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Abstract

Motivation: Breast cancer outcome prediction based on gene expression profiles is an important

strategy for personalize patient care. To improve performance and consistency of discovered

markers of the initial molecular classifiers, network-based outcome prediction methods (NOPs)

have been proposed. In spite of the initial claims, recent studies revealed that neither performance

nor consistency can be improved using these methods. NOPs typically rely on the construction of

meta-genes by averaging the expression of several genes connected in a network that encodes

protein interactions or pathway information. In this article, we expose several fundamental issues

in NOPs that impede on the prediction power, consistency of discovered markers and obscures bio-

logical interpretation.

Results: To overcome these issues, we propose FERAL, a network-based classifier that hinges

upon the Sparse Group Lasso which performs simultaneous selection of marker genes and training

of the prediction model. An important feature of FERAL, and a significant departure from existing

NOPs, is that it uses multiple operators to summarize genes into meta-genes. This gives the classi-

fier the opportunity to select the most relevant meta-gene for each gene set. Extensive evaluation

revealed that the discovered markers are markedly more stable across independent datasets.

Moreover, interpretation of the marker genes detected by FERAL reveals valuable mechanistic in-

sight into the etiology of breast cancer.

Availability and implementation: All code is available for download at: http://homepage.tudelft.nl/

53a60/resources/FERAL/FERAL.zip.

Contact: j.deridder@tudelft.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Breast cancer is the most frequently diagnosed type of cancer and

one of the leading causes of death in women (Fantozzi and

Christofori, 2006). The main cause of death in these patients is,

however, not the primary tumor, but its metastases at distant sites

(e.g. in bone, lung, liver and brain) (Weigelt et al., 2005). Typical

risk factors such as lymph node status and tumor size are insufficient

to accurately predict the risk of metastasis in patients (Shapiro and

Recht, 2001; Weigelt et al., 2005). Over the last few years, substan-

tial efforts have been made on deriving molecular classifiers to pre-

dict clinical outcome based on gene expression profiles obtained

from the primary tumor (van’t Veer et al., 2002; Van De Vijver

et al., 2002; Weigelt et al., 2005).

A fundamental limitation of breast cancer outcome prediction is

that it has proved very difficult to obtain a robust classifier

performance across different datasets. It was found that, despite

properly cross-validated classifier training, prediction performance

decreases dramatically when a classifier trained on one dataset is

applied to another one (Lazar et al., 2013; Soneson et al., 2014).

Moreover, the prognostic gene signatures identified using these clas-

sifiers have poor concordance across different studies (Ein-Dor

et al., 2005; van Vliet et al., 2008). This points to a lack of a unified

mechanism through which clinical outcome can be explained from

gene expression profiles, which is still a major hurdle in clinical can-

cer biology.

Several studies ascribe the lack of classification robustness to in-

sufficient patient sample size (Hua et al., 2009). Other causes may

be the inherent measurement noise in microarray experiments or

heterogeneity in the samples (Ein-Dor et al., 2005; Symmans et al.,

1995). To mitigate these issues, breast cancer datasets are often
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pooled to capture the information of as many samples as possible in

the predictor (Shen et al., 2004; van Vliet et al., 2008). It remains,

however, an open question how many samples are sufficient to ac-

count for all the noise and heterogeneity.

One of the hallmarks of cancer is that it is caused by deregula-

tion of several processes or cellular pathways through multiple som-

atic mutations (Hanahan and Weinberg, 2000, 2011). More recent

efforts of outcome prediction aim to exploit this hallmark by taking

existing knowledge on relations between genes and pathways into

account in the classifier. A common approach is to aggregate several

functionally related genes to produce discriminative meta-genes or

subnetworks (Babaei et al., 2011; Dao et al., 2010; Pujana et al.,

2007; Taylor et al., 2009; Van den Akker et al., 2011). Often, func-

tional relationships between genes are determined based on the top-

ology of a pre-defined biological network such as a co-expression

network (Park et al., 2007), cellular pathway map (Lee et al., 2008)

or protein–protein interaction (PPI) network (Chuang et al., 2007).

Therefore, we refer to such approaches as network-based outcome

prediction methods (NOPs).

The approach proposed by Park et al. (2007) is among the first

NOPs. Initially, the co-expression network is partitioned into gene

sets using a linkage algorithm. Next, meta-genes are formed by tak-

ing the average expression of the genes in each gene set.

Consequently, highly correlated genes will be aggregated which re-

duces the number of features and co-linearity among genes. The ap-

propriate number of clusters, which determines the scale at which

meta-genes are assembled, is determined by cross-validation.

