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ABSTRACT

Objectives: Acute kidney injury (AKI) in hospitalized patients puts them at much higher risk for developing

future health problems such as chronic kidney disease, stroke, and heart disease. Accurate AKI prediction

would allow timely prevention and intervention. However, current AKI prediction researches pay less

attention to model building strategies that meet complex clinical application scenario. This study aims to

build and evaluate AKI prediction models from multiple perspectives that reflect different clinical

applications.

Materials and Methods: A retrospective cohort of 76 957 encounters and relevant clinical variables were

extracted from a tertiary care, academic hospital electronic medical record (EMR) system between November

2007 and December 2016. Five machine learning methods were used to build prediction models. Prediction

tasks from 4 clinical perspectives with different modeling and evaluation strategies were designed to build and

evaluate the models.

Results: Experimental analysis of the AKI prediction models built from 4 different clinical perspectives suggest

a realistic prediction performance in cross-validated area under the curve ranging from 0.720 to 0.764.

Discussion: Results show that models built at admission is effective for predicting AKI events in the next day;

models built using data with a fixed lead time to AKI onset is still effective in the dynamic clinical application

scenario in which each patient’s lead time to AKI onset is different.

Conclusion: To our best knowledge, this is the first systematic study to explore multiple clinical perspectives in

building predictive models for AKI in the general inpatient population to reflect real performance in clinical

application.
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INTRODUCTION

Acute kidney injury (AKI) is a sudden episode of kidney damage or

failure occurring within a few hours or a few days, affecting 7–18%

of hospitalized patients and more than 50% of patients in the inten-

sive care unit (ICU).1 Despite preventive measures implemented in

hospitals, the incidence rate of AKI is still increasing 11% annually

in recent years and has increased by at least 20 times in the past 25

years.2 AKI has a mortality rate as high as 20% in general wards

and can be up to 50% in the ICU and causes a significant increase in

hospitalization costs that range from $5.4 to $24.0 billion in the United

States.2,3 According to statistics, 2 million people die from AKI every

year worldwide.4 Compared with patients without AKI, patients with

AKI have an increased hospital length of stay of 3.2 days and increased

hospitalization costs of $7933 per person.5 In addition, patients who

recover from AKI still has an increased risk for developing chronic kid-

ney disease and end-stage renal disease in the future.6

However, it is very difficult to recognize AKI risk early until too

late because when AKI can be diagnosed by increases in serum creat-

inine (SCr) or decreases in urine output, kidney injury has already

occurred. The pathogenesis underlying AKI is complex, determined

by the interaction of multiple susceptible factors including advanced

age and diabetes and exposure to insults, for example, sepsis and

nephrotoxic medications. Recognizing patients at high AKI risk and

treat them accordingly is more likely to result in better outcomes for

patients than merely treating established AKI.

Current research in AKI prediction mainly focuses on patient in

the ICU,7 or following certain diseases such as acute heart failure,8,9

burn,10 and so on, or certain surgeries such as cardiac surgery,11–13

lung transplantation,14 etc. There exists relatively less research on

prediction models for AKI in the general hospitalized patients based

on electronic medical record (EMR) data. Matheny et al15 presented

one of the first risk stratification tools for predicting hospital ac-

quired AKI (HA-AKI) utilizing EMR data and evaluated calibration

drift in regression and machine learning models for AKI prediction

over time.16 Cronin et al17 explored multiple machine learning

methods for building risk stratification models for HA-AKI using

National Veterans Health Administration data. Koyner et al18,19

adapted a discrete time survival analysis framework and Gradient

Boosting Machine algorithm for AKI prediction and demonstrated

excellent accuracy across different patient locations and admission

SCr. In one of our previous work, we built machine learning models

to predict AKI and evaluated the performance with a lead time from

1 to 3 days prior to the onset of AKI.20 Kate et al21 built machine

learning models to predict who would develop AKI after 24 h of ad-

mission and detect AKI anytime during hospitalization in older

adults, which is the first study that compared the performance be-

tween prediction and detection of AKI.

