
Evaluation and Optimization Methods for Applicability Domain
Methods and Their Hyperparameters, Considering the Prediction
Performance of Machine Learning Models
Hiromasa Kaneko*

Cite This: ACS Omega 2024, 9, 11453−11458 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: In molecular, material, and process design and control, the
applicability domain (AD) of a mathematical model y = f(x) between
properties, activities, and features x is constructed. As there are multiple AD
methods, each with its own set of hyperparameters, it is necessary to select
an appropriate AD method and hyperparameters for each data set and
mathematical model. However, there is no method for optimizing the AD
model. This study proposes a method for evaluating and optimizing the AD
model for each data set and a mathematical model. Using the predictions of
double cross-validation with all samples, the relationship between coverage
and root-mean-squared error (RMSE) was calculated for all combinations of
AD methods and their hyperparameters, and the area under the coverage
and RMSE curve (AUCR) was calculated. The AD model with the lowest
AUCR value was selected as the optimal fit for the mathematical model. The
proposed method was validated using eight data sets, including molecules, materials, and spectra, demonstrating that the proposed
method could generate optimal AD models for all data sets. The Python code for the proposed method is available at https://github.
com/hkaneko1985/dcekit.

1. INTRODUCTION
In molecular, material, and process design and control, a
mathematical model y = f(x) is constructed between objective
variables y, including physical properties, activities, and product
quality, and explanatory variables x, including molecular
descriptors, experimental, synthesis, manufacturing, evaluation,
process conditions, and variables. Using the constructed model,
y values can be predicted from x values and x values can be
designed with y as the target value.
Although it is critical to develop mathematical models with

high predictive ability for data analysis and machine learning in
molecular, material, and process design and control, the data
domain in which the model can be applied is determined by the
number of samples and their contents. When only a small
number of samples exist, only a small data domain around the
samples can be accurately predicted; however, as the number of
samples increases, the data domain expands. This data domain is
called the applicability domain (AD) of the model.1 When the
number of samples used to construct the model is small, there is
a risk that the predicted y values are unreliable because they are
outside the AD. However, because the AD is not prepared, the
predicted y values are mistakenly accepted. Following the
construction of model y = f(x), it was necessary to develop an
AD model. One of the organizations for economic cooperation

and development principles for model validation requires
defining the AD for machine learning models.2

Jaworska et al. examined and compared quantitative
structure−activity relationship (QSAR) models in descriptor
space via AD methods, including range, distance, geometry, and
probability density distribution.3 Sahigara et al. compared and
visualized the results of AD methods for QSAR models,
including range-based and geometric methods (for example,
bounding box and convex full), distance-based methods,
probability density distribution-based methods, and other
methods (e.g., decision tree and stepwise approach), and
concluded that it is preferable to evaluate the results from all
possible methods before assessing a new data set.4 Heb́erger
used the sum of ranking differences to compare the statistics of
QSAR models, statistical tests, and AD methods, including the
Euclidean distance, Manhattan distance, Mahalanobis distance,
five-nearest neighbor algorithm with the Euclidean distance,
five-nearest neighbor algorithm with the Manhattan distance,
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five-nearest neighbor algorithm with the Mahalanobis distance,
bounding box, convex hull, and potential function; however, the
hyperparameters of each AD method were not discussed.5

Zhong et al. developed an AD method based on uncertainty-
based active learning for QSAR models that employ Gaussian
process regression.6 Kaneko proposed amachine learningmodel
for accuracy based on model prediction results and AD.7

Berenger and Yamanishi proposed a trivial-to-interpret and fully
automatic distance-based Boolean AD method for category
QSAR for high-throughput screening data classification,
improving classification performance, early classifier retrieval,
and scaffold diversity among top-ranking active molecules.8

Rakhimbekova et al. investigated AD methods of QSAR and
quantitative structure−property relationship models for chem-
ical reactions and proposed new AD methods for reactions.9

Banerjee and Roy used AD to identify prediction outliers and
machine learning models were used for predictions after
removing them from a human ether-a-go-go-related gene
toxicity data set.10 Conformal prediction is a rigorous and
mathematically proven framework for in silico modeling that
guarantees error rates and consistent handling of the AD, which
is intrinsically linked to the underlying machine learning
model.11

