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Introduction
Brain–computer interface (BCI) is one of the emerging technologies for neuro-rehabili-
tation that offers paralyzed people a non-muscular channel of control and communica-
tion to the external world [1, 2]. Complex and unique brain wave patterns are generated 
for each different brain activity and it is very difficult to manually decode and identify 
the different categories of these brain wave signals. Therefore, many research work [3–9] 
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are being carried out to automatically identify the different categories of the brain wave 
signals with high accuracy as it is useful in many applications such as seizure detection 
[10, 11], sleep stage recognition [12], emotion or stress recognition [13, 14], neuro-reha-
bilitation [15, 16], and gaming [17, 18].

Non-invasive electroencephalography (EEG) sensors are usually placed around the 
scalp to capture the brain waves generated by the brain activities. The EEG signals can 
then be mapped to various commands for controlling external devices after a chain of 
refined signal processing and machine learning procedures such as filtering, feature 
extraction and classification of the EEG signal. Thus, deliberately generating different 
brain wave patterns will enable individuals to control external devices.

P300 [1, 19–21] and motor imagery (MI) [18, 22–25] are the two methods for obtain-
ing the EEG signal for EEG-based BCI systems. In P300, usually the parietal and occipi-
tal areas are used to obtain the distinctive EEG signals 300 ms after the visual stimulus. 
This study focuses on the MI-based BCI that uses the sensorimotor rhythms. The Mu 
and Beta rhythms are recorded from the sensorimotor cortex region of the scalp pro-
ducing different patterns for different MI tasks, which can be processed and used for 
BCI control.

In MI-based BCI systems there are several problems that need to be taken care of such 
as the pre-processing algorithm for noise removal/reduction, selection of the frequency 
band(s), feature extraction and classification. Filtering is usually applied as the pre-pro-
cessing algorithm. With a vast range of filtering methods available, common average fil-
tering [26, 27], Laplacian filtering [28, 29] and FIR bandpass filtering [30] are the most 
commonly used filtering methods. A number of feature extraction methods [31–43] and 
classification algorithms [23, 32, 44, 45] have been proposed due to the fact that the reli-
ability and feasibility of MI-based BCI systems largely depend on robust and effective 
feature extraction and classification of EEG signals. Common spatial pattern (CSP) [9, 
23, 36, 37, 39, 41–43, 46–55] has been widely used for feature extraction of EEG signals 
for MI-based BCIs. The selection of frequency bands plays a major role in extracting sig-
nificant CSP features from MI EEG signals. The optimal frequency bands are generally 
subject-dependent and manually tuning the frequency band is a challenging and tedi-
ous task. To tackle this problem, various frequency band selection approaches have been 
proposed [9, 38, 50, 56–61]. Novi et al. [59] proposed sub-band common spatial pattern 
(SBCSP) approach. In their approach, EEG signals are decomposed into multiple non-
overlapping sub-bands and the CSP features extracted from each sub-band are fused 
together and used for classification. Filter bank CSP (FBCSP) was proposed by Ang et al. 
[56], which uses multiple overlapping sub-bands for decomposing the EEG signals into 
a number of sub-bands. The CSP features obtained from these sub-bands are then fused 
together and feature selection is employed for selecting important features. To improve 
the FBCSP approach, a discriminative FBCSP (DFBCSP) [61] approach was proposed. It 
utilizes Fishers ratio for choosing the significant subject-dependent sub-bands. Wei and 
Wei [38] proposed a binary particle swarm optimization method for selecting significant 
sub-bands from a set of pre-determined sub-bands.

A sparse filter bank CSP (SFBCSP) [62] approach, which utilized multiple sub-bands 
for optimizing the sparse patterns has also been proposed. Sparse Bayesian learn-
ing is increasingly gaining widespread attention and used for various purposes such as 
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feature selection [42] and classification [63]. Zhang et al. [42] proposed a sparse Bayes-
ian learning of filter bank (SBLFB) approach in which sparse Bayesian learning is used 
for automatically selecting the significant features. A spatial-frequency-temporal opti-
mized feature sparse representation based classification (SFTOFSRC) [36] has been pro-
posed with a focus of optimizing CSP features in subject adapted space-frequency-time 
patterns.

In this work, we mainly focus on the feature extraction process. Feature extraction is 
one of the essential steps in machine learning and signal processing having a vast impact 
on the performance of the algorithms in these fields. The extraction of significant fea-
tures is essential as selecting redundant or insignificant features will degrade the perfor-
mance of the system. This work extends our previous work on CSP-TSM (tangent space 
mapping) [64] approach. In the CSP-TSM approach, a single window is used to extract 
the CSP and TSM features followed by feature selection using least absolute shrink-
age and selection operator (Lasso). In this paper, we propose to use multiple temporal 
delayed windows to extract features that are more separable. Using multiple windows 
give rise to problems such as the window size and number of windows to use. There-
fore, these problems are also addressed in this work. Furthermore, we take advantage of 
the common spatio-spectral pattern (CSSP) approach. In CSSP, a temporal time delayed 
signal is inserted to the raw signal. The value of time delay τ used also influences the per-
formance of the CSSP algorithm. The problem of selecting the appropriate τ value is also 
addressed in this work. Thus, this work combines the CSP-TSM and CSSP approaches to 
take advantage of both approaches which boosts the performance of the overall system.