The existing studies discussed above have made important con-

tributions to AKI prediction in the general hospital populations. The

most commonly adopted model development and evaluation strat-

egy is using AKI-onset as the anchor point for data extraction, which

is an effective approach in retrospective data analysis to demonstrate

the feasibility of predicting AKI early. However, how close the per-

formance of the models built in such way reflects the actual predic-

tion performance in clinical application where data is collected

prospectively is an unknown. In effort to conduct a more compre-

hensive assessment of AKI prediction models, this study explores 4

evaluation perspectives designed to answer different AKI prediction

questions faced in clinical practice: (1) predicting AKI from data

before onset; (2) predicting AKI risk during hospital stay using only

data at admission; (3) predicting if AKI will occur within a window

of time from admission data and prior patient medical history; and

(4) predicting if AKI will develop in the following day. The 4 evalua-

tion perspectives imply different model building procedures with re-

spect to data collection and prediction windows. The multi-

perspective experiments offer a more comprehensive analysis of the

current state of AKI prediction, which may provide useful guidance

for future predictive modeling for clinical practice.

METHODS

Study population
A retrospective cohort was built including 96 590 adult inpatients

older than 18 years of age at a tertiary care, academic hospital (Uni-

versity of Kansas Health System – KUHS) from November 2007 to

December 2016 with a length of stay of at least 2 days. The total

number of encounters was179 370, considering there may be multi-

ple admissions (encounters) of a patient. We excluded patient hospi-

talizations missing necessary data for outcome determination, that

is, without enough SCr measurements (<2 times) for determining

AKI. We also excluded patient admissions that had evidence of mod-

erate or severe kidney dysfunction, that is, estimated glomerular fil-

tration rate (eGFR) less than 60 mL/min/1.73 m2 or abnormal SCr

level more than 1.3 mg/dL within 24 h of hospital admission. Al-

though patients with reduced eGFR are at increased risk for AKI, we

made the exclusion in this study because it is difficult to determine

which of these patients had hospital-acquired versus community-ac-

quired AKI without adequate longitudinal assessment of kidney

function. The final analysis cohort consisted of 76 957 encounters

among 96 590 inpatients.

AKI was defined using the Kidney Disease Improving Global

Outcomes (KDIGO) SCr criteria. Baseline SCr level was defined as

either the last measurement within 2-day time window prior to hos-

pital admission or the first SCr measured after hospital admission.

All SCr levels measured between admission and discharge were eval-

uated to determine the occurrence of HA-AKI. Out of total 76 957

encounters in the final analysis cohort, AKI events occurred in 7259

encounters and 69 698 encounters had no AKI events. The date dis-

tribution of those patients developing AKI in reference to their ad-

mission day is shown in the Supplementary Figure A1.

Data collection
KUHS’s de-identified clinical data repository HERON (Health En-

terprise Repository for Ontological Narration)22,23 was queried to

obtain clinical variables corresponding to each encounter in the final

analysis cohort. De-identified data request was approved by the

HERON Data Request Oversight Committee. Structured clinical

variables extracted for each encounter included demographic infor-

mation, vital signs, laboratory values, admission diagnosis, comor-

bidities, medications before admission, medication during

hospitalization, and medical history, summing up to 1917 attributes.

Among these, vital signs, laboratory values, medications, and medi-

cal history are associated with time stamps on when the values were

recorded. Because of the longitudinal nature of the data, we could

extract data according to different prediction windows and evalua-

tion strategies for building predictive models.

A summary of clinical variables used to build the AKI prediction

models is described in Table 1. SCr and eGFR were not included as

predictive variables as they were used to determine AKI versus

non-AKI encounters. For laboratory tests and vitals, only the last
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recorded value before a prediction point was used and their values

were categorized as either “present and normal,” “present and

abnormal,” or “unknown” according to standard reference ranges.

Vitals were categorized into groups as described in our earlier

work.20 Missing values in vitals and lab tests were captured as

“unknowns” because information may be contained in the choice to

not perform the measurement.

