, we used
BART as an alternative classifier to evaluate whether a
given locus is actually the PRE site. This was achieved
by using the R package (BayesTree) by Hugh Chipman
and Robert McCulloch.

Computational complexity
The primary computational complexity of our
EpiPredictor model came from the component of the
SVM-based PRE classifier. During the training phase,
the complexity of the SVM was O(Ns

3+(Ns
2)l+NsdLl)
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where Ns denoted the number of support vectors, l
denoted the number of training points and dL denoted
the dimension of input data. During the testing phase,
the complexity of the SVM was O(MNs) where M was
O(dL). In our experiments, Ns= 21.

On a regular Dell desktop (Intel Duo CPU 3.00GHz,
1G memory), our system spent 63ms in training. During
the prediction phase, it took about 30min to process the
entire D. melanogaster genome of 137 million bps and used
around 5 MB memory. Due to the integration of SVM, it
was necessary to store a substantial amount of feature
vectors onto a text file. This Input/Output process was
responsible for the majority of the execution time.

Importantly, our system is an automated program in
which the components such as Motif Analyzer,
SVM-based PRE Classifier and GC Analyzer were run
sequentially requiring no human intervention after the
genome sequence under study is input, and is readily
scalable. For example, we used our software to predict
the PcG target genes on the entire human genome and
obtained complete results within three and a half hours
on the same PC.

In marked contrast, when we used BART as an alter-
native to SVM to classify PRE, we noticed that BART
required substantial computational resources. It was
impossible to complete the prediction of D. melanogaster
genome on the same PC. On an Intel Xeon computer
cluster which contains 134 SunFire x4150 nodes from
Sun Microsystems, the computation took about 33 h to
complete. The average usage of memory was 16 GB.

Immunoprecipitation of crosslinked chromatin from
D. melanogaster S2 cells

Drosophila melanogaster Schneider S2 cells were cultured
in 1� Schneider’s medium (Invitrogen) supplemented
with 20% fetal bovine serum, 100U/ml Penicillin and
100 mg/ml Streptomycin at room temperature. Cells were
passaged at 1:4 ratio every two days to keep logarithmic
growth. Crosslinking, immunoprecipitation with anti-E(z)
antibody and quantitative PCR (qPCR) were done as
described previously (72). In brief, 5 mg anti-E(z) (Santa
Cruz Biotechnology, Inc) or anti-FLAG mock antibody
(Sigma) were added to 4� 108 crosslinked S2 cells to
immunoprecipitate protein/DNA complexes. The
antibody–protein/DNA complexes were then purified
using 50 ml protein A Sephorose 4 Fast Flow Beads
(GE Healthcare). DNA was extracted from the purified

antibody-protein/DNA complexes by phenol–chlor-
ophorm extraction. Purified DNA was subjected to
qPCR using primer pairs designed to amplify DNA of
�250 bps using a SYBER green detection mix
(Applied Biosystems). All experiments were carried out
in triplicates.

RESULTS

Empirical analysis of the SVM-based PRE classifier

In order to identify the most appropriate kernel for the
SVM-based PRE classifier, we performed an empirical
analysis on the training set to gauge how well a certain
kernel distinguished known PRE sequences. This is done
using three runs of 10-fold cross validation so as to avoid
any potential over-fitting problem. With the default par-
ameters provided by LibSVM (73), the performance of all
four basic kernel methods was analyzed by sensitivity and
specificity (Table 1). As we expected, the non-linear
kernels such as polynomial worked very well in distin-
guishing PRE sequences from control sequences, further
confirming the advantage of modelling the motif inter-
action in a combinatorial manner. Among them, the poly-
nomial (d=2 and d=3) kernels (also called the quadratic
kernel and cubic kernel, respectively) achieved the best
results in terms of specificity and sensitivity when both
the average and standard deviation are taken into
account, implicating that at the PRE sites, multiple tran-
scription factors interact with each other that as a whole
serves as the platform for PcG recruitment. Although the
cubic kernel did not significantly outperform the quadratic
kernel, it is still the best model given all the parameters
considered. Therefore, we used the cubic kernel on the
SVM throughout our analyses.

