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Abstract

The Eph receptor tyrosine kinases (RTKs) are regulators of cell migration and axon guidance. However, our understanding of
the molecular mechanisms by which Eph RTKs regulate these processes is still incomplete. To understand how Eph
receptors regulate axon guidance in Caenorhabditis elegans, we screened for suppressors of axon guidance defects caused
by a hyperactive VAB-1/Eph RTK. We identified NCK-1 and WSP-1/N-WASP as downstream effectors of VAB-1. Furthermore,
VAB-1, NCK-1, and WSP-1 can form a complex in vitro. We also report that NCK-1 can physically bind UNC-34/Enabled (Ena),
and suggest that VAB-1 inhibits the NCK-1/UNC-34 complex and negatively regulates UNC-34. Our results provide a model
of the molecular events that allow the VAB-1 RTK to regulate actin dynamics for axon guidance. We suggest that VAB-1/Eph
RTK can stop axonal outgrowth by inhibiting filopodia formation at the growth cone by activating Arp2/3 through a VAB-1/
NCK-1/WSP-1 complex and by inhibiting UNC-34/Ena activity.
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Introduction

During development, axons navigate to their final destination

by interpreting extracellular guidance cues through their growth

cone. The Eph receptor tyrosine kinases (RTKs) and their ephrin

ligands are involved in directing axons to their proper location

[1,2]. Studies in vertebrate systems have identified a number of

effectors in the Eph RTKs signaling pathway in axon guidance

[2]. However, the molecular mechanism of how Eph RTKs

regulate axon guidance is still incomplete. This is partly due to the

large number of Ephrins and Eph RTKs that can engage in

crosstalk [2,3]. The presence of a single Eph RTK, VAB-1, in

Caenorhabditis elegans can simplify the analysis of the signal

transduction events from the receptor. The C. elegans VAB-1

Eph RTK is required for various aspects of neuronal development,

including neuroblast movements, and axon guidance [4,5,6,7].

The molecules involved in VAB-1 signaling in axon guidance are

still unknown. To resolve this issue, we used a genetic suppressor

approach as well as a physical protein interaction approach and

identified NCK-1, WSP-1/N-WASP, UNC-34/Ena, and the

Arp2/3 complex as molecules regulated by VAB-1 signaling in

axon guidance.

The Nck adaptor proteins are known actin cytoskeleton

regulators, and have been shown to function downstream of

several axon guidance receptors including Robo, Dcc and the Eph

RTKs [8,9,10,11]. Although the function of Nck has been studied

in various organisms, the biological function of NCK-1 in C. elegans

has only been recently explored [12]. Furthermore, what

molecules interact with the C. elegans NCK-1 is still unknown.

The WASP protein family (WASP and N-WASP) are scaffolds

that integrate multiple signaling pathways, leading to the

formation of short branched actin filaments through the activation

of the Arp2/3 complex [13]. The C. elegans N-WASP homolog,

WSP-1, functions in neuronal cell migration and axon guidance

[14,15]. However, a connection between WSP-1 and a guidance

receptor has not yet been established.

The Ena/VASP proteins are involved in actin-dependent

movements including neuronal migration and axon guidance,

and are known for their role in promoting filopodia formation

[16]. In C. elegans, the Ena/VASP homolog UNC-34 is required

for proper neuronal cell migration, axon guidance and filopodia

formation [14,17,18,19,20]. Previous work has shown that Ena/

VASP proteins are versatile in their developmental roles and

function in both repulsive and attractive cues. For example Ena/

VASP are effectors of receptors for repulsive cues such as SAX-3/

Robo, UNC-5/Netrin receptor and EphB4, but they can as also

act as effectors for attractive cues downstream of receptors such as

UNC-40/DCC [21,22,23,24,25].

The Arp2/3 complex is a conserved family of actin nucleators

and when activated results in the formation of an elaborate

network of branched actin filaments similar to those found in

lamellipodia [26,27]. In C. elegans, the Arp2/3 complex is required

for axon guidance, and the initiation of growth cone filopodia

downstream of an unidentified axon guidance signal [15,20].

In this paper, we describe some of the molecular events that

allow the VAB-1 Eph RTK to regulate actin dynamics for axon

guidance. We provide genetic and biochemical evidence to show
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that VAB-1 signals through NCK-1 and WSP-1/N-WASP, and

negatively regulates UNC-34/Ena. We propose a model for PLM

(Posterior lateral microtubule) axon termination whereby the

VAB-1 Eph RTK is able to prevent axon extension by inhibiting

growth cone filopodia formation. This is accomplished by

negatively regulating the activity of the filopodia elongator

UNC-34/Ena, and simultaneously activating Arp2/3 through a

VAB-1/NCK-1/WSP-1 complex.