All medication names were normalized by mapping to RxNorm

ingredient. Only medication taken within 7 days before a prediction

point was considered in the predictive models. Comorbidity and ad-

mission diagnosis, that is, all patient refined diagnosis related group

variables, were collected from the University Health System Consor-

tium (UHC), now known as Vizient (http://www.vizientinc.com),

data source in HERON. Patient medical history was captured as ma-

jor diagnoses (ICD-9 codes grouped according to the Clinical Classi-

fications Software diagnosis categories by the Agency for Healthcare

Research and Quality). Medical history, medication, comorbidity,

and admission diagnosis variables took either “yes” or “no” values.

Vitals, labs, medical history, and medication variables were

time-stamped relative to the admission date, referred here as time-

dependent variables. Comorbidities, admission diagnosis, and demo-

graphics were presumed to be available at admission and not time de-

pendent. AKI-onset was set as the day on which AKI can be diagnosed

using the KDIGO criteria. Non-AKI onset was set as the day of the

last normal SCr measurement for a patient during an encounter.

According to different prediction points and windows in various

experimental settings, positive/negative examples were dynamically

determined, while patients developing AKI before prediction point

were excluded from a specific study cohort. Only those who have

AKI occurred during a particular prediction window were regarded

as positive examples. The specific process is described in the Supple-

mentary Figure A2.

Experiment design
To comprehensively assess AKI prediction performance, we investi-

gated the following 4 clinical perspectives that involve distinct

prediction points and data collection windows. Each perspective has

different model building and evaluation strategy to which we must

pay attention, especially when we compare model performance

across different perspectives and when we consider the effectiveness

of utilizing these models in clinical practices.

Perspective #1: Can we predict AKI before its onset using data

before the onset time?

The perspective depicted in Figure 1(a) is the most commonly used

approach in the medical informatics community to assess AKI pre-

diction, that is, using AKI/non-AKI onset as the anchor points for

prediction. Through this way, we can evaluate whether AKI can be

predicted before its onset and how many days prior to onset accu-

rate predictions can be made by changing the prediction window.

From this perspective, we collected the latest data before AKI onset,

excluding data on the day of AKI-onset, to evaluate the performance

of prediction model, that is, data collection window is (past, AKI-

onset—1 day), and prediction point is set at 1 day prior to AKI-onset.

Perspective #2: Can we predict at admission if AKI will occur for

patients during their stay?

This perspective outlined in Figure 1(b) is to use admission day as

the prediction point, predicting if a patient will develop AKI during

their stay. This perspective is also used in current researches.17,21

Under this experiment, the data collection window becomes (past,

admission) and the prediction window becomes (admission, dis-

charge). This aligns with a clinical application scenario in which

clinicians can use the models to make AKI risk prediction for every-

one at admission and make subsequent treatment decisions.

Perspective #3: Can we predict at admission if AKI will occur within

various numbers of days afterwards?

The purpose of this experiment is to explore whether there exists a

validity period for predicting AKI following admission, as shown in

Figure 1(c). Under this evaluation perspective, we used patient medi-

cal data before and include data collected on the admission day to

predict a patient risk of developing HA-AKI in 1 day, 2 days, 3 days,

7 days, 15 days, and 30 days after admission. In this experiment, the

data collection window is set at (past, admission) and upper bound

of the prediction window varies with (admission, admission þ1 day,

2 days, 3 days, 7 days, 15 days, and 30 days). The clinical applica-

tion scenario for this experiment is using the models at admission

time to predict patient AKI risk in the next 1 day, 2 days and etc.,

which can provide smaller granularity than that of Perspective #2.

By comparing performance between these models, we can confirm

how far ahead of time AKI can be effectively predicted.

Perspective #4: Can we predict if a patient will develop AKI within

the next day in a clinical scenario?

This experiment allows us to assess whether the same performance

for next-day AKI prediction made at admission carries through vari-

ous number of days into the hospital stay as shown in Figure 1(d).