Test of the training set

To compare our new sequence collection with the original
one used by Ringrose and colleagues, we ran independ-
ently EpiPredictor-Basic using the modules (a, b, c) on
both training sets and the jPREdictor (static) on our
new training set (Supplementary Table S4). Also
included in Supplementary Table S4 is the result of
jPREdictor (static) with Ringrose’s training set as origin-
ally reported (51). We found virtually no difference
in performance when using different training sets.

Table 1. SVM kernel evaluation

Metric Kernel

Linear Polynomial (d=2) Polynomial (d=3) RBF Sigmoid

Sensitivity 0.80±0.05 0.80±0.05 0.82±0.03 0.60±0.05 0.00±0.00
Specificity 0.91±0.01 0.96±0.01 0.96±0.01 0.99±0.02 0.84±0.03

Sensitivity=TP/(TP+FN); Specificity=TN/(TN+FP),
where TP, TN, FP, FN correspond to true positive, true negative, false positive and false negative, respectively. We performed three independent
runs of 10-fold cross validation on the training collection and reported the average sensitivity/specificity and the standard deviation. The kernel with
the best performance in both sensitivity and specificity is highlighted in bold. This is also the kernel we used throughout our analyses.
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Therefore, we elected to use our training set throughout
the analyses.

Performance evaluation of EpiPredictor components

We tested our classifier on the D. melanogaster genome
that contains roughly 137 million bps and 13 000 genes.
Each chromosome was scanned with a sliding window of
200 bps and a step size of 20 bps (parameters determined
by empirical analysis), and each window was analyzed by
the Motif Analyzer component and represented by a
seven-dimensional feature vector (each corresponding to
one of the seven motifs we used). The performance of the
system was evaluated by the matching ratios between our
top predicted genes and those of the three validation sets
derived from ChIP studies (4,14,15) together with their
intersection set (Intersection) (Table 2). In order to
examine whether the performance of our system is sensi-
tive to different window size and step sizes, we also varied
the values of these parameters (Supplementary Table S5).
It is clear that with different window and step sizes, the
performance of our system did vary slightly but the
change was not very substantial. Overall, the parameter
setting of window size=200, step size=20 produced the
best results. Therefore, we used the window size of 200 bps
and step size of 20 bps throughout.
Our system contains multiple components. The effect of

each component was evaluated by sequentially adding
each component onto the Baseline system that used only
the Motif Analyzer.

Baseline system
To thoroughly evaluate the merit of each component of
EpiPredictor, we constructed a baseline system that did
not incorporate SVM or any other subsequent component
but instead only used the Motif Analyzer that calculated
the sum of the motif occurrence frequency. The baseline

system achieved a moderate performance, having the
matching ratios of 14.20, 5.33, 12.09, 2.63%, with the
three validation sets and their intersection, respectively
(Table 2). It is noteworthy that to perform a fair compari-
son with jPREdictor that reported their top 243 genes, we
also retrieved the top 243 genes from our system to obtain
the aforementioned results.

SVM-based PRE Classifier
In order to estimate the merit of SVM, we then integrated
SVM into the baseline system. The application of SVM
drastically enhanced the performance of our system when
compared to the baseline system, with matching ratios of
22.73, 9.78, 19.53, 23.68%, respectively (Table 2).

GC Analyzer
Subsequently we incorporated the GC Analyzer into our
program. The prediction performance of EpiPredictor was
further improved to 26.14, 10.22, 25.12, 23.68%, respect-
ively (Table 2), demonstrating that the bona fide PcG sites
tend to have relatively high GC content.

Uncertainty measurement
The non-parametric tests conducted on 100 random
genomes indicated that a PRE score of 12.7 corresponded
to a P-value of 0.01. In our prediction, the top 190 pre-
dicted PRE sites had a PRE score of higher than 12.7, with
the highest score being 39.2. We also corrected the issue of
multiple comparisons using Bonferroni correction, and
found that a PRE score of 17.3 corresponded to a P-
value of 0.0001 (0.01/100). In our prediction, the top 73
predicted PRE sites had a PRE score of 17.3 or higher.
Thus these top 73 predicted PRE sites are regarded as
predictions with significant confidence, even under such
a stringent condition.