Chuang et al. (2007) exploit the PPI network to identify predict-

ive gene sets (called sub-networks in their work). Gene sets are con-

structed by a greedy procedure which starts with a gene (i.e. seed

gene) and extends iteratively by adding the neighboring gene that

provides the highest mutual information between corresponding

average meta-gene and target label.

Taylor et al. (2009) exploit the topology of the PPI network. In

this method, predictive hub genes (i.e. genes with more than five

connections) are ranked based on the absolute difference in within-

class correlation between the hub and its neighbors. The corres-

ponding meta-genes are constructed by taking the difference of

expression between the hub and its neighbors.

Unfortunately, contrary to previous claims, recent studies re-

ported that many NOPs do not outperform a model trained over sin-

gle gene features (Cun and Frohlich, 2012; Staiger et al., 2012,

2013). Notably, in the analysis carried out by Staiger et al. (2013),

neither significant improvement of classification performance nor

an improvement of gene signature stability was observed, despite

the fact that these authors examined many different methods and ex-

perimented with several biological networks. Perhaps even more

striking is the finding that utilizing random networks (Staiger et al.,

2012) or integrating random genes as markers (Venet et al., 2011)

performs on par with complex NOPs. Taken together, it appears

that current NOPs have produced very limited progress on solving

the issue of robust classification performance and robust prognostic

gene signature selection. This also casts doubt on the potential to ex-

tract useful insights from the derived prognostic gene signatures into

the mechanisms underlying the disease.

The main goal of this article is to identify and alleviate several

fundamental issues in current NOPs that impede on reaching robust

prediction performance and identify a stable prognostic gene signa-

ture. We find that the main bottleneck in current NOPs is that the

frequently used average operator is a poor choice to integrate the ex-

pression of functionally related genes. Moreover, the use of a single

operator may not be sufficient to capture and summarize the

aberration of higher level functions in cell. In addition, we conclude

that decoupling the training of the classifier from the selection of

genes to be used in meta-genes or the selection of the meta-genes

themselves hampers the stability of gene signature identification.

To address these issues, we propose FERAL (DelFt nEtwoRk-

bAsed cLassifier), a new NOP that is based on the Sparse Group

Lasso (SGL) (Simon et al., 2013; Yuan and Lin, 2006). SGL exploits

groups of features (i.e. gene sets) and yields sparsity at both group

(i.e. gene set) and feature (i.e. gene/meta-genes) levels (Friedman

et al., 2010). In this way, simultaneous selection of features and

training of the prediction model is achieved (see Supplementary

Section S1 for explanation of Lasso and its variants). Furthermore,

instead of using a single operator to integrate gene-expression into

meta-genes, FERAL exploits a wide range of such operators, includ-

ing a previously unexplored supervised integration strategy.

We present extensive experiments using a compendium dataset

called ACES (Amsterdam Classification Evaluation Suite), which

was recently used for NOP model evaluation (Staiger et al., 2013).

FERAL achieves statistically significant performance improvement,

owing to the regularization of the SGL and inclusion of multiple in-

tegration operators. We moreover find substantially improved sta-

bility of the selected prognostic gene sets. Taken together, these feats

enable biological interpretation of the trained classifier, which, we

find, results in highly relevant mechanistic insights.

2 Method

To motivate the design choices of FERAL we start by outlining the

basic properties of existing NOPs. We focus on three well-known

models proposed for network-based outcome prediction.

Nonetheless, there are numerous network-based methods, which we

do not take into consideration. A closer look at these methods re-

veals that in fact they all take two main steps to incorporate network

information: gene set selection and integration (Fig. 1a). The selec-

tion step should result in gene sets that represent (part of) a cellular

process or pathway that collectively exhibit aberrant behavior. In

the integration step, the selected genes are summarized to produce a

meta-gene capable of representing the aberrant behavior in the cor-

responding cellular process. Typically, this is followed by an add-

itional round of selection and integration in which meta-genes are

selected and integrated to produce a final prediction.