This is a dynamic prediction perspective for clinical usage in which

AKI risk prediction is made for patients at daily intervals after ad-

mission using the most recent data available before prediction point.

The clinical application under this perspective requires a set of mod-

els built on dynamic data collection window, upper bound of which

varies with (past, admission þ0 day, 1 day, 2 days, 3 days, and 4

days), although only 1 model is required for clinical application in

Perspectives #1 and #2.

Table 1. Clinical variables considered in building AKI predictive

models

Feature category Number of

variables

Details

Demographics 3 Age, gender, and race

Vitals 5 BMI, diastolic BP, systolic

BP, pulse, and temperature

Lab tests 14 Albumin, ALT, AST, ammo-

nia, blood bilirubin, BUN,

Ca, CK-MB, CK, glucose,

lipase, platelets, troponin,

and WBC

Comorbidities 29 UHC comorbidity

Admission diagnosis 315 UHC APR-DRG

Medications 1271 All medications are mapped

to RxNorm ingredient

Medical history 280 ICD9 codes mapped to CCS

major diagnoses

Abbreviations: AKI: acute kidney injury; BMI: body mass index; BP: blood

pressure; ALT: alanine aminotransferase; AST: asparate aminotransferase;

BUN: Blood Urea Nitrogen; CK-MB: Creatine Kinase-muscle/brain; WBC:

white blood cell; UHC: University Healthsystem Consortium (http://www.

vizientinc.com); APR-DRG: all patient refined diagnosis related group; CCS:

Clinical Classifications Software; CK: Creatine Kinase.
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Relations between perspectives

The relations between the above 4 perspectives are as follows. In

Perspective #1, we use the data collected up to 1 day before AKI on-

set to evaluate whether we can predict AKI before its onset with a 1-

day lead time. Although it is the widely used approach in the medi-

cal informatics community, the prerequisite is that we already know

the date of AKI/non-AKI onset so that we could cut the data accord-

ingly for model development and evaluation, but this information is

not available in a real-life clinical application. Whether predictive

models developed and evaluated on such data will generalize well to

the real clinical application is not well understood. Perspective # 2 is

designed to better reflect real clinical application, evaluating

whether we can predict AKI event occurring on any day during hos-

pitalization. Since Perspective #2 treats the entire hospital stay as a

single long prediction window, prediction may not be granular

enough, thus we designed Perspective #3 that builds a set of models

with increasing length of the prediction windows to evaluate and

compare the performance. Through Perspectives #2 and #3, we will

be able to assess performance of the models built to predict possible

AKI events at admission, but it is not enough. It is more clinical

useful if a prediction model is available for predicting a patient’s next

day AKI risk on a daily basis starting from admission to discharge us-

ing the most up to date data, thus we designed Perspective #4.

Although most current studies adopting the same model building

strategy as in Perspective #1 claim that the model can predict AKI at

any time before AKI event, their evaluation result may be overesti-

mated. In real-life clinical application, the testing data would con-

tain samples with AKI onsets occurring on any day after admission

whereas the training data extracted according to Perspective #1 uses

AKI onset as the reference cut point so that the distance from predic-

tion point to the AKI onset is the same among all samples. To assess

whether model built from Perspective #1 can truly predict AKI in a

real clinical situation, in this study we evaluated the model built

from training data extracted according to Perspective #1 using test-

ing data extracted according to Perspective #4.

Experimental methodology
Waikato Environment for Knowledge Analysis (Weka).24 was used

to implement the following machine learning algorithms: Logistic

Figure 1. Different model building procedures in 4 perspectives. AKI: acute kidney injury. (a) Perspective #1 - Can we predict AKI before its onset using data before

the onset time? (b) Perspective #2 - Can we predict at admission if AKI will occur for patients during their stay? (c) Perspective #3 - Can we predict at admission if