The TSM approach uses Riemannian distance to Riemannian mean which provides 
superior information about the class membership compared to the CSP approach that 
utilises Euclidean distance to its mean. On the other hand, the CSSP approach improves 
the spatial resolution of the signal. Therefore, taking advantage of these approaches i.e. 
appropriately combining CSP-TSM and CSSP approaches should yield features that are 
more effective and significant in classifying the MI EEG signals. To validate and compare 
our approach with other competing methods, public benchmark datasets: BCI Compe-
tition III dataset IVa, BCI Competition IV dataset I and BCI Competition IV dataset 
IIb have been used. The proposed scheme successfully extracts more significant features 
which accounts for the reduced error rates achieved (refer to results section) for all three 
datasets. Promising results are obtained, thus the proposed scheme can play a key role in 
developing improved MI-based BCI systems.

The main contributions of this work are as follows:

• We have combined CSSP with the CSP-TSM approach resulting in CSSP-TSM. TSM 
is retained as it gives superior information about the class membership while the 
use of CSSP improves the spatial resolution of the signal and thus further boosts the 
overall performance of the system.

• Use of CSSP involves inserting a temporal delayed window to the trial signal. There-
fore, we have proposed the use of multiple overlapping temporal windows for 
extracting more significant features. We have addressed the problem of the number 
of multiple windows to use with the proposed scheme and how the multiple win-
dows obtained can be combined to result in CSP-TSM and CSSP-TSM approaches 
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for improved performance. Also, the time delay τ used influences the performance 
of the system and varies among different subjects. Therefore, a cross-validation 
approach has been proposed for the selection of time delay τ in order to obtain opti-
mal performance for each of the subjects.

• Several feature selection methods have been evaluated to determine which feature 
selection method is best for selecting significant features. Use of F-score showed 
superior performance in selecting the significant features over other feature selec-
tion methods (Lasso—used in original CSP-TSM approach, mutual information, and 
sparse Bayesian learning). Thus, F-score is recommended for feature selection over 
other methods that have been evaluated and have been used in this work.

Results
The processing in this work has been carried out using Matlab. Moreover, all training 
and test have been performed using each subject’s data, i.e. the data from other sub-
jects are not used. In this study, the MI EEG data between 0.5 and 2.5 s (i.e. 200 sample 
points for dataset 1 and 2, and 500 sample points for dataset 3) after the visual cue have 
been extracted and used for further processing to obtain the results of all the compet-
ing methods. Common average referencing has been used as the pre-processing step 
for each individual EEG trial. A Butterworth bandpass filter has been used for filtering 
and classification is done using the SVM classifier (which is trained using training data) 
for all the methods. A 7–30  Hz wide band have been used for the conventional CSP 
approach. To make a fair comparison six spatial filters have been used for all the meth-
ods while keeping all other parameter settings the same as proposed by the reported 
works. The performance of all the experiments conducted have been evaluated using 
10 × tenfold cross validation. The values after the ± sign in Tables 1, 2, 3 represent the 
standard deviation.

The error rates of the proposed scheme compared to other competing methods for 
dataset 1, dataset 2 and dataset 3 are given in Tables 1, 2 and 3, respectively. The results 
from Tables 1, 2, and 3 shows that the proposed scheme yields the best results obtaining 

Table 1 Error rates (%) of proposed SPECTRA predictor and competing methods for dataset 1

The lowest error rates for each of the subjects are indicated in bold

Subject CSP CSSP FBCSP DFBCSP SFBCSP SBLFB CSP-TSM SPECTRA 
(Proposed)