Table 2. Evaluation of the performance of individual EpiPredictor components against three genome-wide ChIP studies in

D. melanogaster and their intersection

Number of top genes EpiPredictor
Components

Schwartz et al.a Tolhuis et al.b Schuettengruber et al.c Intersectiond

243 e (a) 14.20%f 5.33% 12.09% 2.63%
(a,b) 22.73% 9.78% 19.53% 23.68%
(a,b,c) 26.14% 10.22% 25.12% 23.68%
(a,b,c,d)g 27.27% 10.67% 26.05% 26.32%

322 h (a,b,c,d) 32.39% 14.22% 30.70% 34.21%
(a,b,c,d,e)i 35.80% 15.11% 33.02% 44.74%

(a): Motif Analyzer; (b): SVM Classifier; (c): GC Analyzer; (d): Conservation Level Analyzer; (e): Comparative Genomics
Analyzer.
aOverlap with the genes predicted by Schwartz et al. (4).
bOverlap with the genes predicted by Tolhuis et al. (15).
cOverlap with the genes predicted by Schuettengruber et al. (14).
dOverlap with the genes intersected by Schwartz et al., Tolhuis et al., and Schuettengruber et al.
eThe number of top genes retrieved from EpiPredictor-Basic analysis.
fSuppose the validation set includes V genes. Among the top N genes predicted by our system, W genes matched the validation
set, the overlap was represented as W/V.
gThe EpiPredictor-Basic module.
hThe number of top genes retrieved from EpiPredictor-CG analysis.
iThe EpiPredictor-CG module. The results corresponding to the EpiPredictor-Basic and EpiPredictor-CG models are highlighted
in bold.
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Conservation Level Analyzer
The integration of the Conservation Level Analyzer
slightly enhanced our system’s performance to 27.27,
10.67, 26.05, 26.32%, respectively (Table 2). At this
point, we completed the construction of the basic
version of our system, EpiPredictor-Basic. A complete
list of the top genes thereby generated is provided in
Supplementary Table S6.

It is worth mentioning that an attempt of using the
base-by-base evolutionary conservation score compiled
on D. melanogaster genome in comparison to 14 insects
(71) failed to produce any improvement in the predic-
tion performance (data not shown). Taken together,
this suggested that the bona fide PcG target genes
be most likely evolutionarily conserved; however,
their positions might be more flexible in the course
of evolution.

Comparative Genomics Analyzer
In order to evaluate the performance of
EpiPredictor-CG, which integrated the Comparative
Genomics Analyzer, we retrieved the top 322 predicted
genes, which was the same number as generated by our
counterpart jPREdictor (dynamic) (Supplementary
Tables S7 and S8). Due to the integration of compara-
tive genomics, some of the genes with lower scores
were boosted up into the top list (Supplementary
Table S9) and yielded an improved performance of
35.80, 15.11, 33.02, 44.74%, respectively (Table 2), in
comparison to the performance of EpiPredictor-Basic in
predicting 322 genes: 32.39, 14.22, 30.70, 34.21%
(Table 2).

It is worth noting that the Intersection set obtained by
intersecting all the three validation sets derived from ChIP
studies (4,14,15) did have very high matching ratio with
our EpiPredictor-CG prediction (Table 2), consistent with
the expectation that it is the highest confidence set of the
target genes.

Performance comparison between SVM-based and
BART-based PRE classifier

Besides SVM, several other statistical models including
BART (74) are also able to capture nonlinear interactions
among the sequence features. For instance, Liu et al. (52)
used BART to predict polycomb target genes with a good
performance. Therefore we compared our system’s per-
formance using SVM-based or BART-based PRE classi-
fier (Table 3). It is clear that the SVM-based classifier
consistently outperformed the BART-based counterpart.