AKI will occur within various numbers of days afterwards? (d) Perspective #4 - Can we predict if a patient will develop AKI within the next day in a clinical scenario?
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Regression (batchSize ¼ 100; numDecimalPlaces ¼ 4; ridge ¼
1.0E�8), Naı̈ve Bayes, Bayes Net (estimator ¼ SimpleEstimator;

searchAlgorithm ¼ k2; batchSize ¼ 100), Random Forest (bagSize-

Percent ¼ 100; batchSize ¼ 100; maxDepth ¼ 0; numDecimalPlaces

¼ 2; numIterations ¼ 500), and an ensemble model with voting clas-

sifiers combining logistic regression and random forest (LR&RF_Vo-

tingEnsemble). The selected algorithms are wide-applied machine

learning methods in AKI prediction research. We chose to use logistic

regression and random forest to build the ensemble model because

they showed superior performance on our data in the exploratory

experiments. To reduce feature dimensionality for computational ef-

ficiency, we used the RemoveUseless node in Weka to remove attrib-

utes that do not vary at all or vary too much in the training set with a

default threshold of 99%. Through this process, we discarded ap-

proximately 1000 variables. All machine learning models were evalu-

ated using 10-fold cross-validation. Area under the receiver operating

characteristic (ROC) curve (AUC), sensitivity, specificity, precision,

and F-measure were reported to assess the prediction performance of

our models and their 95% confidence interval (CI) was also reported

for each model. We used the ThresholdSelector in Weka to obtain

the best classification threshold for maximum F-measure.

RESULTS

Sample size change
Different experimental design would result in very different sample

size for model building and evaluation. In Perspectives #1 and #2,

positive/negative samples do not change: there are 7259 positive

samples and 69 698 negative samples as shown in Figure 2(a). The

main difference is the data collection window.

In Perspective #3, the positive samples proportion increases with

the increasing length of prediction window as shown in Figure 2(b).

In Perspective #4, the sample size becomes smaller over time

as in Figure 2(c). Only patients who develop AKI 1 day after the

prediction point would be considered as a positive sample. Accord-

ing to Supplementary Figure A2, those patients who have developed

AKI or discharged before prediction point were excluded in the co-

hort. The number of patients in the study cohort were reduced to

30 092 (520 positive samples and 29 572 negative samples, 39.1%

of total patients) at 4 days after admission.

Prediction performance
Table 2 summarizes the AUC and 95% CI obtained for AKI predic-

tion models built and evaluated under clinical Perspectives #1 and

#2. It is clear that the Ensemble method (the Voting classifier with

Logistic Regression and Random Forest) achieved the best perfor-

mance (AUC of 0.744 and 0.734 and F-measure of 0.330 and 0.318,

respectively) in both evaluation strategies. Since the remaining Per-

spectives #3 and #4 are similar to Perspectives #1 and #2, the ensem-

ble method is used as the base classifier in following experiments.

Evaluation results of the models built from Perspective #3 are

shown in Table 3. It is apparent from Table 3 that the AUC of all

models with different length of prediction window is higher than

0.72. The best length of prediction window is 1 day with an AUC of

0.764 (95% CI 0.762–0.766). The AUC reaches lowest level of

0.720 (95% CI 0.720–0.721) at prediction window of 3 days. As

the length of prediction window increases, the F-measure increased

from 0.184 to 0.316.

From Figure 2(b), we can see that the model to predict AKI in

the next day (ie, prediction window length is 1 day) had least num-

ber of positive samples among all models in Perspective #3. Al-

though the number of positive samples in training set is not the key

to modeling performance, small number of positive examples for

predictive modeling could still results in poor modeling perfor-

mance. Since the model with the least number of samples performed

the best as shown in Table 3, we want to further assess the validity

of this model by following Kate et al21 to generate the model’s learn-

ing curve with respect to different sizes of training data as shown in

Figure 2. Sample size change in each perspective. AKI: acute kidney injury. (a) Perspective #1 vs #2; (b) Perspective #3; (c) Perspective #4.
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Figure 3. As can be seen from Figure 3, the curve starts to flatten out

as the percent of training data is over 50% and this model were little

affected by a small amount of positive sample.

