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Abstract

Background: The analysis of DNA copy number variants (CNV) has increasing impact in the field of genetic
diagnostics and research. However, the interpretation of CNV data derived from high resolution array CGH or NGS
platforms is complicated by the considerable variability of the human genome. Therefore, tools for multidimensional
data analysis and comparison of patient cohorts are needed to assist in the discrimination of clinically relevant CNVs

from others.

Results: We developed GenomeCAT, a standalone Java application for the analysis and integrative visualization of

CNVs. GenomeCAT is composed of three modules dedicated to the inspection of single cases, comparative analysis of
multidimensional data and group comparisons aiming at the identification of recurrent aberrations in patients sharing
the same phenotype, respectively. Its flexible import options ease the comparative analysis of own results derived from
microarray or NGS platforms with data from literature or public depositories. Multidimensional data obtained from
different experiment types can be merged into a common data matrix to enable common visualization and analysis.

All results are stored in the integrated MySQL database, but can also be exported as tab delimited files for further

statistical calculations in external programs.

Conclusions: GenomeCAT offers a broad spectrum of visualization and analysis tools that assist in the evaluation of
CNVs in the context of other experiment data and annotations. The use of GenomeCAT does not require any specialized
computer skills. The various R packages implemented for data analysis are fully integrated into GenomeCATs graphical
user interface and the installation process is supported by a wizard. The flexibility in terms of data import and export in
combination with the ability to create a common data matrix makes the program also well suited as an interface
between genomic data from heterogeneous sources and external software tools. Due to the modular architecture the
functionality of GenomeCAT can be easily extended by further R packages or customized plug-ins to meet future

requirements.
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Background

DNA copy number variants represent the greatest source
of genetic variability in humans [1] and are the underlying
cause of many human diseases. Array CGH is recognized
as a first-tier test for DNA copy number variants (CNV)
[2] and accordingly, many laboratories have already estab-
lished their pipelines for pre-processing of array CGH data
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and CNV calling. In many cases these pipelines are based
on software packages provided by the companies selling
DNA microarrays or scanners such as BlueFuse [3], Cyto-
Sure [4] or CytoGenomics [5]. Yet, the scope of these
tools is focused on the identification of CNVs and their
evaluation in the context of gene content and frequency
of a given variant in the healthy population. Comparative
analysis, which integrates data obtained from multiple
patients, or other experiment types are hardly supported,
in particular when they are based on different array plat-
forms or NGS technology.
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Such kind of meta-analysis needs the implementation of
additional commercial or free software. Each of the cur-
rently existing software solutions have their particular
strength and focus. Some are particularly useful for the
identification of genomic regions significantly associated
with a given phenotype [4, 6-12] or have implemented al-
gorithms specifically designed to detect and query copy
number changes in SNP data sets [8, 13]. Others provide a
gene centered view on copy number aberrations [14, 15]
or examine CNVs in a clinical context [16]. Only a few
free software packages offer a comprehensive spectrum of
visualization and analysis tools for multidimensional array
data operable via a graphical user interface [12—17]. What
these tools have in common is that they have been de-
signed with the intention to analyze microarray data. NGS
data are usually displayed in alternative data browsers
such as the Integrative Genome Viewer - IGV [18], or the
Integrated Genome Browser — IGB [19]. These browsers
also support visualization of array data when present in
the appropriate format. However, as in the case of the
IGV, analysis of array data that goes beyond visualization
requires the export to the GenePattern software [20],
where several web-based features for DNA copy number
analysis are provided.

In light of the increasing relevance of multi-dimensional
data analysis several commercial softwares have been
brought to market, including Partek [21], GenomicWork-
bench [22], Genedata Expressionist for Genomic Profiling
[23], Array Studio [24], GenomeStudio [25], CGH Fusion
[26], Nexus Expression [27], CLC Workbench [28] and
Subio [29]. Yet, these programs are neither open source
nor free in most instances. Thus, considerable licensing
fees have to be paid and advancement of this software is
solely dependent on the company.

Proceeding on the experiences with our previous ana-
lysis software CGHPRO [30], we aimed to create a versa-
tile tool that facilitates the meta-analysis of array CGH
results and corresponding data from other experiment
types and platforms. We designed GenomeCAT under the
premise that it is easy to install and use, and offers a broad
spectrum of flexible visualization and analysis options
without the need of specialized computer skills or the ob-
ligation to upload sensible patient data to web servers.

Implementation

Software architecture

GenomeCAT is a desktop application developed in Java
using the NetBeans Platform. It is an open source soft-
ware and is provided as a free download. The program
has a modular structure, which supports the program-
aided updating and the implementation of new plug-ins.
At the center of the program is a MySQL database, de-
signed to maintain experiment data, metadata and anno-
tation tracks. The current version refers to the human
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genome only, but the database is designed to be adapt-
able to any other genome when necessary (Fig. 1). An
installation wizard guides through the installation
process that comprises the set-up of the desktop appli-
cation, the MySQL database and an R environment.