As briefly outlined in the AD study, there are various AD
methods and hyperparameters for each. It is preferable to
optimize the AD method and its hyperparameters for each data
set and machine learning method. However, because AD
modeling is an unsupervised learning process, AD cannot be
optimized on its own. Therefore, this study proposes a method
for optimizing the AD method and its hyperparameters,
considering the predictive ability of the model y = f(x). The
predicted y values were calculated using double cross-validation
(DCV),12 and the relationship between coverage and root-
mean-squared error (RMSE) was determined for each
combination of AD methods and hyperparameters. The AD
method and associated hyperparameters are selected to yield a
favorable RMSE curve.
The proposed method was validated against eight real data

sets, including molecules, materials, and spectra. Following the
selection of the best machine learning method for each data set
based on the predictive ability of the model among various
machine learning methods, the proposed method is used to
optimize the AD method and its hyperparameters.

2. METHODS
2.1. Flow of Machine Learning and Prediction. Due to

the necessity of a data set for the construction of machine
learning models, a comprehensive data set was first collected.
Subsequently, they were preprocessed. For example, when each
sample included a chemical structure, descriptors were
calculated for each structure. Smoothing and differentiation
were performed for each sample that represented a spectrum.
Preprocessing included outlier detection, feature transforma-
tion, and feature standardization.
Following that the model is generalized for the target data set

and y. For example, in machine learning method selection, the
data set is divided into training and test data, and each machine
learningmethod is evaluated by predicting the test data using the
model constructed with the training data, or DCV is performed
by repeating the division of training and test data. Subsequently,
the machine learning method that produced the model with the
highest predictive ability was chosen. This model optimization

also includes feature engineering, feature selection, and
preprocessing method selection.
The AD was prepared using the data set for the optimized

model. The model and AD are then used to predict y values for
new candidates for x or to design x such that y attains a target
value. Bayesian optimization13 and direct inverse analysis of the
model14 should be used when searching for extrapolation
domains of existing data or outside the AD.

2.2. Applicability Domain. One method for determining
an AD is to measure the distance from the mean of the data set.
The AD is defined as the difference from the mean within the
AD. Although AD can be determined by considering all x
variables simultaneously, the distance from the mean works only
when the samples are concentrically distributed away from the
mean. Therefore, AD was determined via the data density. The
number of training samples surrounding a sample is considered
to determine whether the sample is within the AD. When a
significant number of samples were near the sample, the data
density was high and the sample was within the AD.
The k-nearest neighbor algorithm (kNN) is a data density

index that takes the average of the distances between the k
samples that are closest to one another.15 The distance between
a given sample and all other samples in the training data was
calculated; k samples were taken in decreasing order, and the
average of k distances was calculated. The lower the average, the
higher the data density. Although k is commonly set to 5 or 10 to
account for neighboring samples, there is no optimal value for k.
For kNN, a method that can account for differences in local

data density in the data distribution is the local outlier factor
(LOF),16 where the index of AD is calculated by considering not
only the distance to the k-nearest samples but also the distance
to the k samples closest to those k samples. Although the k value
is generally set to 5 or 10 to account for neighboring samples,
there is no optimal value for k.
The one-class support vector machine (OCSVM)17 method

uses a support vector machine to solve the data domain
estimation problem, allowing it to detect outlier samples while
considering all x variables.
The fundamental formula for OCSVM is expressed as follows:

= =
=

f b K bx x w x x( ) ( ) ( , )
i
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where w, ϕ, x(i), b, and K represent a weight vector, a nonlinear
function, the x variables of the ith sample, a constant, and a
kernel function, respectively. In this study, the following
Gaussian kernel is used
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ν ∈ (0, 1) is interpreted as the fraction of outliers in the training
data, that is, data for which f (x(i)) < 0. Γ can be determined to
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maximize the variance in the Grammatrix of the Gaussian kernel
for 2−15, 2−14, ..., 20, and 21. However, ν cannot be optimized.
To compare the performances of the AD indices, the

coverage7 was calculated after sorting the data in descending
order of the AD index value