Table 4 shows the performance of different AKI prediction models

used to predict AKI events within the next day from admission to 4

days after admission in Perspective #4. And we also used the evalua-

tion strategy in Perspective #4 to evaluate the model built in Perspec-

tive #1 to confirm that we can use the model built from Perspective #1

to predict AKI in a real-life clinical application as Perspective #4.

Figure 4 is a visual representation of AUC in Table 4. The most sur-

prising aspect of the results is that the model built using Perspective #1

is better than models built from Perspective #4 in overall performance.

DISCUSSION

In predicting AKI events 1 day before its onset, the ensemble predic-

tion model developed and evaluated on data extracted according to

Perspective #1 achieved the best AUC of 0.744. However, as dis-

cussed above in the experiment design, the testing data correspond-

ing to this evaluation result does not conform to the real-life clinical

application, which suggests that the model may not achieve the

same performance in clinical application. To investigate prediction

performance in more realistic clinical application scenarios, we

made AKI predictions at hospital admission for forecasting patient

Table 2. Performance of different methods on models in Perspectives #1 and #2

Metrics Naı̈ve Bayes Bayes net Logistic regression Random forest LR&RF_VotingEnsemble

Models built in Perspective #1—data collection window (past, AKI-onset - 1 day)

AUC 0.687 (0.686–0.687) 0.687 (0.687–0.687) 0.726 (0.725–0.726) 0.709 (0.708–0.710) 0.744 (0.743–0.744)

F-measure 0.261 (0.260–0.262) 0.262 (0.261–0.262) 0.317 (0.316–0.318) 0.317 (0.316–0.318) 0.330 (0.329–0.331)

Sensitivity (recall) 47.6% (42.5–52.7%) 47.5% (46.7–48.3%) 40.6% (39.8–41.4%) 40.7% (39.8–41.5%) 40.3% (39.4–41.1%)

Specificity 77.4% (76.8–77.9%) 77.6% (77.0–78.1%) 87.9% (87.5–88.4%) 87.9% (87.4–88.4%) 89.2% (88.8–89.6%)

Precision 18.0% (17.8–18.1%) 18.1% (17.9–18.2%) 26.1% (25.9–26.4%) 26.0% (25.6–26.4%) 28.0% (27.7–28.3%)

Models built in Perspective #2–data collection window (past, admission)

AUC 0.676 (0.676–0.676) 0.677 (0.677–0.677) 0.719 (0.718–0.720) 0.714 (0.713–0.715) 0.734 (0.734–0.735)

F-measure 0.253 (0.252–0.253) 0.253 (0.252–0.254) 0.308 (0.308–0.309) 0.294 (0.293–0.295) 0.318 (0.317–0.319

Sensitivity (recall) 45.4% (44.4–46.3%) 45.7% (44.8–46.6%) 40.3% (39.3–41.3%) 40.4% (39.7–41.1%) 40.6% (39.9–41.2%)

Specificity 77.4% (76.8–77.9%) 77.6% (77.0–78.1%) 87.9% (87.5–88.4%) 87.9% (87.4–88.4%) 89.2% (88.8–89.6%)

Precision 17.5% (17.4–17.6%) 17.5% (17.4–17.7%) 25.0% (24.6–25.3%) 23.1% (22.8–23.4%) 26.2% (25.8–26.5%)

Abbreviations: AKI: acute kidney injury; AUC: area under the curve.

Table 3. Performance of models in Perspective #3

Metrics 1 day 2 days 3 days 7 days 15 days 30 days

Models built in Perspective #3—data collection window (past, admission)

AUC 0.764 (0.762–0.766) 0727 (0.726–0.728) 0.720 (0.720–0.721) 0.722 (0.722–0.722) 0.730 (0.730–0.731) 0.734 (0.734–0.734)

F-measure 0.184 (0.182–0.186) 0.213 (0.211–0.215) 0.233 (0.231–0.234) 0.278 (0.277–0.280) 0.309 (0.308–0.310) 0.316 (0.315–0.318)