aa 21.00
 ± 5.31

17.00
 ± 7.34

17.14
 ± 8.19

9.65
 ± 5.01

18.43
 ± 7.45

16.79
 ± 8.93

16.79
 ± 6.29

10.36
 ± 6.10

al 3.86
 ± 3.63

3.07
 ± 3.03

1.29
 ± 1.18

1.00
 ± 1.91

1.64
 ± 1.36

1.36
 ± 1.23

2.14
 ± 3.53

1.07
 ± 2.51

av 28.29
 ± 7.46

28.86
 ± 7.10

30.36
 ± 8.23

31.21
 ± 8.92

29.93
 ± 6.44

28.07
 ± 8.45

24.90
 ± 9.10

21.67
 ± 5.93

aw 10.36
 ± 5.10

8.43
 ± 5.09

6.50
 ± 4.55

4.64
 ± 4.75

9.29
 ± 5.85

5.57
 ± 4.90

4.54
 ± 2.80

3.93
 ± 3.29

ay 3.86
 ± 4.11

4.29
 ± 3.75

5.07
 ± 4.68

8.21
 ± 5.06

12.79
 ± 5.96

11.00
 ± 6.03

3.21
 ± 2.53

5.71
 ± 3.94

Average 13.47
 ± 5.18

12.33
 ± 5.30

12.07
 ± 5.51

10.94
 ± 5.13

14.14
 ± 5.57

12.56
 ± 6.07

10.31
 ± 4.85

8.55
 ± 4.35
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the lowest average error rates on all three datasets. The proposed scheme shows an 
improvement in the average error rates (improvement of 1.76% for datasets 1, 1.04% for 
dataset 2 and 1.63% for dataset 3) compared to the previously best performing CSP-TSM 
algorithm. An improvement in error rates of 4.92% for datasets 1, 6.34% for dataset 2 and 
3.33% for dataset 3 are shown compared to the conventional CSP approach. Considering 
the performance of the individual subjects, 2 out of 5 subjects for dataset 1, 4 out of 7 
subjects for dataset 2 and 5 out of 9 subjects for dataset 3 achieved the lowest error rates 

Table 2 Error rate (%) of proposed SPECTRA predictor and competing methods for dataset 2

The lowest error rates for each of the subjects are indicated in bold

Subject CSP CSSP FBCSP DFBCSP SFBCSP SBLFB CSP-TSM SPECTRA 
(Proposed)

a 13.20
 ± 8.07

13.65
 ± 8.19

19.10
 ± 9.35

16.80
 ± 7.81

17.40
 ± 5.93

19.10
 ± 9.73

11.98
 ± 6.64

13.00
 ± 8.05

b 42.80
 ± 12.25

42.70
 ± 11.38

44.70
 ± 11.27

42.90
 ± 9.75

45.30
 ± 6.59

41.50
 ± 11.12

40.95
 ± 10.32

42.50
 ± 8.28

c 43.70
 ± 11.24

39.95
 ± 10.21

35.70
 ± 9.58

35.20
 ± 8.51

43.00
 ± 11.62

33.20
 ± 12.53

32.16
 ± 8.68

27.90
 ± 11.53

d 22.40
 ± 8.82

14.60
 ± 8.75

22.20
 ± 8.99

23.50
 ± 8.41

29.50
 ± 10.13

11.50
 ± 7.91

15.74
 ± 7.89

13.53
 ± 6.12

e 18.00
 ± 9.74

18.05
 ± 9.18

14.00
 ± 9.15

18.30
 ± 8.84

24.70
 ± 10.34

11.60
 ± 6.88

9.85
 ± 5.77

9.50
 ± 8.13

f 22.50
 ± 10.84

18.55
 ± 8.39

19.60
 ± 8.56

14.30
 ± 8.57

20.90
 ± 6.45

21.20
 ± 11.98

14.09
 ± 7.13

13.20
 ± 6.94

g 7.10
 ± 5.06

6.35
 ± 4.92

6.90
 ± 6.62

9.00
 ± 5.05

9.70
 ± 4.97

5.90
 ± 5.41

7.86
 ± 5.67

5.67
 ± 4.69

Average 24.24
 ± 9.43

21.98
 ± 8.72

23.17
 ± 9.07

22.86
 ± 8.13

27.21
 ± 8.00

20.57
 ± 9.36

18.94
 ± 7.44

17.90
 ± 7.68

Table 3 Error rate (%) of proposed SPECTRA predictor and competing methods for dataset 3

The lowest error rates for each of the subjects are indicated in bold

Subject CSP CSSP FBCSP DFBCSP SFBCSP SBLFB CSP-TSM SPECTRA 
(Proposed)