= i Mcoverage /i (5)

where M denotes the number of data points. Thus, coveragei
represents the proportion of data up to the ith data point, which
is estimated to have a lower prediction error. The value RMSEi
corresponding to coveragei is calculated as follows using Ii data
points sorted in descending order of the AD index value

= = y y

i
RMSE

( )
i

j
i

j j1 obs, pred,
2

(6)

where yobs,j represents the jth measured value of y, and ypred,j
represents the jth predicted value of y. For AD indices, RMSEi
should be low when coveragei is low, and RMSEi increases when
coveragei is large. If the two machine learning models are the
same, then their RMSEi values at coveragei = 1 are equal for
different methods of setting the AD.

2.3. Proposed AD Evaluation and Optimization
Method. This study proposes a method for determining the
optimal AD method and its hyperparameters using the
prediction results of a machine learning model and the
performance of AD. The proposed method proceeds as follows:
(1) Perform DCV on all samples and calculate the predicted y

value for each sample.
For each AD method and hyperparameter candidate,

the following 2, 3, 4, and 5 are calculated:
(2) Calculate the AD index for each sample.
(3) Sort the samples by AD index values.
(4) Calculate coverage and RMSE, adding samples one by

one.
(5) Calculate the area under the coverage and RMSE curve

(AUCR),7 which is the area of the lower part of the area,
using the horizontal axis as the coverage and the vertical
axis as the RMSE. The AUCR is calculated as follows:

= +
=
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1
2

(RMSE RMSE )

(coverage coverage )

i m

M

i i

i i

1

1 (7)

wherem is the number of data points used to calculate the
initial RMSE, which must be sufficiently large to stabilize
the RMSE value.

(6) Select the ADmethod and hyperparameter that minimize
the AUCR.

The proposed method allows for the selection of an
appropriate AD model while simultaneously considering the
predictive ability of the machine learning model and the
performance of the AD.
Python codes for the proposed method are available at

https://github.com/hkaneko1985/dcekit.

3. RESULTS AND DISCUSSION
To verify the performance of the proposed AD evaluation and
optimization method, molecular data sets of boiling point
(BP),18 solubility in water (log S, S = solubility at 20−25 °C in
moles per liter),19 melting point (MP),20 and environmental
toxicity (Tox)21 were used. The Tox data set was derived from

an online challenge in which researchers were asked to estimate
the toxicity of molecules against Tetrahymena pyriformis. It
included entries corresponding to the logarithm of the 50%
growth inhibitory concentration (pIGC50). Material data sets
included superconducting (Tc)22,23 and thermoelectric con-
version (ZT) materials.24 Similarly, the tablet data sets
Shootout200225 (API1) and Shootout201226 (API2) were
used for spectral data sets. These data sets represent real-world
data. For compound data sets, molecular descriptors, or x
variables, were calculated using RDKit,27 which provides basic
descriptors such as the number of atoms for each atom type,
molecular weight, and descriptors including information on
fragments, topology, and physicochemical properties. In Tc and
ZT, x represents the fraction of each metal element, while y
represents the critical temperature. In ZT, y represents the
efficiency of thermoelectric conversion24 and is calculated as

=ZT
S

T
2

(8)

here κ, S, and σ represent the thermal conductivity, the Seebeck
coefficient, and the electrical conductivity, respectively, while T
represents the average temperature of the material proportional
to conversion efficiency.
The following methods were used to construct machine

learning models:
• Ordinary least-squares regression
• Partial least-squares regression
• Ridge regression
• LASSO regression
• Elastic net
• Support vector regression (linear and Gaussian kernels)
• Decision tree
• Random forests (RF)
• Gradient-boosting decision tree
• LightGBM
• XGBoost
• Gaussian process regression (GPR) (11 kernels)

Table 1. Machine Learning Method Selected with DCV for
Each Data Set

data set machine learning method r2 (DCV) RMSE (DCV)