The execution of R packages is embedded in the desk-
top application. Users can enter and modify method-
specific parameters via a dialog box. The R packages
themselves run as a background process, the progress of
which is reported on the screen (Additional file 1). Re-
sults produced by the R session are automatically stored
into GenomeCAT. The design of this interface eases the
future addition of R packages in order to further in-
crease the functionality of GenomeCAT.

Integration of heterogeneous data

Multidimensional data are frequently produced by
means of different experiment platforms. This implies
that comparative analysis has to be preceded by the cre-
ation of a common data matrix. GenomeCAT is capable
to address this issue in three ways: data binning based
on annotation attributes (for example genes), genomic
bins of variable size or user defined intervals. The result-
ing data matrix can not only be accessed within Geno-
meCAT, but can also be exported for further analysis in
external programs (e.g., to visualize data as interactive
heatmaps in Gitools [31] or as network attributes in
Cytoscape [32]).

Performance issues

The search for features overlapping with a given gen-
omic interval is a recurrent procedure in multidimen-
sional data analysis. This applies also to the mapping to
annotation attributes or genomic intervals as described
above. In order to accelerate these queries in Genome-
CAT we took advantage of the Spatial Index, an exten-
sion of the MySQL database. There, genomic locations
or intervals are stored as geometric objects, which are
indexed via R-Trees [33]. Based on this indexing scheme
we employ the MBRIntersect function [34, 35] for quer-
ies and filters, which speeds up the processing time by a
factor of 4 on average compared to the use of a compos-
ite index. In contrast to other software packages [36] in
GenomeCAT the number of cases that can be simultan-
eously analyzed is not confined. It is only limited by the
heapsize of the Java application. Loading of data and
computational intensive calculations are parallelized in
order to optimally exploit the potential of the multi-core
architecture of modern CPUs.

Results and Discussion

Data import

GenomeCAT supports different ways of data import.
While users can choose the traditional way — to import
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an array platform and add sample data afterwards - the
preferred route may be the direct import of data format-
ted in BED style (chromosome start stop score). This
format is simple, platform independent and enables
more flexible entry points into the analysis with Geno-
meCAT. Thus users can stick to their well-established
pipeline for primary data analysis and start the analysis
in our software with a set of already predefined CNVs.
Moreover, the format is ideal for comparisons of own
array CGH data with results from other experiment
types or, for example, CNVs that have been reported in
literature as a list of genomic intervals. For maximal
flexibility, our software also offers the option to inter-
actively compile the necessary data from more compre-
hensive tables.

In addition, GenomeCAT has import routines for ex-
periment data available in GEOs SOFT file format and
can also process BAM files for the import of NGS data.
All data are stored in a MySQL database together with
metadata such as phenotype information. Data are

organized in a hierarchical structure that is searchable
and can be filtered by various criteria.

Module 1: single view

Single case analysis can be accomplished with Single-
View, the first of the three modules that make up Geno-
meCAT. In this module users can display array CGH
profiles as familiar ratio plots along the chromosome
ideograms. Optionally, annotation tracks such as GC
content, CNVs from the Database of Genomic Variants
[37] and segmental duplications [38] can be depicted be-
side (Fig. 2). The layout can be customized and the plots
are interactive. For example, genomic coordinates are pro-
vided as mouseover event and regions can be zoomed-in
or directly viewed in the UCSC Genome Browser [39].
CNV calling can be performed by means of customizable
fixed and dynamic threshold settings and in combination
with CBS [40] or HMM [10]. For each genomic region ex-
tracted in this way, GenomeCAT calculates a quality score
by dividing the averaged ratio value within each extracted
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Fig. 2 Graphical User Interphase of GenomeCAT in the Single View mode. Array CGH results for part of chromosome 6 in a patient with cutaneous
T-cell lymphoma are depicted as familiar ratio plot together with a track highlighting the aberrant segments as detected by CBS analysis (black bars).
Additionally, oligos with ratios beyond custom-defined thresholds are coloured in red and green, respectively. Note that chromosomal breakpoints
correlate with transition from gene rich to gene poor regions as visualized by annotation track C right to the chromosome ideogram

region by the median average deviation. If CBS has been
employed before, the median average deviation is calcu-
lated based on the deviation from the averaged ratio value
within the segments as defined by CBS. Moreover, Ringo
[41] is implemented to facilitate peak finding in data de-
rived from chromatin immunoprecipitation (ChIP) experi-
ments. All processed data are stored as separate tracks and
each processing step is recorded together with its param-
eter settings. Thus it is easy to recapitulate the analysis
procedure and to go back to the original data if necessary,
or to compare results obtained with different parameter
settings. All tracks generated in the course of data analysis
can be exported as tab delimited file in BED or BedGraph
format, which is suitable for direct visualization in the
UCSC Genome Browser [39].