Fig. 1. Overview of the proposed model (FERAL). (a) Current models follow a

similar path in which several nearby genes (according to a given network) are

selected and then integrated using an average operator resulting in a meta-

gene. These meta-genes are then ranked based on a pre-defined scoring

function and top candidates are presented to the final classifier. (b) Instead of

being limited to average-based meta-genes, FERAL computes several

meta-genes using different operators and employs the SGL to select the most

appropriate meta-gene for each specific gene set while simultaneously per-

forming selection, integration and classification
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2.1 Integration of gene sets into meta-genes
Most NOPs use the average operator to summarize gene expression

into meta-gene expression. However, other biologically inspired oper-

ations, such as the max/min (to model AND/OR relations) or the vari-

ance (to capture variability of expression levels among genes close in the

network) might also be suitable for representing higher level functions

in cell. The assumption in many NOPs is that the directionality of the

aberrant activity is the same (i.e. over/under expression) for nearby

genes in the network. This may be inappropriate, for instance when

genes exhibit opposite association with respect to the class label. In such

cases, the average operator can even cancel out their predictive contri-

bution. By assessing the expression correlation of PPIs, we established

that this is a frequent event (Fig. 2a and Supplementary Fig. S3).

This problem arises because the aforementioned operators are

unsupervised, i.e. an identical meta-gene would be produced using

shuffled sample labels. This can be resolved by using a linear or non-

linear regressor that considers the labels for achieving the best per-

formance. In spite of their superior performance (see Fig. 2b;

Supplementary Fig. S4), supervised integration operators may pro-

mote overfitting. This issue is apparent when linear operators are

compared with non-linear ones (e.g. Decision Tree and support vec-

tor machine). Hence, in the integration procedure, a trade-off exists

between performance and complexity.

To alleviate this issue, we propose the Direction Aware Average

(DA2) operator, which adjusts the direction of genes before taking

the average (see also Supplementary Section S13). DA2 is defined as:

DA2g ¼
1

jWgj
X

j2wg

sgn Cj

� �
� Ej;

where Wg is the gene set of seed gene g and Ej and Cj contain the ex-

pression and correlation values with the class label of gene j, respect-

ively. Just like all supervised meta-gene constructors, DA2 only uses

training samples for calculating Cj. The DA2 provides a balance be-

tween stability of unsupervised operators (owing to its simplicity)

and performance of supervised operators. It suffers less from overfit-

ting due to the fact that labels are only employed to detect the direc-

tion of genes which is more stable compared with their individual

predictive power. This is also apparent from our experiment

(Fig. 2b), as the DA2 provided a comparable performance to top

integrating operators (e.g. regression and the Lasso).

It is worth noting that different integration operators offer differ-

ent representations of higher level cellular functions. The proper op-

erator for each gene set is not known a priori. It might be beneficial

to use multiple of such operators and allow the classifier to select

the appropriate operator to describe a gene set or allow a single gene

set to be described using multiple operators. In addition to poten-

tially achieving better performance, it provides insights into the

underling aberrant behavior of each gene set. To the best of our

knowledge, there are no NOPs that use multiple integration

operators.

In FERAL, gene sets are formed by the individual gene expres-

sion profiles extended with several meta-genes produced by aggre-

gating gene expression of these genes. We included the following

unsupervised aggregations. The average operator, to model the over-

all expression level of the gene set in a fully unsupervised way. The

median operator, similar to average but with reduced sensitivity to

outliers. The variance operator, to measure the fluctuation in ex-

pression of interacting genes as this may point to a loss of regulation

due to rewiring. Min and max, to model the AND/OR relationship

between genes. In addition to these unsupervised operators, the lin-

ear integration (which is implicitly provided by the SGL) and DA2

were also included as supervised operators. However, the supervised

non-linear meta-genes, which are presented in the analysis in

Figure 2b were not included, since it was observed that they were

prone to overfitting (data not shown).

2.2 Selection of genes in gene sets
To determine which genes will be summarized in a meta-gene, Park

selects all genes in a correlation cluster whereas Taylor uses all genes

that are connected to the same hub gene in the PPI network. Both of

these methods are likely to produce a highly skewed cluster size dis-

tribution, with a few very large clusters and many smaller ones

(Albert, 2005; Chen et al., 2002). These large clusters will contain a

substantial number of irrelevant genes that may not only hamper the

performance but also limit the interpretability of the meta-gene as it

is difficult to identify the driver genes amongst all genes in the gene

set (Cheng et al., 2014). Moreover, in case of Taylor, only genes

connected to hub genes can appear in a meta-gene, which a priori

greatly limits the repertoire of genes that can be used in the final

predictor.