B0103T 23.19
 ± 10.14

25.31
 ± 9.99

19.00
 ± 8.47

23.25
 ± 11.23

26.50
 ± 9.24

25.25
 ± 10.33

22.50
 ± 9.44

22.23
 ± 12.03

B0203T 41.94
 ± 11.04

42.94
 ± 11.74

45.63
 ± 11.93

40.76
 ± 12.45

42.75
 ± 12.84

40.75
 ± 11.99

39.50
 ± 10.43

41.02
 ± 11.69

B0303T 46.69
 ± 9.38

48.44
 ± 10.82

49.13
 ± 13.54

50.50
 ± 12.87

44.97
 ± 11.65

50.68
 ± 13.34

49.06
 ± 11.09

47.36
 ± 11.97

B0403T 0.75
 ± 2.04

0.63
 ± 0.60

1.75
 ± 1.61

0.75
 ± 0.69

0.38
 ± 0.35

0.88
 ± 0.73

0.75
 ± 2.23

1.46
 ± 2.69

B0503T 17.85
 ± 8.70

42.25
 ± 16.33

28.50
 ± 8.85

25.00
 ± 10.71

25.02
 ± 7.38

20.21
 ± 10.26

17.18
 ± 10.25

13.78
 ± 10.51

B0603T 35.19
 ± 11.05

23.81
 ± 10.94

24.38
 ± 9.80

20.88
 ± 10.38

20.06
 ± 10.70

25.12
 ± 12.32

23.01
 ± 9.35

19.31
 ± 9.44

B0703T 14.50
 ± 8.56

13.81
 ± 8.11

15.50
 ± 6.83

12.13
 ± 9.05

12.25
 ± 7.47

11.88
 ± 9.39

13.81
 ± 7.89

11.67
 ± 6.71

B0803T 13.06
 ± 8.43

14.50
 ± 8.56

18.88
 ± 11.68

11.13
 ± 6.95

12.38
 ± 7.63

11.13
 ± 8.95

11.44
 ± 7.95

9.79
 ± 6.29

B0903T 19.13
 ± 9.96

17.25
 ± 8.66

20.88
 ± 10.07

22.25
 ± 10.80

25.00
 ± 9.62

19.38
 ± 10.58

19.75
 ± 9.47

15.63
 ± 8.65

Average 23.59
 ± 8.81

25.44
 ± 9.67

24.85
 ± 9.39

22.96
 ± 9.61

23.26
 ± 8.67

22.81
 ± 9.97

21.89
 ± 8.67

20.26
 ± 8.89
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using the proposed SPECTRA predictor. Overall, 15 out of 21 subjects showed improve-
ment in performance compared to the CSP-TSM approach with subject “aa” of dataset 
1 showing highest decrease in error rate (6.43%). Out of these 15 subjects, 13 subjects 
showed greater than 1% reduction in the error rate. This indicates the advantage of our 
proposed SPECTRA predictor in comparison to the CSP-TSM approach. It should also 
be noted that for 4 subjects out of all the subjects used in the evaluation, the error rates 
increased using the proposed SPECTRA predictor when compared to the CSP-TSM 
approach with highest increase being 2.50% for the subject “ay” of dataset 1. This may 
be improved or overcome by incorporating automatic selection of the parameter n that 
is subject dependent and will be explored in future works. Our proposed predictor also 
performed well compared to the TFPO-CSP [51] approach that was evaluated using 
dataset 1 (achieved error rate of 10.19%) and dataset 2 (achieved error rate of 20.63%).

To add on, the authors of the SBLFB approach have used linear discriminant analysis 
(LDA) as the classifier. We have used SVM classifier to make a fair comparison between 
the different methods. It should be noted that the SBLFB approach achieved a slightly 
better error rate of 11.89% on dataset 1 when the LDA classifier was employed. Further-
more, the authors in [65] proposed an iterative spatio-spectral patterns learning (ISSPL) 
approach. They evaluated their method using dataset 1 obtaining an average error rate 
of 5.79%. However, they used a window size of 3.5 s for extracting the trials and thus it 
cannot be compared with our method as more data is being used by ISSPL approach. 
Similarly, a cross-correlation based logistic regression (CC-LR) [66] method achieved an 
average error rate of 6.09% on dataset 1. However, they only used the training data from 
the competition and evaluated their method using threefold cross-validation. Thus, we 
cannot compare this method with SPECTRA. In [67], the authors proposed using mul-
tiscale principal component analysis for de-noising the EEG signal and extracted higher-
order statistics features from wavelet packet decomposition sub-bands. The method was 
also evaluated using dataset 1, achieving an average error rate of 7.2%. However, it also 
used 3.5 s window for extracting the trials and hence cannot be directly compared with 
our approach. In future, we will explore the effect of using multiscale principal com-
ponent analysis for de-noising the EEG signal with our proposed approach. Also, we 
will explore the effect of other feature extraction approaches [68–70] and deep learning 
methods [71] with our current work.

Furthermore, to validate the reliability of the results that has been achieved, 
Cohen’s kappa coefficient κ is used. Tables  4, 5 and 6 shows the κ values obtained 

Table 4 Cohen’s kappa coefficient values of proposed and competing methods for dataset 1

The best values for each of the subjects are highlighted in bold

Subject CSP CSSP FBCSP DFBCSP SFBCSP SBLFB CSP-TSM SPECTRA 

aa 0.613 0.659 0.601 0.816 0.394 0.664 0.636 0.793

al 0.927 0.940 0.970 0.976 0.917 0.973 0.950 0.979
av 0.426 0.423 0.384 0.329 0.389 0.439 0.543 0.567
aw 0.800 0.837 0.837 0.906 0.743 0.889 0.896 0.921
ay 0.903 0.926 0.881 0.847 0.763 0.780 0.950 0.886