Sensitivity

(recall)

18.1% (17.6–18.6%) 23.8% (23.0–24.5%) 28.1% (27.5–28.6%) 37.0% (36.0–37.9%) 38.6% (38.0–39.2%) 40.8% (40.2–41.5%)

Specificity 98.3% (98.2–98.4%) 95.6% (95.4–95.9%) 93.5% (93.2–93.7%) 89.0% (88.6–89.5%) 88.9% (88.6–89.3%) 87.9% (87.4–88.3%)

Precision 18.7% (18.1–19.3%) 19.4% (18.9–19.8%) 19.9% (19.6–20.2%) 22.4% (22.0–22.7%) 25.8% (25.5–26.1%) 25.8% (25.5–26.2%)

Abbreviation: AUC: area under the curve.

Figure 3. Learning curve of model built at admission to predict AKI in the next

day in Perspective #3. AKI: acute kidney injury.
Figure 4. Comparison of performance of different AKI prediction models in

Perspectives #1 and #4. AKI: acute kidney injury.
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risk of developing AKI on any day during their stay and found that

the ensemble prediction model trained and tested on data from Per-

spective #2 yielded an AUC of 0.734. To further analyze, how the

performance of AKI prediction at hospital admission varies with the

prediction window, that is, AKI occurring on a specific number of

days after admission, the ensemble model developed and evaluated

on Perspective #3 demonstrated the best AUC of 0.764 for AKI oc-

curring within 1 day after admission despite the fact that it had the

fewest number of positive samples; and AUC for longer prediction

windows (2–30 days) is significantly lower ranged from 0.720 to

0.734. Finally, to explore whether we can dynamically predict if a

patient will develop AKI within the next day at daily intervals start-

ing from admission to discharge (Perspective #4), the best perfor-

mance achieved by the ensemble model is AUC of 0.764 and it

decreases as time goes on which may be due to the shrinking number

of positive samples. It is important to know that good prediction

(AUC ¼ 0.764) can be made at hospital admission for forecasting

patient AKI risk within the next day as it best reflects real clinical us-

age of the prediction model. The comprehensive evaluation of AKI

prediction models from 4 different clinical perspectives provides us

a more realistic performance range with AUC from 0.720 to 0.764.

As noted above that models built and evaluated on data

extracted according to Perspective #1 may not effectively reflect the

performance in clinical application, we cross tested model developed

using Perspective #1 on data extracted according to Perspective #4

and observed that performance of the model built at 1 day before

the AKI onset is worse than previous evaluation on the data

extracted using Perspective #1. However, the overall performance of

the cross testing is surprisingly better than models built and tested

using the same strategy, that is, Perspective #4. There may be multi-

ple explanations for this phenomenon. A major factor may be re-

lated to sample size. As shown in Figure 2, AKI prevalence rate in

Perspective #1 is 9.4% whereas the AKI prevalence rate in Perspec-

tive #4 ranged from 2.1% to 1.4% in decreasing order as the predic-

tion point moved. In other words, there are much more positive

samples for training the predictive model using model building strat-

egy Perspective #1 versus #4. This is interesting because it may sug-

gest that modeling strategy in Perspective #1 could be sufficiently

good for building accurate AKI prediction model when there are

abundant samples in which it only requires 1 model being built

rather than dynamically building models on a daily basis. Further-

more, AKI prediction is an imbalanced classification problem with

an overall cohort in this study containing only 9.4% of AKI cases

(10:1 positive to negative ratio) and model building strategy

Perspective #4 exacerbated the imbalanced problem. The effect of

imbalanced dataset is clearly reflected in the reported F-measure.

For instance, under Perspective #3 the AKI prevalence rate increased

from 2.1% to 9.4% across different prediction window, the AUC

did not vary greatly (0.764–0.734) but F-measure varied from 0.184

to 0.316.