BP GPR5 0.968 13.6
log S GPR6 0.931 0.535
MP GPR6 0.588 40.5
Tox GPR10 0.850 0.414
Tc RF 0.929 9.13
ZT RF 0.755 0.0972
API1 GPR5 0.959 0.929
API2 RF 0.957 0.260

Table 2. AD Method and its Hyperparameters are Selected
with the Proposed Method for Each Data Set

data set AD method hyperparameter

BP kNN 6
log S kNN 30
MP kNN 6
Tox kNN 3
Tc LOF 1
ZT OCSVM 0.02
API1 OCSVM 0.43
API2 OCSVM 0.13
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• Deep neural networks
The hyperparameters in each method are determined using 5-

fold cross-validation.
For each data set, DCV was performed with 10 outer

divisions, and the method with the highest r2 was selected. Table
1 lists the selected method and the r2 and RMSE for each data
set. The table shows the method used to discuss AD
optimization for each data set.
The AD methods used in this study are kNN, LOF, and

OCSVM. The candidates for each hyperparameter were: k for

kNNwas 1, 2, 3, ..., 29, 30; k for LOF was 1, 2, 3, ..., 29, 30; and ν
in OCSVM was 0.01, 0.02, 0.03, ..., 0.49, 0.50. The proposed
method is used to calculate the AUCR for all AD method
combinations and hyperparameter values.
Table 2 lists the AD method and hyperparameters that

minimize the AUCR for each data set. The plots of measured y
vs. predicted DCV and the coverage and RMSE curves for Table
2 are depicted in Figures 1−8. The blue line in each coverage
and RMSE curve represents the result of optimizing the AD
method and its hyperparameters using the proposed method,
and the gray lines represent the other results. It was confirmed

Figure 1. Plot of actual y vs. predicted y in DCV (left) and coverage and RMSE curve (right) for the BP data set.

Figure 2. Plot of actual y vs. predicted y in DCV (left) and coverage and RMSE curve (right) for the log S data set.

Figure 3. Plot of actual y vs. predicted y in DCV (left) and coverage and RMSE curve (right) for the MP data set.

Figure 4. Plot of actual y vs. predicted y in DCV (left) and coverage and RMSE curve (right) for the Tox data set.
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that the appropriate AD methods and hyperparameters for
which the coverage and RMSE curves were located were to the
lower right of the gray line for all data sets. The reliability of
predictions for new samples is discussed using the AD model
selected for each data set. In the gray API2 results, RMSE was
small when coverage was low, but this was only because the
RMSEwas not stable when coverage was low, and the number of
samples used to calculate RMSE was also low; thus, RMSE
increased when coverage was high. The proposed method

prevents the selection of unstable results. The proposed method
effectively optimizes the AD method and its hyperparameters.

4. CONCLUSIONS
This study proposes a method for evaluating and optimizing the
AD model and its hyperparameters to properly operationalize
the AD model. The construction of an AD model exhibiting
efficacy with respect to new samples is accomplished using a
combination of the AD method and hyperparameters that
reduce the AUCR. The proposed method was validated against

Figure 5. Plot of actual y vs. predicted y in DCV (left) and coverage and RMSE curve (right) for the Tc data set.

Figure 6. Plot of actual y vs. predicted y in DCV (left) and coverage and RMSE curve (right) for the ZT data set.

Figure 7. Plot of actual y vs. predicted y in DCV (left) and coverage and RMSE curve (right) for the API1 data set.

Figure 8. Plot of actual y vs. predicted y in DCV (left) and coverage and RMSE curve (right) for the API2 data set.
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eight data sets, including molecules, materials, and spectra. The
proposed method was demonstrated to be capable of optimizing
the AD method and its hyperparameters on all data sets. The
reliability of the predicted y values can be discussed by using the
selected AD method and hyperparameters. Although this study
used only three methods: kNN, LOF, and OCSVM, the
proposed method can be used to compare other AD methods
and their hyperparameters. Furthermore, when a new AD
method is developed, its validity is evaluated against the
proposedmethod. The proposedmethod is expected to facilitate
the design of molecules, materials, and processes using
mathematical models constructed via machine learning.
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