Comparative analysis of EpiPredictor and jPREdictor

We conducted a comparative analysis of EpiPredictor and
jPREdictor (Table 4) by using the matching ratios as well
as the receiving operating characteristics (ROC) curve as
our evaluation metrics. The former metric indicates the
overall accuracy of prediction while the latter one
depicts the trade-off between sensitivity and specificity,
which focuses on evaluating the ranking scheme.
In terms of the matching ratio, EpiPredictor-Basic outper-
formed jPREdictor (static) by 6.25, 2.67, 6.05, 5.27%,
respectively, against the three validation sets and their
intersection set and the improvement is statistically signifi-
cant (P< 0.05 in one-tailed Students’ t-test). In addition,
EpiPredictor-CG surpassed the performance of jPREdictor
(dynamic) by 7.96, 2.67, 10.23, 18.42%, respectively
(P< 0.05). In terms of the area under curve (AUC) of
ROC curve, EpiPredictor-Basic achieved comparable
results with jPREdictor (static), whereas EpiPredictor-CG
outperformed jPREdictor (dynamic) in three out of the
four cases (Figure 2). It is worth noting that the AUCs
of EpiPredictor-Basic, EpiPredictor-CG and jPREdictor
(static) were all significantly larger than 0.5 (random
guess) (P< 0.05) but it was not the case for jPREdictor
(dynamic). Furthermore, using the AUCs as a measure,
neither EpiPredictor nor jPREdictor’s advanced version
significantly outperformed their basic counterpart.

Annotation of EpiPredictor prediction

To reveal the major function enrichment of the genes pre-
dicted by our system and jPREdictor, we used the DAVID
bioinformatics tool (75) to perform a gene ontology
analysis on the genes uniquely predicted by either
EpiPredictor-CG or jPREdictor (dynamic), as well as
those predicted by both EpiPredictor-CG and jPREdictor
(dynamic) (Figure 3). Most of the highly represented gene
functions were related to the regulation of transcription,
development, pattern specification, morphogenesis and
cell-fate commitment, consistent with the expected roles
of PcG in regulating key developmental processes of an
organism (4,6–8,13–16). The consensus genes predicted by
both EpiPredictor-CG and jPREdictor (dynamic) made up
about 28% of the top 322 genes and their corresponding
gene ontology analysis presented good consistency with
experimental studies.
By cross-referencing existing literature, we found ex-

perimental evidence for seven genes, which were
uniquely identified by EpiPredictor-CG and also matched
at least one of the three ChIP studies, of their critical roles

Table 3. Evaluation of the performance of our system using

SVM-based PRE classifier vs BART-based PRE classifier

Method EpiPredictor
components

Schwartz
et al.a

Tolhuis
et al.b

Schuettgurber
et al.c

Intersectiond

SVM (a, b) 22.73% 9.78% 19.53% 23.68%

(a, b, c) 26.14% 10.22% 25.12% 23.68%

BART (a, d) 21.59% 8.44% 19.07% 21.05%
(a, d, c) 22.73% 9.33% 22.79% 21.05%

(a): Motif Analyzer; (b): SVM-based Classifier; (c): GC Analyzer;
(d): BART-based Classifier.
aOverlap between the top 243 predicted genes with the genes predicted
by Schwartz et al. (4).
bOverlap between the top 243 predicted genes with the genes predicted
by Tolhuis et al. (15).
cOverlap between the top 243 predicted genes with the genes predicted
by Schuettengruber et al. (14).
dOverlap between the top 243 predicted genes with the genes intersected
by Schwartz et al., Tolhuis et al. and Schuettengruber et al. The results
of the SVM-based classifier are highlighted in bold.
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in key developmental processes (Table 5). To exemplify,
the inv locus was recently found to harbour one PRE site
which has been experimentally verified (38) and its role in
regulating Drosophila hindgut development is well estab-
lished (76). The wg locus belongs to the important Wg/

Wnt signal transduction pathway that directs a variety of
cell fate decisions in developing animal embryos (86). In
Drosophila, wg alone directs a wide range of cell fate and
patterning decisions (77). The nub locus is involved in
embryogenesis and neurogenesis (78–80). The pdm2

Figure 2. ROC curves of the PRE genes predicted by EpiPredictor and jPREdictor. Shown are overlaps with the genes predicted by Schwartz et al.
(A), Tolhuis et al. (B), Schuettengruber et al. (C) and the genes intersected by all three sets (D). The AUCs on the four validation sets are 0.61, 0.61,
0.58 and 0.60, respectively, for EpiPredictor-Basic, 0.62, 0.57, 0.62 and 0.53, respectively, for EpiPredictor-CG, 0.64, 0.56, 0.59 and 0.67 for
jPREdictor (static), 0.56, 0.49, 0.55 and 0.59 for jPREdictor (dynamic).