Fig. 2. Evaluation of different integration operators. (a) Visualization of the consistency in the direction of association with the target label for connected gene

pairs in the I2D network. The x-axis represents the magnitude of difference, defined as abs Ca � Cbð Þ � Sgn Ca � Cbð Þ, where Cx denotes the correlation between

gene x and the target label and Sgn is sign function. The y-axis is the correlation between two genes (see Supplementary Section S3 for details). (b) Performance

comparison between 11 operators including (from left to right): average, average of differences between seed gene and its interactors (implemented in Taylor),

variance, minimum, maximum, median, regression, lasso, DA2, Decision Tree (DT) and support vector machine with an RBF kernel. To generate each violin plot,

5000 randomly selected seed genes and their 9 closest neighbors according to the I2D network were integrated into a meta-gene using one of the operators, and

the predictive performance (AUC) is determined. The y-axis represents the improvement log ratio of the AUC obtained with the meta-gene with the highest AUC

of the individual genes. This comparison shows that other operators are able to provide similar or even better performance compared with average operator.

Interestingly, adjusting the direction of genes before taking the average can improve the performance considerably
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Instead, in FERAL, the gene set size is kept constant. This is

achieved by defining gene sets as groups of k genes—a seed gene

with k – 1 of its closest neighbors. If performance is the only goal,

the setting of k is determined by an additional inner cross-validation.

By varying k we found, however, that a tradeoff exists between per-

formance and relevance of the marker genes to cancer and set k¼10

to provide a balance between them (see Supplementary Section S11).

To ensure each gene is included in at least one gene set, all genes

were considered as seed genes, resulting in a total of N gene sets. In

case a seed gene has more than k – 1 neighbors, the gene set is

reduced to a total of k genes by randomly removing genes. This ran-

dom selection did not result in large performance variation (see

Supplementary Section S12 for details). In case a seed gene has less

than k – 1 neighbors, the neighbors of the neighbors are considered

in a similar fashion. When a weighted network is used, the edge

weights are taken into account while determining the closest

neighbors.

Chuang employs a greedy search to define subnetworks. This is

done by iteratively extending the network from a seed gene guided

by a supervised performance criterion. Because label information is

used to guide the network growing, this increases the risk of overfit-

ting and thereby it reduces the performance and the stability of se-

lected gene sets. Moreover, this procedure also critically depends on

the accuracy of gene–gene interactions, which may be problematic

as concerns exist about the reliability of individual interactions in

these networks (Cusick et al., 2008; Von Mering et al., 2002).

Instead of including all genes in a group (Park and Taylor) or

using a greedy search in a noisy network (Chuang), FERAL lever-

ages the fact that the SGL performs embedded feature selection.

This is realized because SGL provides regularization both at the level

of the individual genes and the gene set level. As a result, selection of

the most relevant genes will be performed if sufficiently large gene

sets are provided. Because feature selection and classifier training

are performed simultaneously, classifiers that offer embedded fea-

ture selection often provide improved performance and select more

relevant features (Guyon et al., 2006). Moreover, embedded feature

selection techniques prevent the need of additional cross-validation

loops that are required to prevent overfitting.

2.3 Pre-ranking and integration of meta-genes
After producing the meta-genes, most NOPs employ a ranking step.

This step can be considered as a second selection step at the meta-

gene level. Typically, each meta-gene is assessed based on a pre-

defined ranking function (e.g. mutual information, t-test or permu-

tation test) and the top candidates will be used in the final prediction

step (akin to so-called individual feature selection). Evaluation of

meta-genes in the methods of Chuang and Taylor is performed one

at a time. Hence, the ranking procedure cannot identify multiple

synergistic meta-genes when they have poor individual performance

nor can it determine whether several meta-genes contain the same

information and are therefore redundant (see Supplementary Fig.

S2.2 for an example of such cases in Chuang’s method).

As FERAL employs the SGL, which performs embedded feature

selection at the gene set level, the need of meta-gene selection is cir-

cumvented altogether. This greatly improves gene set stability.

2.4 Improvements on standard NOPs
To compare against, we use the methods from Park, Chuang and

Taylor, henceforth referred to as standard methods. Based on our

discussion so far, it seems reasonable to change a few parts of these

standard methods that evidently impede their performance.

The original version of each method (prefixed by o) is implemented

by strictly following the procedure described in the authors’ paper.

Additionally, we implemented an improved version (prefixed by i),

which includes obvious improvements beneficial for their perform-

ance and stability (see Supplementary Section S2 for details). More

specifically for Park’s method, instead of training individual Lasso

over the meta-genes produced in each level of hierarchical tree, sin-

gle Lasso was trained over all meta-genes collected from levels of

hierarchical tree. For Taylors method, similar to Staiger et al., we

took the average of differences between hub and its interactor for

corresponding meta-gene. Finally, we removed the ranking proced-

ure in Taylor and Chuang methods and, similar to Park, used the

Lasso to achieve a simultaneous selection and integration of the

meta-genes. To assess the utility of biological networks in the out-

come prediction problem, we also included a Lasso trained on the

individual genes, i.e. without exploiting network information.