A different type of single case visualization can be per-
formed in the Region of Interest (ROI) viewer. Proceed-
ing on a list of user defined genomic intervals this
feature sorts these intervals according to their average
experiment values and displays the value distribution of
each defined interval in a heatmap with a resolution of
10 bins per interval. Applications of this feature can be
the pre-screening of array CGH results based on a list of
genomic intervals recurrently altered in genomic disor-
ders (Fig. 3) or the identification of genes with highest
scores in ChIP experiments to name a few.

Module 2: comparative view

The second module of GenomeCAT is dedicated to the
simultaneous visualization of multiple tracks. These can
be the results of the same sample processed with different

parameters, data from the very same patient but different
array or NGS-based experiment types or data from
different patients. Plots produced by this module are inter-
active, including the options to re-sort, to zoom-in and re-
scale, and to view the intervals of interest in the UCSC
Genome Browser (Fig. 4).

One practical issue that complicates the integrative
analysis of data derived from different experiment types
is the fact, that they usually do not share a common co-
ordinate system. Oligonucleotides of gene expression
and CGH arrays hardly overlap and both platforms are
not directly comparable to NGS data. This problem is
addressed by our mapping feature, which allows the cre-
ation of a common data matrix for all experiments
opened in this view either based on genomic bins of se-
lectable size, genes or custom defined intervals. The
resulting table is automatically stored in the internal
database, but can also be exported as tab delimited file
for down-stream analysis by statistical packages or
visualization in other tools. For example, mapping on
genes can be used to display array CGH ratios as attri-
butes in a Cytoscape network.

Module 3: group explorer

The considerable variability of the human genome in
health and disease complicates the interpretation of CNVs
or patterns of copy number alterations. Recurrence of ab-
errations within a group of patients with similar pheno-
type or differences between patient groups has proven a
valuable criterion to filter for biological meaningful alter-
ations. The third module of GenomeCAT has been
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Fig. 3 Region of Interest Viewer. For the purpose of demonstration a set of intervals recurrently altered in genomic disorders have been used to
filter array CGH results of a breast carcinoma cell line. Each of these user-defined intervals is split into ten segments. These segments are visualized
in the central column as heatmap with the ratio values defining colour and saturation (e.g., red: deletion, green: gain; grey: within thresholds).
Average ratios and standard deviation of each interval are given in the columns to the right

designed to facilitate such group comparisons. All experi-
ment results stored in the GenomeCAT database can be
filtered and selected for simultaneous visualization based
on metadata such as phenotype. Separate colors can be
assigned to each group or even to individual cases. The
latter option can be used to highlight particular cases to
ease their identification in the overview later on. CNVs

can be displayed as colored bars along the chromosomes
with the option to control opacity and color saturation of
a given CNV by its ratio or quality score. In this way it is
possible to discriminate homozygous deletions from het-
erozygous ones and moderate gains of DNA from high
copy amplifications, respectively. Also this graphical user
interface is interactive. Clicking on individual CNVs in the
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plot highlights case details in the adjacent table and vice
versa. Regions of interest can be zoomed-in or checked in
the UCSC Genome Browser.

While this mode is well suited to present the absolute
numbers of CNVs and their genomic location, the rela-
tive frequency plot - also included in this module- can
be employed to compare CNV frequencies independent
of group size. As demonstrated in Fig. 5, this way of
visualization facilitates the recognition of phenotype spe-
cific aberrations. However, the application of this tool is
not restricted to CNV analysis, but it can also be used to
depict the probability of epigenetic modifications in re-
gions frequently affected by copy number changes in a
specific tumor type and so forth. Relative frequencies as
calculated by GenomeCAT can be exported as CSV files
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for further statistical analysis or visualization in external
software packages.

Conclusions

GenomeCAT provides comprehensive tools for the ana-
lysis of DNA copy number variants and facilitates the
evaluation of their biological relevance in the context of
genome annotations and results obtained from different
experiment types. Its flexible import options ease the
comparative analysis of own results with data from lit-
erature or public depositories. Moreover, GenomeCAT
can act as an interface to other software tools since re-
sults generated in GenomeCAT can be exported in
standard file formats.
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Availability and requirements
Project name: GenomeCAT
Project home page: http://genomecat.github.io/geno
meCAT S Suite
Source code:
meCAT Suite
Operating system: Linux and Windows 7
Programming language: Java, SQL, R
Other requirements: Java 1.8 or higher, MySQL data-
base and R
License: GNU General Public License
Any restriction to use by non-academics: Contact authors

https://github.com/genomeCAT/geno

Additional files

Additional file 1: Implementation of R Packages in GenomeCAT. Word
document demonstrating how R packages are implemented in
GenomeCAT. (DOCX 23 kb)

Abbreviations

BAM: Binary alignment/map; BED: Browser extensible data; CBS: Circular
binary segmentation; CGH: Comparative genomic hybridization;

ChIP: Chromatin immunoprecipitation; CNV: Copy number variant;
HMM: Hidden Markov Model; IGB: Integrated genome browser;

IGV: Integrative genome viewer; MBR: Minimum bounding rectangle;
ROI: Region of interest
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