Table 4. Comparison of the overlaps between the PRE genes predicted by EpiPredictor and jPREdictor and three genome-wide

ChIP studies in D. melanogaster and their intersection

Scheme Approach Schwartz
et al.a

Tolhuis
.et al.b

Schuettengruber
et al.c

Intersectiond

Original (243 genes) EpiPredictor-Basic f
27.27% 10.67% 26.05% 26.32%

jPREdictor (static)e 21.02% 8.00% 20.00% 21.05%
Comparative genomics (322 genes) EpiPredictor-CG f

35.80% 15.11% 33.02% 44.74%

jPREdictor (dynamic)e 27.84% 12.44% 22.79% 26.32%

aOverlap with the genes detected by Schwartz et al. (4).
bOverlap with the genes detected by Tolhuis et al. (15).
cOverlap with the genes detected by Schuettengruber et al. (14).
dOverlap with the genes intersected by Schwartz et al., Tolhuis et al. Schuettengruber et al.
eData reported in the original publication (51).
fThe results of EpiPredictor-Basic and EpiPredictor-CG are highlighted in bold.
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locus is responsible for a variety of cell fate decision in the
Drosophila development (81). The dac is an essential part
of a complex that functions to induce ectopic eye devel-
opment (82). The Gsc mediates effective repression in
Drosophila blastoderm embryos (83). The tup has a key
function in the development of imaginal disc (84) and is
also a key component in early cardiogenesis (85).
Interestingly, a recent ChIP study (7) revealed that the
human homologues of wg (WNT1), dac (DACH-1), Gsc
(GSC) and tup (ISL1) are all targeted by PcG. In particu-
lar, WNT1 is known to be involved in embryogenesis and
cancer development (86). The functions of the genes
uniquely identified by our system but excluding
the abovementioned seven genes are shown by a gene
ontology analysis using DAVID (Figure 3F).

To further validate our prediction, we also cross-
referenced our gene list with the 27 PcG target genes

confirmed by ChIP-qPCR in the work of Ringrose and
colleagues (40), of which EpiPredictor-CG correctly pre-
dicted 19 genes (70%), exhibiting a good correlation.

Experimental validation of EpiPredictor prediction

In order to experimentally validate EpiPredictor predic-
tion, ChIP-qPCR was used to investigate the enrichment
of 15 predicted PRE sites that were randomly selected
from the top 150 predictions (Supplementary Table S10)
using anti-E(z) antibody. For positive controls we used
three known PREs, bxd, iab2, and en_DM, as established
in the literature (87) along with four sequences from
Ringrose et al. (40), hth, unc-4, idgf4, and cato, for which
ChIP-qPCR experiments have been done using anti-PC
antibody. Three housekeeping genes with no previous
evidence as PRE or of polycomb related activity, hsp22,

Figure 3. Gene ontology analysis of genes predicted by EpiPredictor and jPREdictor. Shown are the top 10 gene ontology terms related to the genes
predicted by: (A) EpiPredictor-CG; (B) EpiPredictor-CG but not jPREdictor (dynamic); (C) jPREdictor (dynamic); (D) jPREdictor (dynamic) but not
EpiPredictor-CG; (E) both EpiPredictor-CG and jPREdictor (dynamic); (F) EpiPredictor-CG except the seven annotated genes.
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hsp26 and Pc, were selected as negative controls (40).
Primers for qPCR are listed in Supplementary Table S11.
The results of ChIP-qPCR showed that there are more

than two-fold enrichments for 12 out of the 15 tested PRE
sites (Figure 4). Among them, five showed enrichment
greater than the averaged value of 5.66 for the seven
positive controls, indicating a higher degree of confidence

for their potential as PcG target genes. Our E(z)-ChIP
derived data and Ringrose’s PC data are scaled roughly
to the same level (Supplementary Table S12) with the ex-
ception of idgf4 which exhibited enrichment in our data
but not in Ringrose’s (40). However, this discrepancy is
not completely unexpected given the fact that on the
whole genome scale PC and E(z) do not always align
well (4).