Average 0.734 0.757 0.735 0.775 0.641 0.749 0.795 0.829
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using each of the methods for dataset 1, dataset 2 and dataset 3, respectively. It can 
be seen from Table 8 (in methods section) that a higher value of κ means a greater 
strength of agreement. A higher strength of agreement means that the results are 
more reliable. Our proposed scheme attained the best average κ values for all the 
3 datasets. This shows that the results of the proposed scheme are more reliable 
when compared with other competing methods. Considering the average κ values, 
a very good strength of the agreement of classes for dataset 1 and good prediction 
of classes for dataset 2 and dataset 3 have been achieved. It can be noted that the 
κ values for some subjects (such as subject “av” of dataset 1, subjects “b” and “c” 
of dataset 2 and subjects “B0203T” and “B0303T” of dataset 3) are very low. These 
results are consistent with the results of other methods and may be mainly due to 
low quality signals being recorded, which are contaminated by noise. Considering 
individual subjects 4 out of 5 for dataset 1, 5 out of 7 for dataset 2 and 6 out of 9 
subjects for dataset 3 achieved good or very good strength of agreement using the 
proposed scheme. While on the other hand, 3 out of 5 subjects for dataset 1, 6 out of 
7 subjects for dataset 2 and 5 out of 9 subjects for dataset 3 attained the best κ values 
using the proposed scheme.

In this work, we have used a single wide band to keep the computational com-
plexity of the proposed method low as using multiple sub-bands would result in an 

Table 5 Cohen’s kappa coefficient values of proposed and competing methods for dataset 2

The best values for each of the subjects are highlighted in bold

Subject CSP CSSP FBCSP DFBCSP SFBCSP SBLFB CSP-TSM SPECTRA 

a 0.736 0.727 0.618 0.664 0.652 0.618 0.757 0.730

b 0.144 0.146 0.106 0.142 0.094 0.170 0.206 0.150

c 0.126 0.201 0.286 0.290 0.140 0.336 0.359 0.418
d 0.552 0.708 0.556 0.530 0.410 0.770 0.696 0.733
e 0.640 0.639 0.720 0.634 0.506 0.768 0.826 0.807
f 0.550 0.629 0.608 0.714 0.582 0.576 0.717 0.777
g 0.858 0.873 0.862 0.820 0.806 0.882 0.851 0.887
Average 0.515 0.560 0.537 0.542 0.456 0.589 0.630 0.643

Table 6 Cohen’s kappa coefficient values of proposed and competing methods for dataset 3

The best values for each of the subjects are highlighted in bold

Subject CSP CSSP FBCSP DFBCSP SFBCSP SBLFB CSP-TSM SPECTRA 

B0103T 0.536 0.494 0.620 0.535 0.470 0.495 0.550 0.554

B0203T 0.161 0.141 0.088 0.185 0.145 0.185 0.210 0.179

B0303T 0.106 0.031 0.018 0.010 0.100 0.014 0.010 0.054

B0403T 0.983 0.988 0.965 0.985 0.993 0.983 0.985 0.971

B0503T 0.650 0.115 0.430 0.500 0.499 0.595 0.655 0.725
B0603T 0.296 0.524 0.513 0.583 0.598 0.457 0.530 0.614
B0703T 0.710 0.724 0.690 0.758 0.755 0.763 0.724 0.767
B0803T 0.739 0.710 0.623 0.778 0.753 0.776 0.771 0.804
B0903T 0.618 0.655 0.583 0.555 0.500 0.613 0.605 0.688
Average 0.534 0.487 0.503 0.543 0.535 0.542 0.560 0.595
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increased computational complexity. However, using multiple sub-bands may fur-
ther improve the performance of the system and will be studied in future. Table  7 
shows the time taken to process and classify a MI EEG signal for different methods 
(Matlab running on a personal computer at 2.4 GHz (Intel(R) Core(TM) i5) has been 
used for all processing). Our proposed SPECTRA predictor takes 6.10 ms to process 
and classify a trial of EEG signal. Thus, the proposed scheme is suitable for real-time 
applications and is computationally efficient for portable devices. Our proposed 
approach also takes less time to process and classify a trial compared to other com-
peting methods such as DFBCSP, SFBCSP and SBLFB. SPECTRA takes more time to 
process and classify a trial compared to CSP, CSSP and CSP-TSM as it employs these 
approaches.

Discussion
In this study, we have performed feature selection using F-score in order to remove 
redundant features so that only significant features are used. Top r = 10 features has 
been selected [64]. Figure  1 shows the feature distribution of the top two features for 
CSP-TSM and the proposed scheme. It can be seen that using the proposed scheme 
effectively finds more separable features that accounts for the improved performance 
and usefulness of the proposed system.

Furthermore, as mentioned before, we have only used dataset 2 for selecting the 
parameter n. This has been done so that we do not have to tune the parameters for each 
new dataset that is used and so that the parameters selected can perform well on all 
datasets. This will reduce the training time by not having to perform parameter selection 
on other datasets. It is seen that the parameters selected for the proposed method in this 
work performed well as promising results have been obtained for all the three datasets.

To show the significance of the proposed method, we have performed paired t-test 
with 1% significance level. The average individual error rate results of the proposed 
scheme have been compared with that of the 2nd best method (CSP-TSM). The p-value 
obtained was 0.0036, which shows that significant improvements are achieved by the 
proposed scheme.