Results

VAB-1 signals through the C. elegans NCK-1 SH3/SH2
adaptor protein

To identify VAB-1 Eph RTK effectors, we utilized transgenic

animals carrying mec-4::myr-vab-1 (quIs5) which encodes a consti-

tutively active VAB-1 tyrosine kinase (myristoylated-VAB-1

termed MYR-VAB-1) in the mechanosensory neurons [6]. In

wild-type young adults, PLM neuron cell bodies are located in the

tail region and have axons that stop at the centre of the animal

(Figure 1A). We previously showed that myr-vab-1 caused neuronal

defects in the mechanosensory neurons, in particular the

premature termination of PLM axons (Figure 1A, 1B) [6]. Since

the MYR-VAB-1 behaves as a constitutively active VAB-1 RTK,

we reasoned that mutations in effectors of the VAB-1 signal may

suppress the neuronal defects. We used a candidate gene approach

to examine genes with known roles in axon guidance and tested

whether loss-of-function mutations could suppress the myr-vab-1

PLM premature termination phenotype. We identified nck-1 as a

candidate effector of VAB-1 Eph RTK signaling. The nck-1(ok694)

mutation partially suppressed the PLM axon premature termina-

tion (Figure 1B), indicating that other effectors are involved in the

MYR-VAB-1 signaling. The C. elegans genome encodes for only

one nck-1 adaptor protein, and is most similar to the human Nck2

and Drosophila DOCK [12]. NCK-1 has all the domain features of

the NCK adaptor proteins, including three SH3 domains followed

by a single SH2 domain. We previously reported that the deletion

allele nck-1(ok694) is predicted to be a null allele, thus all of our

genetic work was carried out using the ok694 allele [12].

If NCK-1 is an effector of VAB-1 signaling then we would

expect the nck-1 loss-of-function mutation to have a phenotype

similar to that of the vab-1 loss-of-function. Indeed, previous work

showed that both vab-1 and nck-1 mutants have similar neuronal

defects, including an overextension in PLM axons (Figure 1C)

[6,7,12]. To further confirm that nck-1 and vab-1 are in the same

pathway in the PLM neurons, we analyzed the effect of the double

mutation on the PLM axons. The vab-1; nck-1 double mutation did

not enhance the PLM over extension phenotype (Figure 1C),

indicating that NCK-1 and the VAB-1 Eph receptor function in

the same pathway to guide the PLM axons.

To determine if the PLM defects observed in vab-1 and nck-1

animals were present at an earlier stage, we examined the PLMs of

the first larval stage (L1) (see Methods). Wild-type L1s had PLM

axons that were 103–114 mm long, and terminated at a region

anterior to the tip of the ALM cell body (93%) and is consistent

with previous reports for L1 PLM lengths [28] (Figure 2A). Both

vab-1 and nck-1 animals had PLM axons that significantly

overgrew beyond the wild-type termination region (Figure 2A,

2B). This indicates that VAB-1 and NCK-1 are required at an

early stage to prevent PLM axons from overgrowing beyond their

normal termination region. We also showed that 96% of L1 myr-

vab-1 transgenic animals had PLM axons that were undergrown

when compared to wild-type (Figure 2A, 2C). The PLM

undergrowth defects caused by MYR-VAB-1 were significantly

reduced by nck-1(ok694) (57%) (Figure 2C). These results are

consistent with our analysis carried out in early adults, and further

confirm that NCK-1 is an effector of VAB-1 signaling in PLM

axon guidance.

NCK-1 is expressed in the nervous system and
co-localizes with VAB-1

We previously showed that NCK-1 is expressed in various

tissues including the nervous system [12]. In addition, like VAB-1,

NCK-1 can function cell autonomously in the mechanosensory

neurons for PLM axon guidance [6,12]. If NCK-1 and VAB-1

function in the same pathway during neuronal development,

then they should be localized in the same cells. Indeed, NCK-1

and VAB-1 were co-localized in some of the neurons, con-

sistent with the role of NCK-1 as an effector of VAB-1 (Figure 3A,

3B). However, the expression pattern of VAB-1 and NCK-1

did not overlap exactly, suggesting that both NCK-1 and

VAB-1 have independent roles during development (Figure 3A).

Expression of NCK-1-GFP and activated VAB-1 (MYR-VAB-1)

in the mechanosensory neurons showed that NCK-1 did co-

localize with activated VAB-1 in the PLM axon and cell body

(Figure 3B).

The NCK-1 SH2 domain interacts with VAB-1
phosphotyrosine Y673

In a parallel approach we used yeast two-hybrid screens to

identify effectors of VAB-1/Eph RTK signaling and identified the

full length NCK-1 as a binding partner of the VAB-1 intracellular

kinase region. Yeast two-hybrid analysis showed that the NCK-1

SH2 domain is sufficient to bind VAB-1 and that VAB-1 tyrosine

Y673 is crucial for the interaction with the NCK-1 SH2 domain

(Figure 4A).

To further confirm the NCK-1/VAB-1 interaction we used

GST-pull down assays. Deletion analyses confirmed that the SH2

domain is necessary and sufficient to bind VAB-1 (Figure 4B).

Furthermore, the NCK-1 interaction required an active tyrosine

VAB-1 kinase since the NCK-1 SH2 domain did not bind a kinase

inactive version of VAB-1 (G912E) (Figure 4C, 4D). Since SH2

Author Summary

The correct wiring of the nervous system depends on the
ability of axons to properly interpret extracellular cues that
guide them to their targets. The Eph receptor tyrosine
kinases (RTKs) have roles in guiding axons, but their
signaling pathways are not completely understood. In this
study, we used the nematode Caenorhabditis elegans to
study how the VAB-1 Eph RTK regulates the growth cone
structure for axon guidance. Genetic and molecular data
show that VAB-1 regulates the conserved molecules NCK-
1, WSP-1/N-WASP, and UNC-34/Ena. Our study provides a
model of how the VAB-1 Eph RTK modulates the growth
cone structure to inhibit axonal outgrowth. We show that
activated VAB-1 can inhibit an NCK-1/UNC-34 interaction
by binding to the NCK-1 SH2 domain. We also show that
NCK-1 and WSP-1 can physically interact and that VAB-1/
NCK-1 and WSP-1 form a complex in vitro. We suggest that
the VAB-1 Eph RTK can contribute to the termination of
axon outgrowth by two methods: 1) The VAB-1/NCK-1/
WSP-1 complex activates ARP-2/3 to change the actin
growth cone dynamics to that of a branched structure
thus reducing the number of filopodia, and 2) VAB-1
inhibits axon extension by inhibiting UNC-34/Ena’s func-
tion in actin polymerization.