By mapping the positively enriched sequences onto their
closest genes, we found that all 12 corresponding genes are
of crucial importance to Drosophila embryonic develop-
ment, since the knockout of each of these genes conferred
serious body morphological changes. The antp and abd-A
are Drosophila HOX genes (88), while bxd is expressed
directly upstream of and is known to directly influence
the behavior of ubx, another HOX gene (89).
Furthermore, both disco and eve regulate the localization
or expression of HOX genes, conversely, salm and bab2
are directly regulated by HOX genes (90–93), while unc-4
is a homeobox-containing protein and a paralogue of the
HOX genes with similar functions (94). Finally, both noc
and pnr are critical for proper eye formation (95,96),
grn has importance in multiple organ development (97)
and immune response in the midgut (98), and zfh1 is es-
sential to cell differentiation of lateral mesodermal deriva-
tive lineages and in neurogenisis (99). The critical
importance of these genes and the computational predic-
tion of them being PcG target genes highlight the import-
ance of understanding how sequence influences PcG
binding in order to properly understand embryonic devel-
opment in Drosophila.

Figure 4. ChIP-qPCR verification of EpiPredictor prediction. Shown are the enrichment of each genomic region (predicted PRE site) in S2 cell ChIP
samples using anti-E(z) versus the use of anti-FLAG mock antibodies. The horizontal line shows an enrichment of 1 (no enrichment). The gene
symbols listed are those of the genes closest to the tested genomic regions. For specific coordinates please refer to Supplementary Table S10.

Table 5. Annotation of a set of seven genes uniquely identified by

EpiPredictor-CG

Gene Verified function in
Drosophila

Vertebrate homologue

inv A newly experimentally
validated PRE was found
to exist in the inv locus
(38). It is important for
hindgut development (76)

wg Embryogenesis (Wingless/Wnt
signaling pathway) (77)

WNT1: predicted as PcG
target in human (7);
involved in embryogen-
esis and cancer (86)

nub Embryogenesis, neurogenesis
(78–80)

pdm2 Important for a variety of cell
fate decisions in
development (81)

dac Induce ectopic eye
development (82)

DACH-1: predicted as
PcG target in human (7)

Gsc groucho-dependent repression
in embryo (83)

GSC: predicted as PcG
target in human (7)

tup Imaginal disc development
(84), key component in
early cardiogenesis (85)

ISL1: predicted as PcG
target in human (7)
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PcG target genes are essentially free of transposons

Transposons are mobile genetic elements that can cause
mutations and change the amount of DNA in the genome
(105). Given their critical importance in cellular functions,
we predicted that PcG target genes in D. melanogaster
should have a minimal presence of transposons, generally
termed as transposon-free regions (TFRs). We performed
a whole-genome search and identified 1400 TFRs of
> 10 000 bps in length, of which 1232 overlapped with at
least one gene’s TSS. In the top 322 putative PcG target
genes predicted by our system, 319 of them (99%) had
TSS overlapping with one or more TFRs. Thus, as we
expected, the D. melanogaster PcG target genes are
indeed essentially free of identifiable transposon-derived
sequences. This is a novel finding in Drosophila and cor-
roborates well with several recent mammalian studies that
revealed strong correlations between TFRs and genes
encoding developmental regulators (100), as well as the
H3K27me3 marks (101).

DISCUSSION

Sequence ambiguity and multi-motifs in EpiPredictor

Given the ambiguity in the consensus sequence of motifs,
our system considered different versions of the same
motifs (for instance, PS, PM and PF for Pho) as well as
allowed the existence of ambiguity codes and mutations
(Supplementary Table S1). In addition, by using an SVM
with non-linear kernel as a PRE classifier, our program
abstractly models how multiple motifs interact with each
other at the genomic site of interest. These two consider-
ations are similar to the options of position-specific prob-
ability matrices and multi-motifs in jPredictor.

Transcription factor networking is important for PcG
recruitment

To the best of our knowledge, this is the first application
of SVM to PRE prediction. With the integration of a
non-linear kernel, our system EpiPredictor succeeded in
modelling the spatial relationship and combinatorial inter-
action among transcription factors that are involved in
PcG recruitment. This strategy offers a higher level of ab-
straction over any other approaches that use a linear
function. The fully automated process of constructing
the classifier in SVM also reduces the level of bias in the
analysis.