Moreover, there are various ways of combining the temporal windows for CSSP-
TSM approach as this can be done by simply using only two temporal windows. Fig-
ure 2 shows the normalized F-score ranking of the features for the subjects of dataset 2. 
The number of features obtained by each CSP-TSM or CSSP-TSM process is 27 (6 CSP 
features and 21 TSM features), therefore a total of 162 (6 × 27) features are obtained. 
CSP-TSM and CSSP-TSM processes refer to the blocks performing CSP-TSM and 
CSSP-TSM, as shown in Fig. 1, having 3 CSP-TSM and 3 CSSP-TSM processes. The out-
put of each of these processes is a combination of CSP and TSM features. It can be seen 
from Fig. 2 that all the CSP-TSM and CSSP-TSM processes give more separable features. 
Hence the framework given in Fig. 1 has been adopted. In this work we are performing 

Table 7 Test time required by different algorithms for single-trial MI EEG signal classification

Method CSP CSSP FBCSP DFBCSP SFBCSP SBLFB CSP-TSM SPECTRA 

Time (ms) 2.30 4.30 14.22 10.80 19.86 13.10 2.60 6.10
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feature selection rather than selecting several CSP-TSM and CSSP-TSM processes only. 
This has been proposed after evaluating different frameworks. We have evaluated select-
ing only features of several top k CSP-TSM or CSSP-TSM processes from the 6 processes 
shown in Fig. 4 (refer to methods section). To select these top k CSP-TSM or CSSP-TSM 
processes, we again used the F-score. Two experiments were conducted for this. Experi-
ment 1 used individual F-score feature ranking to select top k CSP-TSM or CSP-TSSM 
processes i.e. the top k CSP-TSM or CSSP-TSM processes with highest individual fea-
ture rankings were selected. In experiment 2, the average of the F-score feature rankings 
of all features of each CSP-TSM and CSSP-TSM processes were used to select the top 
k CSP-TSM or CSSP-TSM processes. We have used k = 4 (similar to the band selection 
procedure in [61]) for experiments 1 and 2. It is evident from Fig. 3 that our proposed 
scheme with top 10 features selected gives the best result.

To add on, the results of BCI Competition were obtained using specific test data 
only (which was specifically for BCI competition only). Cross-validation using all 
the data is a more effective way to test a model’s performance and has been mostly 

Fig. 1 Distribution of the two most significant features obtained by CSP-TSM, and proposed SPECTRA 
predictor, respectively, using subject aa of dataset 1
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utilized to compare the different methods proposed for BCI applications. This is the 
reason why the results of BCI Competition have not been compared with our work 
as done by other researchers. Moreover, as mentioned earlier, the value of parameter 
n selected did not produce the optimal results for all individual subjects and will be 
investigated in future works. We will also consider other feature extraction, feature 
selection and classifiers [72] for future works.

Fig. 2 Normalized F-score feature rankings for subjects a to g of dataset 2. The top 10 features are indicated 
with ‘ + ’ sign
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Convolutional neural network (CNN) has gained a lot of attention over the recent 
years. Therefore, in future, we will evaluate the use of CNN for MI-EEG signal rec-
ognition by developing hybrid models utilizing CNN with SPECTRA. Furthermore, 
good performance is noted by CNN on image data, therefore, DeepInsight [71] will be 
used to transform the EEG signal to image before being fed as input the CNN model. 
Long short-term memory network has also performed well for MI-EEG signal rec-
ognition [73] and we will also consider using LSTM network to further improve the 
performance of the proposed SPECTRA predictor.

Fig. 3 Error rates of different frameworks using dataset 2. Method 1 and 2 refers to results of experiments 
1 and 2 respectively. Methods 3–6 represent the proposed SPECTRA predictor using top 5, 10, 15, and 20 
selected features, respectively

Fig. 4 The framework of the proposed SPECTRA predictor
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Conclusions
In this work, we have utilised the CSP-TSM approach with multiple temporal delayed 
windows for extracting more separable features, using CSP and CSSP methods. 
Parameters such as the temporal delay and number of windows have been optimized. 
F-score for feature selection is proposed over Lasso that is used by the CSP-TSM 
approach due to its reliability and enhanced ability in selecting significant features. 
Our proposed scheme out-performed other competing approaches and achieved the 
lowest average error rates and highest average Cohen’s kappa coefficient values. A 
fixed wide band has been used for all evaluation. Developing sophisticated algorithms 
which will automatically learn filter bands that will give optimal performance for each 
subject may further improve the performance of the proposed system. Our proposed 
scheme can be potentially used for the development of improved and computationally 
efficient BCI systems.

Methods
Public benchmark datasets

We have evaluated the performance of the proposed scheme using 3 datasets that are 
publicly available: BCI Competition III dataset IVa [74], BCI Competition IV dataset I 
[75] and, BCI Competition IV dataset IIb [75] referred to as dataset 1, dataset 2 and 
dataset 3 from here onwards, respectively.