Eph Activates NCK and WASP, and Inhibits Ena/VASP
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Figure 1. PLM defects in various backgrounds and their genetic interactions. (A) Young adults expressing mec-4::gfp(zdIs5). Anterior is to
the left. Solid arrow points to where the PLM axon ends. A line diagram that corresponds to the morphology of the neuron is shown below. In wild-
type animals (top gfp panel) the PLM axons terminate at the middle (vulva region triangle). MYR-VAB-1 (middle gfp panel) causes PLM axons to
terminate before reaching their target. wsp-1(gm324) animals (bottom gfp panel) have PLM axons that overshoot past the vulva (triangle) and ALM
neuron (dashed arrow). (B) The nck-1(ok694) and wsp-1(gm324) alleles significantly reduced the early termination defects caused by MYR-VAB-1. Over
expressing unc-34 in the PLMs also reduced the MYR-VAB-1 termination defect. (C) vab-1, nck-1 and wsp-1 animals have PLM overextension defects.
Reducing the levels of UNC-34 via tissue specific RNAi suppressed the PLM overextension defects of vab-1(dx31) and wsp-1(gm324). (D) unc-34(e566)
loss-of-function and tissue specific unc-34 RNAi exhibit PLM axon termination. Over expression of NCK-1 in the mechanosensory neurons (mec-4::nck-
1) caused low levels of the PLM early termination defects, but synergized in the unc-34(e566) background. Activating the Arp2/3 complex via the WSP-
1 VCA domain (mec-4::vca) caused PLM axon termination defects. Error bars indicated the SEM, and significant differences between some of the
strains were compared (using student’s t-test), *P,0.05; **P,0.01; ***P,0.001; n.s. = not statistically significant. ‘N’ refers to the number of axons
scored.
doi:10.1371/journal.pgen.1002513.g001
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Figure 2. PLM over extension and early termination defects are observed at the L1 larval stage. (A) L1 larva expressing mec-4;;gfp (zdIs5).
Anterior is to the left. Solid arrow points to where the PLM axon ends. The ALM cell body and the anterior end of the PLM axon are shown in each

Eph Activates NCK and WASP, and Inhibits Ena/VASP
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domains are known to bind phosphotyrosines we wanted to test

how specific the NCK-1 SH2 domain is for VAB-1. We found that

four other SH2 domains (MIG-10, SEM-5, ABL-1, VAV-1) were

unable to bind VAB-1 (Figure 4E). In summary, NCK-1 interacts

with VAB-1 in a kinase dependent manner, the interaction is

mediated via the NCK-1 SH2 domain and the VAB-1 Y673

juxtamembrane tyrosine, and VAB-1 has high specificity for the

NCK-1 SH2 domain.

panel. A line diagram corresponding to the morphology of the neuron is shown to the right. The dashed lines in all panels represent the wild-type
PLM termination boundary. In wild-type L1s (top gfp panel) the PLM axons are between 103 and 114 mm in length, and terminate at a region anterior
to the tip of the ALM cell body. vab-1(dx31) mutants (middle gfp panel) have L1 PLM axons that overgrow beyond the normal wild-type range.
Animals that over express VAB-1 (MYR-VAB-1) (bottom gfp panel) have L1 PLM axons that are significantly shorter (undergrowth) than wild-type. (B)
vab-1, nck-1 and wsp-1 L1s have PLM axons that are overgrown beyond the normal range. (C) The nck-1(ok694) and wsp-1(gm324) alleles significantly
reduced the undergrowth defects caused by MYR-VAB-1. Error bars indicated the SEM, and significant differences between some of the strains were
compared (using student’s t-test), **P,0.01; ***P,0.001. ‘N’ refers to the number of axons scored.
doi:10.1371/journal.pgen.1002513.g002

Figure 3. NCK-1 co-localizes with VAB-1. Anterior is to the left in all panels. (A–B) NCK-1 is in Green and VAB-1 is Red. (A) NCK-1 and VAB-1 co-
localized in some cells. Arrow head points to cells where both NCK-1 and VAB-1 are co-localized, and the arrow points to cells that only express NCK-
1. The translational nck-1::gfp transgene encodes the NCK-1A isoform and was detected using anti-GFP antibodies. Endogenous VAB-1 was detected
using anti-VAB-1 antibodies (see experimental procedures). (B) NCK-1 and VAB-1 co-localized in the cell body and axon of the PLM neurons. nck-
1A::gfp and myr-vab-1 were expressed in the PLM under the mec-4 promoter, and were detected using anti-GFP and anti-VAB-1 antibodies
respectively.
doi:10.1371/journal.pgen.1002513.g003