2.5 Ranking and scoring of marker genes
One of the main objectives in NOPs is to detect marker genes that

play a role in driving this complex disease. This can be achieved by

ranking them on a pre-defined score that captures the contribution

of the genes on the final prediction performance. In the Chuang

method, gene sets (i.e. sub-networks) are ranked based on P value

that is obtained using a permutation test. In Taylor, the average dif-

ference of the correlation coefficient between classes is used. Finally

in Park, the coefficients provided by lasso are used as gene sets score,

which are subsequently propagated to the genes in the cluster. In

FERAL, genes are scored based on the coefficients of the SGL. To

take into account the contribution of the meta-genes, gene scores are

supplemented by the largest coefficient of the meta-genes in which it

occurs. If a gene receives multiple scores, which is possible due to

overlapping gene sets, the scores are averaged (see Supplementary

Section S5 for more details).

2.6 Implementation of FERAL
The following steps are taken to train FERAL (Fig. 3). Initially, for

all genes, nine of its closest neighbors are selected based on a gene

network. After z-score normalization of the expression data, meta-

genes are computed. Next, the SGL classifier is trained using the

training samples. Implementation of the SGL in this work is based

on SLEP (Liu et al., 2009). We further added a wrapper around this

package to implement sample weighting to mitigate unbalanced

classes along with a search for estimating the optimal parameters

using an inner cross-validation. The parameters k1 and k2, which

control the sparsity at the group level and within the groups, respect-

ively, are determined by the inner cross-validation. Finally, the per-

formance of the current fold is determined using the area under the

ROC curve (AUC) measure.

3 Results and discussion

For evaluation of FERAL, we use the ACES (Staiger et al., 2012), a

cohort of 1606 breast cancer samples collected from 12 studies in

NCBIs Gene Expression Omnibus (see Supplementary Section S7 for

details). The label for each patient corresponds to recurrence free

survival time with respect to a 5-year threshold (good versus poor

outcome). Three different networks are used in the evaluation: I2D,

a PPI network that is also employed in Staiger et al., a co-expression

network and a random network. The co-expression network was

defined on training data only and thresholded at a correlation of

0.6. To produce the random network, we shuffle the nodes in the
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I2D network to destroy any biological knowledge while keeping its

structure.

We used AUC as the main measure of performance throughout

the article. Two types of cross-validation are considered. In the first

type (sub-type stratified CV), the ratio of breast cancer sub-types is

kept constant in the training and test set. In the second type

(sampled leave-one-study-out CV), half of the samples in each study

is randomly selected (with replacement), while all samples from one

study are excluded from selection and kept hidden as a test set. This

configuration forms 12-folds, equal to the number of studies avail-

able in ACES. For both cross-validations, the indices of training and

testing samples in each fold are kept identical across all methods.

3.1 Performance comparison
Figure 4a shows the obtained average AUCs for 10 repeats of the

subtype stratified CV. As a first observation, we note that the im-

proved versions of the standard methods offer better performance.

This improvement is most notable for Park’s method, which

achieves this improved performance despite the fact that the clearly

suboptimal average operation was used to construct meta-genes.

This points to a relatively small impact of the integration step on the

performance of NOPs, an observation that can also be drawn from

Figure 2b.

Secondly, as a general trend, all methods produced a similar per-

formance using the random network compared with the case where

biologically relevant networks are used. The only exception is the

oPrk method, which performs slightly better when a random net-

work is used. The negligible positive contribution of biologically

relevant networks on performance of NOPs has been previously

observed (Ein-Dor et al., 2005; Staiger et al., 2012, 2013). The most

likely explanation for this is the presence of large number of genes

that are correlated with the target label which, in turn, makes it

possible to construct many alternative features with comparable

performance (Ein-Dor et al., 2005; Venet et al., 2011). This points

to a limited influence of the selection step on predictive power

of NOPs.

Based on these two observations, it can be concluded that the

most important factor in the performance improvement is the simul-

taneous selection and integration achieved by the Lasso. This is

most clearly demonstrated by comparing oChg with iChg in

Figure 4, as employment of the Lasso is the only difference between

these methods.