All the three datasets contain two class MI tasks. The EEG signals of right hand and 
left foot MI tasks recorded from five subjects using 118 channels of EEG signals is con-
tained in dataset 1. The signals sampled at 100  Hz are used with each subject having 
140 trials for each task. Dataset 2 contains MI EEG signals of seven subjects recorded 
using 59 channels at 1000 Hz. The down sampled data at 100 Hz is used and it contains 
200 trials for each subject containing almost equal number of trials for each MI tasks. 
Dataset 3 contains EEG signals of nine subjects. It contains 3 channels right hand and 
left hand MI tasks sampled at 250 Hz. As used in [62], we have only used data from ses-
sion three for evaluation. Each subject contains 80 trials of each MI task. For a complete 
explanation of the datasets, refer to http:// www. bbci. de/ compe tition/.

CSP feature extraction

CSP has become one of the most popular and widely used techniques for feature extrac-
tion of MI EEG signals. Spatial filters Wcsp are learned by the CSP algorithm, which max-
imizes the variance of one class while minimizing the variance of the other class. This 
offers an effective method to approximate the discerning information of the MI tasks. 
Given an EEG signal Xi ∈ RC×T where i denotes the i-th trial, c denotes the number of 
channels data contained by the EEG signal and t is the number of sample points. The 
learned spatial filters are used to transform the EEG signal to a new time series using (1).

The variance based CSP features are then extracted from the spatially transformed sig-
nal Zi using (2), where f ki  is the k-th feature of the i-th trial and var(Zj

i ) denotes the vari-
ance of j-th row of Zi . Refer to [76] for a detailed description of the CSP algorithm.

(1)Zi = WT
CSPXi

http://www.bbci.de/competition/


Page 13 of 20Kumar et al. BMC Bioinformatics          (2021) 22:195  

CSP‑TSM feature extraction

The CSP-TSM approach has been proposed for extracting significant tangent space fea-
tures while keeping the computational complexity low [52]. The concept of Riemannian 
geometry is utilized by the CSP-TSM approach. The normalized covariance matrix Σ i 
of each of the spatially filtered trial Zi is calculated. The Riemannian distance δR is then 
computed using (3), where Σ is the Riemannian mean of all the trial covariance matrices 
Σ i (from the training set) and is calculated using (4), the logarithmic mapping Log

Σ
(Σ i) 

is given by (5) and si represents the normalized tangent space vector (also referred to as 
tangent space features). The upper(·) in (3) means vectorizing the upper triangular por-
tion of the symmetric matrix and multiplying the out-of-diagonal elements [77] by 

√
2.

The above process maps all the trial covariance matrices �i into the tangent space. 
Thus, the features obtained from tangent space mapping are fused together with the CSP 
features and significant features are selected. The selected features are then used for clas-
sification. A complete description of the CSP-TSM approach can be obtained from our 
preceding work [64].

Proposed approach

In this study, we propose an effective subject-dependent method of feature extraction 
by utilizing the CSP-TSM approach. The general conceptual framework of the proposed 
methodology for obtaining significant features is shown in Fig.  4. Usually, only a sin-
gle window of 2.0–3.0 s is used for MI-based BCI applications. Here, we propose to use 
n multiple temporal delayed windows in two different ways. Firstly, the variance based 
CSP features and TSM features are computed for each of the n = 3 windows (the choice 
of n used is explained in the following sub-section). Secondly, the CSSP approach is 
utilized for extracting further information. CSSP method involves inserting a temporal 
delayed window to the trial signal and performing CSP on this modified trial signal that 
is obtained. The CSSP approach was proposed for improving the performance of CSP. 
The time delay value τ influences the performance of the system and needs to be cho-
sen carefully. In this work, the time delay ( τ sample points) has been selected using the 
cross-validation technique. All combinations of the n windows are used for obtaining 
new CSSP trial windows given by (6), where Wi is the i-th window of the original sig-
nal (refer to Fig. 4), Wi,i+j

CSSP is the signal obtained by inserting the Wi+j temporal delayed 

(2)f ki = log





var(Zk
i )

�2m
j=1 var(Z

j
i )





(3)δR(�,�i) =
∣

∣

∣

∣Log�(�i)
∣

∣ |
�
=
∣

∣ |upper
(

�−1/2Log�(�i)�
−1/2

)

||2 =||si| |2

(4)
∑

= R(�i) = argmin
�∈�(n)

N
∑

i=1

δ2R(�,�i)

(5)Log�(�i) = �1/2 log(�−1/2�i�
−1/2)�1/2
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window to window Wi and i = 1 : n− 1 . CSP variance-based features and TSM features 
are attained from the windows obtained from (6).