Eph Activates NCK and WASP, and Inhibits Ena/VASP
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Figure 4. NCK-1 physically interacts with VAB-1 and UNC-34. (A) The NCK-1 SH2 domain binds to the Y673 of VAB-1. Yeast-two hybrid assays
shows that the NCK-1 SH2 domain (Prey) can bind wild-type (WT) VAB-1 (669 aa–985 aa), but fails to interact when VAB-1 Y673 is changed to
glutamic acid (Y673E). (B–C) GST pull-down assays. L = Load; U = unbound fraction; B = bound fraction. (B) Different NCK-1 domains fused to GST show
that the SH2 domain is required for VAB-1 binding. The three SH3 domains alone do not bind VAB-1. (C) Bacterial expressed MBP-VAB-1 (intracellular
region) has tyrosine kinase activity and shows autophosphorylation. The point mutation G912E in the VAB-1 kinase domain abolishes the VAB-1
kinase activity. The asterisks indicate break down products during purification. Phosphotyrosine was detected using anti-phosphotyrosine antibodies
(4G10). The blot was stained with Ponceau S to show equal protein loading (below). (D) The binding of SH2 domain of NCK-1 to VAB-1 is kinase
dependent. The kinase inactive VAB-1(G912E) failed to interact with the SH2 domain of NCK-1. (E) The NCK-1 SH2 domain shows high specificity for
VAB-1. Yeast-two hybrid assays of other SH2 domains failed to interact with VAB-1. (F–G) GST-NCK-1 pull-down assays with MBP-UNC-34. (F) UNC-34
binds to NCK-1, both the proline rich (PRO) and EVH2 domains are required to bind NCK-1 (not shown). (G) Different GST-NCK-1 domains show that all
SH3 domains can independently interact with full length UNC-34. The asterisks marks the correct protein fragment expected, and all other fragments
below the marked are break down products. The dashed lines in E and F indicate a cropped region from the same blot.
doi:10.1371/journal.pgen.1002513.g004

Eph Activates NCK and WASP, and Inhibits Ena/VASP
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The Ena/VASP homolog UNC-34 can bind and inhibit
NCK-1

How does VAB-1 cause the PLM to stop once the VAB-1 Eph

RTK is activated and adaptor proteins such as NCK-1 bind the

receptor? A previous report indicated that Ena/VASP was

required for repulsion caused by EphB4 signaling in fibroblasts,

but it was unclear how the signal was conveyed [24]. The Ena/

VASP family are composed of an N-terminal EVH1 domain, a

central PRO region and a C-terminal Ena/VASP homology II

domain (EVH2) [16]. We asked if NCK-1 could be the link

between the Eph RTK and Ena/VASP. We first tested if NCK-1

and UNC-34 can directly interact. In vitro binding assays with

bacterially expressed NCK-1 and UNC-34 confirmed that both

proteins do indeed physically interact (Figure 4F, 4G). Further-

more, we found that the PRO-EVH2 domains are required

together to bind NCK-1 (data not shown). We also showed that all

three NCK-1 SH3 domains were able to bind UNC-34

(Figure 4G).

While nck-1 and vab-1 animals have overextended PLM axons,

unc-34 animals have the opposite phenotype and have PLM axons

that terminate prematurely (Figure 1D, Figure 2C). This suggests

that UNC-34 is involved in PLM axon extension, and reflects a

known role of Ena/VASP in actin filament formation and

elongation [16,29]. To understand the genetic nature of the

interaction between nck-1 and unc-34, we analyzed the nck-

1(ok694); unc-34(e566) double and found that nck-1 partially

suppressed the unc-34 PLM termination defect, while unc-34 did

not suppress the nck-1 overgrowth (Figure 1D, and data not

shown). This suggests that, in PLM axon outgrowth, unc-34 may

negatively regulate nck-1. To provide further evidence for this

genetic interaction we over expressed NCK-1 (mec-4::nck-1) in the

PLM neurons of unc-34(e566) animals and this resulted in a

synergistic enhancement of the unc-34 PLM termination pheno-

type (Figure 1D). Although we cannot conclusively rule out that

nck-1 inhibits unc-34, overall, our results suggest that UNC-34 can

inhibit the function of NCK-1 and may do so by physically

binding to it.

VAB-1 disrupts the NCK-1/UNC-34 interaction and
negatively regulates UNC-34

Since UNC-34 and NCK-1 physically interact, we wanted to

examine whether VAB-1, NCK-1 and UNC-34 could form a

complex in vitro. Surprisingly, although UNC-34 can bind strongly

to NCK-1, the introduction of VAB-1 abolished the binding

between UNC-34 and NCK-1 (Figure 5A Lane 4, 5). This result

suggests that VAB-1 might be inducing its effect at the growth

cone membrane by relieving the inhibition of NCK-1 that is

caused by UNC-34. To provide in vivo support of this we over

expressed UNC-34 in the mechanosensory neurons (mec-4::unc-34)

and it significantly reduced the MYR-VAB-1 PLM premature

termination phenotype (Figure 1B).

To gain more insight into the interaction between VAB-1 and

UNC-34, we sought to analyze the effect of the vab-1;unc-34 double

on PLM axons. We found that the vab-1;unc-34 double mutant is

synthetic lethal (data not shown), so we used a mechanosensory

specific unc-34 RNAi approach (see experimental procedures). The

unc-34(RNAi) strain had PLM termination defects that were similar

to unc-34(e566) (Figure 1D). Analysis of the vab-1;unc-34(RNAi)

double showed that reducing the levels of unc-34 can rescue the

PLM overextension defects seen in vab-1(dx31) (Figure 1C), which

is consistent with vab-1 inhibiting unc-34 function. Since the genetic

data suggested that vab-1 negatively regulates unc-34, we

questioned if the activation of VAB-1 could affect the expression

and/or localization of UNC-34. Induction of MYR-VAB-1 via

heat shock promoter did not change the localization of UNC-34,

but instead resulted in the reduction of UNC-34::GFP levels

compared to wild-type animals (Figure 5B). To test whether VAB-

1’s negative regulation can function cell autonomously in the

PLMs, we expressed UNC-34::GFP only in the mechanosensory

neurons (via mec-4 promoter) and it is expressed at high levels.