Even though existing methods can easily be improved by includ-

ing a simultaneous selection and integration step, we observe that

FERAL still offers superior performance across all three networks

considered. This performance improvement is very significant

(P value < 7� 10�8; paired t-test with the best other method iPrk

using the co-expression network). This demonstrates that, on top of

the SGL approach, it is beneficial to provide the classifier with a rich

collection of meta-genes based on different aggregation strategies.

Figure 4b shows the results for 10 repeats of the sampled leave-

one-study-out CV. As expected, all classifiers showed performance

reduction, but the general trends remain the same, that is the

Fig. 3. Schematic of the training and testing procedures of FERAL. (a) In the first step, 10 genes are selected using given network. (b) Corresponding genes in ex-

pression dataset are selected and normalized using z-score. (c) Meta-genes are computed using the expression profiles of the gene set and target label (in case of

a supervised integration). The expression of the individual genes is retained within the gene set. (d) The SGL is trained using training samples. (e) Test samples

are used to assess the prediction performance (in terms of AUC) in the current fold

Fig. 4. Performance evaluation (AUC). Performance of the methods under study for the PPI network (I2D), a co-expression network (Co-Expr) and a random net-

work (Random). We also added the result when a classical Lasso is employed (Single). Error bars denote the 95% confidence interval. The heatmaps indicate the

P value of the paired t-test between pairwise comparison of the AUCs of the individual CV folds. (a) Sub-type stratified CV. (b) Sampled leave-one-study-out CV

FERAL: network-based classifier with application to breast cancer outcome prediction i315



standard methods performed poorly compared with their improved

counterparts and FERAL significantly outperforms all other classi-

fiers. It should be noted that, although FERAL achieves a better

overall performance, the overall classification performance improve-

ment stay relatively modest. It is likely that there is a limit on the

maximum performance that can be achieved for the problem at

hand (�70% AUC). This is in line with previous observations

(Staiger et al., 2013; van Vliet et al., 2008; Venet et al., 2011).

3.2 Stability of marker genes
Finding robust marker genes is one of the key challenges in breast

cancer research as prognostic gene signatures identified in independ-

ent datasets often show little to no overlap. To assess how FERAL

and the (improved) standard methods perform in terms of signature

stability, we follow Staiger et al. and assess the stability of selected

gene across folds by means of a Fishers exact test. To this end, we

measured the overlap between the top 100 genes selected by each of

the methods in every fold (see Supplementary Section S5 for details

on these score functions). The leave-one-study-out CV was used

without subsampling, resulting in a 12-fold cross-validation and the

same initial genesets were used in each fold.

Figure 5 shows boxplots of the marker gene stability for all pair-

wise comparisons between the 12-folds. It is striking to see that

FERAL and the improved standard methods clearly have better

marker gene stability compared with the standard methods (least

significant P value: 1:7� 10�52), which perform poorly, irrespective

of the network employed. For the oChg and oTyl methods, this can

be explained by the fact that only very few meta-genes are used in

the classifier, which apparently vary substantially between folds.

The poor consistency for the oPrk method is caused by a combin-

ation of variability of the linkage tree and unstable regression coeffi-

cients resulting from the Lasso.

The concordance is highest for FERAL, which even has signifi-

cantly improved marker gene stability compared with the improved

standard methods (least significant P value: 1:8� 10�10). This dem-

onstrates that FERAL’s approach to refrain from a pre-filtering of

top genes or gene sets and providing the embedded feature selection

of SGL with all genes and many meta-genes using different operators

is beneficial for marker gene stability.

Marker gene stability is also improved compared with the single

gene classifier. This method performs a Lasso using all genes as pre-

dictors and therefore also no pre-filtering is applied in this method.

Nevertheless, the overlap of marker genes between folds is still

much lower than that obtained with FERAL (P value: 5:3� 10�53).

One explanation is that Lasso randomly selects features if they are

highly correlated (Grave et al., 2011). Another reason is that in dif-

ferent samples, separate—yet functionally related—genes play the

strongest role in predicting the outcome. As a result, in any subset of

the data, different marker genes will be selected. FERAL (and to

some extent also the improved standard methods) are able to miti-

gate this by exploiting network information and summarize func-

tionally related or interacting genes into meta-genes. This is

supported by the observation that marker gene stability is signifi-

cantly reduced when the random network is used (P value:

1:6� 10�29). For the improved standard measures there is no sig-

nificance different in case the random network is used. Thus, al-

though utilizing network information does not improve

performance substantially, it is helpful in producing more stable sets

of marker genes.