Our novel computational strategy also offers new
insights into the interactions among transcription factors
at the cis-regulatory elements in vivo. The outstanding per-
formance of the non-linear kernels indicates that multiple
transcription factors are networking at the cis-regulatory
elements for efficient recruitment of PcG proteins.
However, the details of such networking remain to be
illustrated in future studies.

High GC content and conservation level are important
features of PcG target genes

Among the array of perspectives that we used in
EpiPredictor, SVM classifier, high GC content and

comparative genomics all led to substantial performance
improvements (Table 2). The success of integrating GC
analysis suggested that relatively high GC content be an
important feature of PcG target genes, consistent with
previous studies that hyper-conserved CpG domains
underlie polycomb-binding sites (65). In addition, given
their critical importance in cellular functions, PcG target
genes are not surprisingly highly conserved in evolution.

PcG target genes are essential for transcription and
development

The gene ontology analysis on the genes predicted by our
system revealed that the target genes of PcG are mainly
regulators of transcription activities and are crucial for
key developmental processes. Some genes uniquely pre-
dicted by our system are confirmed by several independent
experimental studies to be essential for normal develop-
ment and patterning. These observations further support
the fundamental roles of PcG proteins in development and
cellular functions.

Prediction of TrxG target genes

Trithorax group (TrxG) proteins methylate histone 3 lysine
4 to reverse the repression imposed by PcG proteins
(18,102). There exists substantial evidence that Trithorax
response elements (TREs) and PREs co-localize. For
example, several major TrxG proteins bind at essentially
all known or presumptive PREs, suggesting that the regu-
latory platforms are switchable (18,103). In mouse embry-
onic stem cells, large bivalent domains were found to
contain chromatin modifications generated by both PcG
and TrxG, suggesting the co-presence of PcG and TrxG
in developmental genes (101). A recent genetic study on
Drosophila also revealed that PcG repression is dynamic
and that ASH1 (absent, small or homeotic discs 1), the
histone methyltransferase belonging to the TrxG
complex, is critical for the active state of Polycomb target
genes (102). Taken together, accumulating evidence
suggests that the epigenetic regulations mediated by PcG
and TrxG are likely to be closely intertwined and that the
approach that accurately predicts PcG target genes will
also shed new light on TrxG target genes. Thus, it is fully
expected that some of the PcG target genes we predicted
here will turn out to be TrxG target genes.

CONCLUSIONS

Despite a large number of genome-wide ChIP studies of
PcG target genes (1,4–8,10,12,14–16) recently appeared in
the literature that substantially enriched our knowledge of
the scales of PcG-mediated epigenetic modification and
their roles in normal cellular functions and in cancer de-
velopment, our mechanistic understanding of this process
remains extremely poor. To exemplify, up to date, there
are only two mammalian PREs (9,41) and a dozen of
Drosophila PREs (31–40) that have been experimentally
verified. In addition, there are only nine Drosophila tran-
scription factors confirmed to be involved in PcG recruit-
ment, among which only two have mammalian
homologues (20,104). The extremely limited pools of
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confirmed PREs and their interacting transcription factors
are the main restraints for the relatively mediocre per-
formance of computational methods such as
EpiPredictor and jPredictor, with 20–30% matching
ratios with genome-wide ChIP data. Although our
EpiPredictor has substantially outperformed jPredictor
(by up to >10% in matching ratio), we expect a much
better performance if we had had more knowledge on
PREs and their interacting transcription factors. Thus,
the more accurate computational method such as
EpiPredictor will provide a very useful tool for initial
screening of PcG target genes from ChIP studies so as
to identify the most likely candidates for labour-intensive
experimental verifications. The enhanced knowledge of
PREs will in turn improve the performance of these com-
putational methods, and ultimately leads to a comprehen-
sive understanding of PcG-mediated gene repression in
normal cellular functions as well as in epigenetic
dysregulation. Thus, our new EpiPredictor program
reported in this study represents an important step
toward this ultimate goal in the field of epigenetics.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables S1–S11.
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