When we introduce constitutively active VAB-1 only in the touch

neurons (mec-4::myr-vab-1) it reduced the UNC-34::GFP levels

significantly (Figure 5C).

In summary, our binding assays and genetic analyses show that

VAB-1 activation results in binding NCK-1 which in turn blocks

the UNC-34 binding to NCK-1, freeing NCK-1 from the negative

influence of UNC-34 and in addition VAB-1 negatively regulates

UNC-34 protein levels.

WSP-1 is an effector for VAB-1/NCK-1
Since mammalian Nck is known to physically bind and activate

N-WASP to regulate actin filaments through the Arp2/3 complex

[8,30,31], we questioned whether VAB-1 is linked to the

cytoskeleton through WSP-1/N-WASP. If WSP-1 acts down-

stream of VAB-1, then the wsp-1 mutants should suppress the

PLM termination defect caused by MYR-VAB-1. Two wsp-1

alleles are predicted to affect the WSP-1 protein. The wsp-

1(tm2299) is not well characterized, but is homozygous lethal and

is predicted to be a null allele. The embryonic lethality is due to

wsp-1 pleiotropy as WSP-1 is also required for cytokinesis during

embryogenesis [14]. The wsp-1(gm324) allele is a well character-

ized deletion that removes exons 2 and 3, furthermore, no WSP-1

protein nor mRNA can be detected, therefore wsp-1(gm324) is a

strong loss-of-function allele [14]. wsp-1(gm324) displays some

embryonic and larval lethality but can be maintained as a

homozygote [14,15,32]. We chose to use the wsp-1(gm324) allele as

it allowed us to bypass the embryonic lethality associated with the

wsp-1 null allele. We found that wsp-1(gm324) could significantly

suppress the MYR-VAB-1 PLM termination defect in young

adults and L1s (Figure 1B, Figure 2C).

If WSP-1 is an effector of VAB-1 signaling then we would

expect to see neuronal defects similar to vab-1 animals. It was

previously reported that the wsp-1(gm324) had weak axon

guidance defects, such as in the PDE and VD/DD neurons

[15]. We report here that approximately 50% of wsp-1(gm324)

animals have overextended PLM defects in young adults, and 42%

PLM axon overgrowth in L1s (Figure 1C, Figure 2B). Since the

wsp-1 PLM overextension frequency is much greater than vab-1

(Figure 1C), it implies that WSP-1 also functions independent of

VAB-1 for PLM axon guidance. We also found that the vab-

1(dx31);wsp-1(gm324) double mutants are synthetic lethal (data not

shown), which is consistent with WSP-1 functioning in parallel

pathways with VAB-1.

The presence of WSP-1 in the VAB-1 signaling pathway

suggests the possibility that the PLM termination phenotype

caused by MYR-VAB-1 could be due to the activation of the

Arp2/3 complex. WSP-1, like its mammalian counterpart, is

composed of an N-terminal Ena/VASP homology I domain

(EVH1; also known as WASP-homology-1 domain (WH1)), a

central section containing a basic region (BR), a GTPase bind-

ing domain (GBD) and a proline-rich region (PRO), and a

C-terminal with two verprolin homology domains (V; also known

as WH2), a cofilin homology domain (C) and an acidic domain

(A) [13,14,32] collectively known as the VCA region. The

C-terminal VCA regions of both WSP-1 and N-WASP have

been shown to be sufficient for activating the Arp2/3 complex

in vitro [32,33]. We utilized the C-terminal VCA region of WSP-1

Eph Activates NCK and WASP, and Inhibits Ena/VASP
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to selectively activate the Arp2/3 complex in the mechanosensory

neurons (mec-4::wsp-1vca). The WSP-1VCA caused PLM premature

termination defects that were very similar to MYR-VAB-1

(Figure 1D).

The activation of high levels of the Arp2/3 complex produces

extensive short branched actin networks that prevent the

formation of filopodia, and hence can inhibit axon extension

[34,35]. Ena/VASP, on the other hand, promotes axon extension

through filopodia formation and elongation [16,17,20,29]. Thus,

activation of Arp2/3 complex and UNC-34/Ena have opposite

roles in the axon growth cone, and perhaps Arp2/3 complex

activation can antagonize the function of UNC-34/Ena. Since

WSP-1/N-WASP is an activator of the Arp2/3 complex, we

wanted to test genetically if wsp-1 can antagonize unc-34 function.

Due to the synthetic lethality of wsp-1; unc-34 double mutants

[14,36], we analyzed the PLM axons in wsp-1; unc-34(RNAi)

animals. Tissue specific unc-34 RNAi resulted in the partial

suppression of PLM overextension defects caused by wsp-1(gm324)

(Figure 1C), consistent with WSP-1/Arp2/3 activity antagonizing

UNC-34 function.

In summary, we show that WSP-1 functions in PLM axon

termination, through various signaling pathways, including the

VAB-1 Eph RTK. Our results suggest that MYR-VAB-1 is

exerting its effect by activating the Arp2/3 complex through WSP-

1. We also suggest that WSP-1 can antagonize UNC-34 function

by activating the Arp2/3 complex.