3.3 Functional enrichment of marker genes
If an NOP attains reasonable and robust performance and the

marker genes selected across the folds are stable, the selected genes

may be amenable to interpretation. This facilitates improved under-

standing of the underlying aberrant processes that play a role in this

complex disease. To assess whether the methods under study are

capable of detecting relevant genes, we evaluate the concordance of

sets of known cancer-related genes with the ranked set of genes pro-

duced by each methods under study using the AUC measure. For

this purpose, all genes are ranked based on the average score across

all folds and repeats of the leave-one-study-out cross-validation (see

Supplementary Section S5 for details). For a comprehensive evalu-

ation, we included a ranking based on the individual predictive

power of genes (indicated by Ind*) and further a random ranking of

genes (indicated by Rnd*). We performed functional enrichment

based on a collection of nine cancer-related gene sets, including six

cancer-related GO terms (see Supplementary Section S8 for a com-

plete list of these genes within each set).

The observed enrichments obtained using the I2D network are

depicted in Figure 6a. The results show that all methods have very

modest enrichments not exceeding 0.6 for all but one cancer-related

gene set. The notable exception is the enrichment obtained with

FERAL, which is vastly superior and close to 0.7 for most cancer-

related gene sets and 0.75 for two of them. The enrichment obtained

using the Ind* ranking is generally poor, which confirms that differ-

ential expression analysis is unsuitable for finding genes involved in

the disease. Surprisingly, we observed a severe reduction of gene en-

richment using the co-expression network for all methods (see

Supplementary Section S6). This corroborates previous findings that

PPI networks capture regulatory interaction and functional relations

(Kelley and Ideker, 2005).

Taken together, these observations support those made in

Sections 3.1 and 3.2, that is incorporating network information

does not greatly improve performance, but it does contribute to sta-

bilizing the marker gene sets and finding the biologically relevant

genes.

Fig. 5. Stability measurement (using Fisher’s exact test) for three different networks including I2D, Co-Expr and random network. The original version of the

standard methods produced a much a lower overlap between folds due to pre-ranking of meta-genes. Similarly, Lasso produced a low overlap due to random se-

lection of correlated features. FERAL obtained a higher gene set stability across folds for the I2D and Co-Expr network
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Finally, we used BiNGO (Maere et al., 2005) to determine en-

richment across all available gene sets. The hypergeometric test with

a Benjamini–Hochberg false discovery rate of 5% is performed for

detecting overrepresentation of the top 400 genes in the

GO_Biological_Process category. The top 15 most enrichment GO

categories are summarized in Figure 7b. Most significant enrich-

ments are observed in various functional categories related to regu-

lation, signaling and proliferation. This finding suggests that FERAL

is able to uncover a wide diversity of genes that may play a role in

the processes underlying breast cancer metastasis.

3.4 Interpretation of meta-genes in frequently selected

networks
Next, we investigated the selected gene sets and meta-genes by

FERAL and determine whether they provide new insights into the

mechanisms of breast cancer metastasis. To this end, we trained

FERAL using the leave-one-study-out CV and obtained optimized k1

and k2. In this model, still about 1000 gene sets received non-zero

coefficients. In an effort to reduce this further, while retaining the

most essential ones, k2 was increased until the number of selected

gene sets was less than 100 in each fold. The majority (66) of the se-

lected gene sets were selected in at least 10 of the 12-folds, demon-

strating the stability of selected gene sets across studies. These 66

gene sets were then investigated for relevance to breast cancer in

general and metastasis in particular (see Supplementary Section S9

for a complete list).

We performed gene set enrichment for all 66 gene sets using

BiNGO (see Supplementary Section S10 for a complete list). The

majority of gene sets (94%) were enriched (hypergeometric test with

a Benjamini–Hochberg false discovery rate of 5%) for key processes

involved in cancer development, such as signaling of cell growth and

survival, (regulation of) cell cycle, cell division, proliferation and

apoptosis. This shows that FERAL is able to retrieve coherent sets of

genes that are involved in cancer. We observe that for all gene sets,

at least one of the genes was selected as a predictor in the final

model. In the complete set of 66 gene sets, there were 11 that exclu-

sively used expression of individual genes. This corroborates the

finding that it is important to supply the classifier with the actual ex-

pression profiles of the genes (Babaei et al., 2011; Van den Akker

et al., 2011).

Figure 7 displays four of the selected gene sets, along with their

median coefficient across the folds (horizontal bars) and association

of the individual genes with the survival label (shading behind the

gene names). In all four gene sets (and in 83% of all gene sets), a

meta-gene obtained a non-zero coefficient. In three cases (and in

62% of all gene sets), even more than one meta-gene was selected.