Compared with current research, models presented in this study

achieved a relatively good performance. Model built in this study

for predicting AKI at 1 day prior to onset from Perspective #1

achieved a comparable AUC of 0.744 as our previous study (AUC of

0.765).19 using the same experimental set up but different cohort

and clinical variables. Additionally, though not directly comparable

due to different study population, our model built from Perspective

#2 achieved a higher AUC of 0.734 than the model described by

Kate et al,21 which achieved an AUC of 0.664 under similar experi-

mental set up except they were predicting risk of AKI occurring dur-

ing entire hospital stay after 24 h of admission rather than at

admission as in our design.

A limitation of this study is that there is no comprehensive index

to measure the overall performance of models built from Perspective

#1 and Perspective #4 to dynamically predict AKI events. Similar to

the relationship between AUC and ROC curve, an index depicting

the overall performance can help clinicians compare the perfor-

mance between different models directly. Further work needs to be

done to establish such comprehensive index.

CONCLUSION

In this study, we explored different strategies for evaluating the dis-

criminative performance of EMR-based machine learning models

for predicting hospital acquired AKI. The multi-perspective experi-

mental analysis showed that the EMR-based AKI prediction perfor-

mance ranges from 0.720 to 0.764 in AUC in different real-world

clinical application scenario. There are 2 interest findings in our

experiments. First, we can build an effective model at admission to

predict AKI risk in the next day on a training set with small positive

samples. Second, predictive models built before onset with a fixed

lead time, that is, the most commonly used modeling strategy in cur-

rent research, is demonstrated through our comprehensive analysis

as an effective and robust way to obtain dynamic risk predictions if

there are abundant samples. In summary, the important take away

Table 4. AUC of different AKI Prediction models at the first 5 days during hospitalization

Metrics Admission Admission þ1 Admission þ2 Admission þ3 Admission þ4

Models built in Perspective #4

AUC 0.764 (0.762–0.766) 0.679 (0.677–0.681) 0.652 (0.651–0.653) 0.620 (0.616–0.624) 0.600 (0.596–0.683)

F-measure 0.184 (0.182–0.186) 0.112 (0.111–0.114) 0.066 (0.065–0.067) 0.047 (0.045–0.049) 0.049 (0.047–0.052)

Sensitivity (recall) 18.1% (17.6–18.6%) 16.4% (15.7–17.2%) 15.2% (13.3–17.0%) 10.0% (8.1–11.9%) 12.7% (11.0–14.5%)

Specificity 98.3% (98.2–98.4%) 96.0% (95.7–96.2%) 94.1% (93.2–94.9%) 94.9% (93.8–96.0%) 93.0% (91.8–94.1%)

Precision 18.7% (18.1–19.3%) 8.5% (8.3–8.7%) 4.2% (4.1–4.4%) 3.2% (2.9–3.4%) 3.1% (2.9–3.3%)

Models built in Perspective #1

AUC 0.736 (0.723–0.749) 0.693 (0.679–0.706) 0.667 (0.649–0.684) 0.652 (0.622–0.682) 0.648 (0.612–0.683)

F-measure 0.108 (0.099–0.117) 0.101 (0.094–0.107) 0.067 (0.060–0.074) 0.056 (0.048–0.064) 0.060 (0.050–0.069)

Sensitivity (recall) 46.6% (43.4–49.8%) 39.8% (38.4–41.2%) 37.5% (33.3–41.7%) 37.4% (32.5–42.3%) 41.8% (36.5–47.0%)

Specificity 84.6% (83.5–85.8%) 84.9% (83.6–86.2%) 83.1% (81.7–84.6%) 80.3% (78.7–82.0%) 78.8% (77.0–80.6%)

Precision 6.1% (5.6–6.6%) 5.8% (5.3–6.2%) 3.7% (3.3–4.1%) 3.0% (2.6–3.5%) 3.2% (2.7–3.8%)

Abbreviations: AKI: acute kidney injury; AUC: area under the curve.
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message is that we need to focus on designing rational modeling and

evaluation strategies that best reflect real-world application based

on how the model will be used in clinic. It may also be useful to

develop online learning algorithms that address the streaming nature

of the EMR data.
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