VAB-1 enables WSP-1 to outcompete UNC-34 for NCK-1
binding

We used in vitro binding assays to ask whether VAB-1, NCK-1

and WSP-1 could form a complex. WSP-1 was able to bind NCK-

1 (Figure 6A, Lane 6), but not VAB-1 (Figure 6A, Lane 5).

However, WSP-1 was able to pull down VAB-1 in the presence of

NCK-1, indicating that a VAB-1/NCK-1/WSP-1 complex can

occur (Figure 6A, Lane 7).

Since NCK-1 is able to bind both UNC-34 and WSP-1, we

wanted to determine whether all three molecules can form a

complex, or do UNC-34 and WSP-1 compete for NCK-1 binding.

We first confirmed that WSP-1 was unable to bind UNC-34

Figure 5. VAB-1 inhibits the UNC-34/NCK-1 complex and negatively regulates UNC-34 protein levels. (A) NCK-1 (GST) pull-down
experiments. NCK-1 can pull-down UNC-34 (lane 3). Adding VAB-1 (either co-expressed (high VAB-1), lane 4, or mixing (low VAB-1), lane 5) inhibits the
interaction between NCK-1 and UNC-34. VAB-1, NCK-1 and GST protein levels shown below, the dashed line indicates a cropped region from the blot.
Tagged protein fusions used: GST-NCK-1, HIS-VAB-1, and MBP-UNC-34. Proteins were detected with antibodies to GST, MBP or VAB-1. (B) Inducing
hyperactive MYR-VAB-1 (quIs16) via a heat shock promoter reduces the levels of UNC-34::GFP. unc-34::gfp transgenic animals had a GFP relative mean
intensity of 160.07 (N = 12) under heat shock conditions, while hs:myr-vab-1;unc-34::gfp animals had a GFP relative mean intensity of 0.56604
(p,0.01; student’s t-test; N = 16) under the same conditions. All panels show UNC-34::GFP image of the CAN neuron. ‘N’ refers to the number of
animals. (C) Images show PLM cells expressing mec-4::unc-34::gfp. In wild-type animals (left panel), the PLM shows high levels of UNC-34 expression
and in contrast, the UNC-34 intensity is reduced in mry-vab-1 transgenic animals (right panel). Images were taken at identical exposure settings;
dashed line outlines the PLM cell body; ‘N’ = number of animals; scale bar equals 2 mm.
doi:10.1371/journal.pgen.1002513.g005
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(Figure 6B, Lane 6). We found that although WSP-1 binds NCK-

1, the presence of UNC-34 resulted in a 70% reduction of the

NCK-1/WSP-1 complex (Figure 6B, Lane 8). This shows that

UNC-34 can effectively compete with WSP-1 for NCK-1 binding.

Furthermore we could not detect NCK-1/UNC-34/WSP-1 in a

complex (Figure 6B, Lane 8). Interestingly, adding VAB-1 to the

binding interaction increased the level of NCK-1 binding to WSP-

1, indicating that VAB-1 eliminated UNC-34’s ability to compete

for NCK-1 binding (Figure 6B, Lane 9). In summary, our binding

assays show that VAB-1, NCK-1 and WSP-1 form a complex, that

UNC-34 competes with WSP-1 for NCK-1 binding, and that

VAB-1 enables WSP-1 to outcompete UNC-34 for binding to

NCK-1.

VAB-1 signaling inhibits filopodia on the PLM growth
cone

The VAB-1 RTK effectors NCK-1 and WSP-1 are known actin

regulators and therefore implicate VAB-1 signaling in regulating

actin cytoskeleton for axon guidance. To confirm this, we

monitored the PLM growth cone of wild-type and myr-vab-1

transgenic animals at the time of hatching. In wild-type animals,

most of the PLM growth cones exhibited dynamic changes and

had many filopodia protrusions (70%; N = 20 movies) (Figure 7A,

Video S1). Transgenic myr-vab-1 animals, on the other hand, had

growth cones that were less dynamic and were usually void of

filopodia like structures with only 25% (N = 16 movies) showing

some filopodia structures (Figure 7B, Video S2). Since our

molecular and genetic data suggest that VAB-1 inhibits UNC-

34/Ena function we also observed the growth cones of unc-

34(e566) animals. We found that unc-34(e566) mutants, like myr-

vab-1 animals, had growth cones void of filopodia structures with

only 25% displaying filopodia structures (N = 12 movies; not

shown). Our results show that activated VAB-1 can affect the PLM

growth cone morphology by inhibiting filopodia formation.

Discussion

We previously reported a functional role for VAB-1 as a receptor

for a repellent or stop signal in PLM axon guidance [6]. Here we

describe some of the molecular events involved in VAB-1 signaling

that allow the regulation of actin dynamics for PLM axon guidance.

Our genetic and in vitro interaction analysis identified NCK-1, WSP-

1 and UNC-34 as molecules regulated by VAB-1 Eph RTK

signaling. Our data supports a model in which VAB-1 suppresses

axon extension by negatively regulating UNC-34, and activating the

Arp2/3 complex through a VAB-1/NCK-1/WSP-1 complex.

Furthermore, using time-lapse analysis we show that activation of

VAB-1 inhibits filopodia formation in the PLM growth cone.