This demonstrates the importance of including multiple summariza-

tions of the gene expression in addition to expression profiles of the

genes. Finally, we note that the simple, yet effective, DA2 operator

was selected in gene set (a). This was the case in 33% of all gene

sets. Taken together, we observe that the final predictor was able to

exploit both the raw gene expression profiles and a number of care-

fully constructed meta-genes.

Fig. 6. Gene enrichment. (a) Gene enrichment of top genes for each method when the I2D network is employed. The values on top of each group represent the

number of genes in each gene set. A notably increased enrichment is obtained using the gene sets produced by FERAL. (b) Result of top 15 gene enrichments by

BiNGO applied to top 400 genes provided by FERAL

Fig. 7. Frequently identified gene sets by FERAL. The bars represent the median coefficient across folds, normalized to the range f�1; 1g. Background colors indi-

cate the correlation with target label ranging from positive (blue) to negative (red)
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Next we investigated each of the gene sets in Figure 7 using in-

genuity pathway analysis (IPA). Gene set (a) is strongly enriched for

p38 MAPK signaling (P value¼1:4� 10�14). There is ample evi-

dence to suggest that MAPK signaling plays an important role in

breast cancer, specifically through Notch regulation (Izrailit et al.,

2013). Interestingly, among the genes in this gene set is P53, which

typically is not detected through differential expression analysis

(Chuang et al., 2007). In this gene set, P53 is also not directly

selected but is included in the final prediction model through

the meta-genes that are constructed using the DA2 and Median

constructors. IPA also suggested a strong involvement of these

genes in proliferation of T-lymphocytes (P value¼1:5� 10�12).

This is of particular interest as tumor-infiltrating lymphocytes may

be a good biomarker and have recently been implicated in predicting

response to neoadjuvant chemotherapy in breast cancer (Mao et al.,

2014).

Gene set (b) was most enriched for PI3K/AKT signaling

(P value¼8:4� 10�8), which is one of the major pathways dir-

ectly related to proliferation and cancer and for which there exist

promising therapeutic intervention possibilities (Davis et al., 2014).

For the genes in gene set (c), IPA revealed a strong enrichment for

breast cancer regulation by stathmin1, a downstream target of

CDK1, which is included in gene set (c) (P value¼1:4� 10�6).

This gene set also included RACGAP1, which was recently

shown to have prognostic significance in high-risk early breast

cancer (Pliarchopoulou et al., 2013). Finally, the gene set (d)

was significantly enriched for estrogen-mediated S-phase entry

(P value¼2:9� 10�13). Estrogen is strongly implicated in breast

cancer risk due to its role in promoting division of breast cells

(Foster et al., 2001).

4 Conclusion

In this work, we proposed a network-based outcome prediction

method FERAL that exploits network information in molecular

classification of breast cancer outcome. Our method deviates from

traditional NOPs in two important aspects. First, FERAL includes

several different integration strategies to construct meta-genes,

including a novel supervised integration strategy. Our results indi-

cate that the final classification model frequently uses meta-genes

produced by these constructors, often even multiple meta-genes

based on the same gene set. This underscores the importance of ex-

tending traditional meta-genes based on a simple average. The se-

cond important improvement is that FERAL performs simultaneous

selection and training of the classifier by employing the SGL. This

mitigates the need for pre-ranking of genes and/or meta-genes,

which is likely to severely reduce the stability of selected genes.

FERAL reached a significant performance increase compared

with all standard NOPs, including those that contained significant

improvements made by us. This improvement was also obtained

using a random network, leading to the conclusion that the biolo-

gical knowledge encoded in the network is not used to obtain these

improvements. The stability of marker genes improves substantially

as a result of the procedure implemented in FERAL. This improve-

ment was not observed when the random network was used, indicat-

ing that the biological knowledge contributes to the stability of the

gene signatures. This improvement was exclusively observed for the

PPI network and not for the co-expression network.

Because FERAL attains robust performance and stable marker

gene selection, the selected genes and gene sets might reveal insight

into the underlying aberrant processes that play a role in this com-

plex disease. We find that almost all the gene sets used in the final

model were enriched for cancer related processes. The four gene sets

that were studied in more detail revealed very strong suggestive evi-

dence for their involvement in breast cancer, with clear links to

MAPK, PI3K and AKT signaling and regulation by stathmin1. In

summary, although classification performance of breast cancer out-

come obtained with NOPs is unlikely to improve beyond �70%

AUC, we have shown that FERAL achieves much more stable

marker gene selection that enables valuable mechanistic insight into

the etiology of breast cancer.
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