All the features obtained are fused together to form the feature vector. Using (7) the 
F-score ranking of the features is then computed, where Fi is average value of the i-th 
feature, F+

i  and F−
i  are the average values of the i-th feature for the positive and nega-

tive samples respectively, N+ and N− refers to the total number of positive and negative 
samples respectively and Fk ,i refers to the k-th sample of the i-th feature. The positive 
samples for all the three datasets were right-hand MI task samples while the negative 
samples were left-foot MI task samples for dataset 1 and 2 and left hand MI task samples 
for dataset 3. The F-score values obtained are arranged in descending order and the top r 
features are selected, which are classified using support vector machine (SVM) classifier.

SVM is a supervised learning technique and has been effectively used for both regres-
sion and classification problems. A hyperplane that maximizes the separation of the sup-
port vectors is determined by the SVM algorithm. In this study we employed an SVM 
classifier having radial basis kernel function. The use of kernel function allows non-lin-
ear data to be mapped to a linearly separable higher dimensional plane.

Parameter selection

Multiple temporal delayed windows have been utilized in this study. Two factors are of 
importance in this process: window size and temporal time delay τ between windows. 
Different subjects have different response rate to the onset cue. Therefore, determining 
the exact location of the MI task in the EEG signals needs to be investigated and cluster-
ing methods [78–80] can be utilised for this purpose. We have fixed the window size 
to 2.0  s in our work, the same as used by most of the researchers [34, 48, 58, 62]. To 
determine the best τ value that would yield the optimal performance, we have conducted 
the following experiments. Firstly, the τ value was varied from 10 to 100% of the sam-
pling frequency for each of the datasets and the results are shown in Fig. 5. In selecting 
the τ value, it is very important to consider real time BCI applications. Considering that 
real time BCI applications will also be portable, the computational complexity should 
be kept to a minimum. Therefore, it is desirable to select the smallest τ value that will 
produce near to optimal results. From Fig. 5, it can be seen that using 10% of sampling 
frequency as the τ value gives near optimal performance for all three datasets. To fur-
ther refine the τ parameter (since now it is clear that using larger τ values would not 
improve the performance), τ values from 1 to 10% of sampling frequency were evaluated 
(results shown in Fig. 6). It can be noted from Fig. 6 that for dataset 1 and dataset 2 only 
10 (10% of 100) sample points are shown whereas for dataset 3, 25 (10% of 250) sample 

(6)W
i,i+j
CSSP =

[

Wi

Wi+j

]

; j = 1 : n− i

(7)Fscore(i) =

(

F+
i − Fi

)2
+

(

F−
i − Fi

)2

1
N+−1

∑N+
k=1

(

F+
k ,i − F+

i

)2
+ 1

N−−1

∑N−
k=1

(

F−
k ,i − F−

i

)2
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points are shown due to the signals being sampled at different frequencies. It can also be 
noted from Fig. 6 that optimal performance is obtained for different subjects at different 
τ values. Thus, another tenfold cross-validation has been performed on the training data 
(which is obtained from the initial tenfold cross-validation) for the selection of subject-
dependent τ values that will give optimal performance. In this way, the test samples are 
not used during parameter tuning.

The other parameter that needed to be selected was n, the number of windows. We 
have evaluated n = [1, 3, 5] and the results are shown in Fig.  7. We have randomly 
selected dataset 2 for selecting the parameter n. Using only 1 window will result in the 
CSP-TSM approach. It is evident from Fig. 7 that using a high number of windows did 
not enhance the system performance and would increase the computational complex-
ity of the system. All subjects except subjects a and b performed well using 3 windows 

Fig. 5 Average error rates for different values of temporal delay as a percentage of sampling frequency

Fig. 6 Average error rates for different values of temporal delay
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compared to using 1 or 5 windows. Therefore, to retain a low computation complexity of 
the proposed scheme while also producing optimal performance, we have chosen n = 3.

We have also evaluated four different feature selection algorithms (Lasso [52, 81], 
sparse Bayesian learning [42], mutual information [9] and F-score based feature selec-
tion algorithms) in order to choose the best performing algorithm. Figure 8 shows the 
error rates obtained for different feature selection algorithms using dataset 2. It can be 
noted that using F-score yields the minimum error rates for almost all temporal delay 
values showing that it is a robust and reliable feature selection method. This is the reason 
why we have used F-score in this work for feature selection instead of the Lasso method 
as used in CSP-TSM approach.

Fig. 7 Error rates for using different number of windows (for dataset 2)

Fig. 8 Error obtained for different feature selection algorithms using dataset 2
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Performance measures

To appropriately rank and compare our proposed scheme with competing methods, 
two performance measures, error rate and Cohen’s kappa coefficient (κ) have been 
used. Error rate is a commonly used measure for evaluating the performance of BCI 
systems, which shows the percentage of trials that are classified incorrectly. κ is uti-
lised for validating the reliability of the results which statistically accesses the consist-
ency of agreement among two classes. κ is calculated using (8), where pe is the chance 
of agreement (in percentage) that is expected and pa is the actual agreement (in per-
centage). Table 8 shows the strength of agreement for different κ values [82].
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