NCK-1 and Eph RTK signaling
Our results show that the C. elegans NCK-1 adaptor protein is an

effector of the VAB-1 RTK signal in vivo. Several lines of evidence

Figure 6. VAB-1, NCK-1, and WSP-1 interact in a complex. (A–B) WSP-1 (MBP) pull-down experiments. (A) VAB-1/NCK-1/WSP-1 can form a
complex. WSP-1 does not pull-down VAB-1 (lane 5), WSP-1 can pull down NCK-1 (lane 6), and WSP-1 can pull down VAB-1 only in the presence of
NCK-1 (compare lane 5 and lane 7), (B) VAB-1 enables WSP-1 to outcompete UNC-34 for NCK-1 binding. WSP-1 does not pull down UNC-34 (lane 6).
WSP- 1 pulls down NCK-1 (lane 7, NCK-1 relative intensity 1.0) and adding UNC-34 reduces the level of interaction between NCK-1 and WSP-1 (lane 8
(asterisks), NCK-1 relative intensity 0.360.2). UNC-34 is not detected in lane 8 suggesting that NCK-1/UNC-34/WSP-1 do not form a complex. Adding
VAB-1 prevents UNC-34 from inhibiting the interaction between NCK-1 and WSP-1 (lane 9, NCK-1 relative intensity 1.360.1). Protein levels shown
below, dashed line indicates a cropped region from the blot. Tagged protein fusions used: MBP-WSP-1, GST-NCK-1, HIS-VAB-1 and GST-UNC-34.
Proteins were detected with antibodies to GST, MBP or VAB-1.
doi:10.1371/journal.pgen.1002513.g006
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Figure 7. VAB-1 activation affects PLM growth cone dynamics. (A–B) Series of time-lapse images of newly hatched L1 PLM growth cones as
they migrate anteriorly. Scale bar represents 2 mm. (A) Wild-type PLM growth cones exhibit dynamic changes and display multiple filopodia
protrusions. (B) Transgenic myr-vab-1 animals have PLM growth cones that are less dynamic and mostly void of any protrusions. (C) A model of how
VAB-1 induces its termination effect during PLM axon guidance. (Left) In the absence of VAB-1 activation, UNC-34/Ena promotes axon extension
through the polymerization of actin filaments and forming filopodia. UNC-34/Ena also physically binds to and inhibits NCK-1’s role with WSP-1. It is
possible that the UNC-34/NCK-1 heterodimer could work together in promoting actin polymerization downstream of other receptors and is indicated
by question marks (?). (Right) Genetic and molecular data suggest that VAB-1 inhibits UNC-34 function. Activation of VAB-1 contributes to stopping
axon outgrowth by binding to the NCK-1 SH2 domains, which disrupts the interaction between NCK-1 and UNC-34. VAB-1 over expression can reduce
UNC-34 protein levels thereby preventing further actin filament polymerization. Furthermore, VAB-1, NCK-1 and WSP-1 can now form a complex and
induce high levels of Arp2/3 activation to form an extensive network of short, branched actin filaments. The combination of inhibiting actin filament
polymerization and increasing short, branched networks stop the formation of new filopodia. The net result is the termination of axon extension in
response to VAB-1 signaling.
doi:10.1371/journal.pgen.1002513.g007
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indicate that VAB-1 and NCK-1 act together to regulate axon

guidance. First, nck-1 and vab-1 animals have similar neuronal

defects. Second, NCK-1 and VAB-1 physically interact and co-

localize in similar neuronal cells and axons. Finally, the nck-1 loss-

of-function suppresses the defects caused by the constitutively

active VAB-1. We found that NCK-1 binds the VAB-1

juxtamembrane tyrosine Y673 (YEDP) via its SH2 domain in a

VAB-1 kinase dependent manner. This is consistent with the

published binding specificity of the Nck SH2 domain, as well as

reports of Nck1 binding to the second juxtamembrane tyrosine

residue (YEDP) in EphA3 (Y602) and EphA2 (Y594) [37,38,39].

Interestingly, Nck adaptors have been reported to function

downstream of Eph RTKs but it appears that the activated EphA

RTKs are direct targets of Nck adaptors [38,39,40,41], whereas

Nck may indirectly interact with EphBs [11,42,43]. Considering

that the intracellular region of VAB-1 is more similar to EphA

receptors [4], our results in C. elegans provides relevant insight into

how mammalian EphA receptors could regulate the actin

cytoskeleton for axon guidance.

Ena/VASP in Eph RTK signaling
The Ena/VASP protein family is required in processes that

involve dynamic actin remodeling such as platelet shape change,

axon guidance and Jurkat T cell polarization [44]. The ability of

Ena/VASP proteins to remodel actin stems from their ability to

polymerize actin, which is required for filopodia formation and

elongation [16,45,46]. In C. elegans, UNC-34/Ena functions in

neuronal cell migration, axon guidance and epithelial filopodia

formation [14,18,19,20]. Our results further confirm the role of

UNC-34 in axon extension, because we show that the unc-34(e566)

PLM axons terminated prematurely. The cause of early

termination is likely due to a reduction of filopodia elongation in

the growth cone, resulting in the persistence of more densely

branched filaments that can slow axon migration. This is

supported by the finding that unc-34 mutants have fewer filopodia

structures on growth cones, and a reduced rate of growth cone

migration [20] (this work and our unpublished observations). In

addition, mammalian studies show that depletion of Ena/VASP

generates shorter and more densely branched filaments [47].

We propose that VAB-1 negatively regulates UNC-34 for PLM

termination. This is supported by our observations that: 1) the loss-

of-function unc-34 resulted in PLM axon defects similar to the

hyperactive MYR-VAB-1; 2) over expressing UNC-34 in the PLM

partially suppressed the MYR-VAB-1 phenotype; 3) tissue specific

unc-34 RNAi suppressed the vab-1 PLM overextension defects; and

4) over expressing VAB-1 reduced the UNC-34 protein levels.

Although we do not know the mechanism of the reduction of the

UNC-34 protein levels displayed in the hyperactive VAB-1, it is

possible that UNC-34, when removed from its adaptor NCK-1, is

more prone to degradation. In this case NCK-1 may play a dual

role and may also promote UNC-34 function as well. It is also

likely VAB-1 signaling could affect the unc-34 transcriptional level.

Future experiments should resolve how VAB-1 regulates UNC-34

protein levels.

Our finding that VAB-1 negatively regulates UNC-34/Ena is

different from a previous report that shows mammalian EphB4 as

an activator of Ena/VASP [24]. In fibroblast cells, the EphB4

receptor is thought to activate Ena/VASP to destabilize

lamellipodia during cell repulsion and likely does so by promoting

elongated actin filaments rather than a branched actin filament

network. Although the Eph receptor signal transduction to Ena or

UNC-34 is opposite (activates vs. inhibits) the role for UNC-34/

Ena is conserved, because in both cases UNC-34 or Ena/VASP

promotes actin filament elongation.

A VAB-1/NCK-1/WSP-1 complex regulates the actin
cytoskeleton

Our results provide evidence that VAB-1/Eph RTK can

regulate the actin cytoskeleton through its interaction with NCK-1

and WSP-1. This is based on our observation that vab-1, nck-1 and

wsp-1 mutants share the same phenotype of PLM axon

overextension, that both nck-1 and wsp-1 were able to partially

suppress the MYR-VAB-1 PLM termination defect, that VAB-1,

NCK-1 and WSP-1 are able to form a complex in vitro, and that

the activation of the Arp2/3 complex via the WSP-1 VCA domain

resulted in PLM termination defects similar to MYR-VAB-1. The

role of N-WASP as a negative regulator of axon elongation has

been shown by two separate reports, where the reduction of N-

WASP resulted in the enhancement of axon elongation [48,49].

This phenotype is reminiscent of the PLM overextension defects

we observed in wsp-1 animals. There have been conflicting reports

on the role of the Arp2/3 complex in axon elongation, where some

reports suggest that the Arp2/3 complex acts as a negative

regulator of axon elongation [34,49], while other reports show that

the Arp2/3 complex is required for axon elongation [20,50]. A

paper by Ideses et al. (2008) provided a potential resolution to this

paradox by looking at the characteristics of actin assembly in the

presence of variable amounts of Arp2/3 complex in vitro [35]. It is

proposed that high levels of the Arp2/3 complex prevent the

formation of filopodia bundles by promoting the extensive

branching networks of actin with short tips. On the other hand,

at low concentrations of Arp2/3 the actin filaments have longer

tips and are further apart making it easier to form filopodia

bundles [35]. Therefore, it would be expected that the complete

elimination of Arp2/3 would prevent any neurite elongation.

Similarly, the excessive activation of Arp2/3 would also prevent

neurite elongation due to the increased levels of short, branched

networks of actin filaments. In the C. elegans epithelial cells unc-34

and wsp-1 function redundantly for epithelial cell migrations [14].

However our results in PLM neurons suggest that WSP-1 and

UNC-34 have opposite roles. Why the apparent paradox? This is

reminiscent of what has been observed for Ena/VASP proteins

where some reports suggest Ena/VASP promotes actin dependent

processes while others suggest Ena/VASP may inhibit actin

dependent processes [51]. While the growth cones on axons and

the leading edge of epithelial cells both require actin for

movement, they might not be identical in the way the cell moves

forward. Proteins such as Ena/VASP, N-WASP, and Arp2/3

are thought to promote actin polymerization, however these

proteins also change the geometry of the actin filament network

in addition to promoting actin assembly. Therefore the overall

effects of such changes in the actin network may not be easy to

predict with respect to cell movement since various concentrations

of these actin regulators could lead to activation or inhibition of

filopodia. Since WSP-1/N-WASP is an activator of the Arp2/3

complex and different levels of Arp2/3 can elicit different

behaviors, WSP-1 may also have opposite effects depending on

its level of activity. In addition, while most of our results are based

on the PLM neurons it is very likely the roles of UNC-34 and

WSP-1 and how they are regulated will be different in other

neurons.

N-WASP has been shown to interact in a complex with the

mammalian EphB2, through the adaptor molecule intersectin

[52]. Furthermore, this complex of EphB2, intersectin and N-

WASP is required for dendritic spine formation, which consists

mainly of a meshwork of branched filaments caused by the

activation of the Arp2/3 complex [52]. C. elegans intersectin

(ITSN-1) is expressed in the nervous system, and it is enriched in

presynaptic regions and has roles in neurotransmission [53].
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Future work will determine whether the VAB-1/Eph interacts

with ITSN-1 to connect WSP-1. Our current work shows that the

VAB-1 Eph RTK can signal through WSP-1/N-WASP through a

different adaptor molecule, NCK-1, and we propose, like the

mammalian intersectin adaptor, this complex activates Arp2/3 to

promote branched actin.

Model for VAB-1 signaling in the PLM to stop axon
growth

We propose a model of how the proteins VAB-1, NCK-1,

UNC-34, WSP-1 and Arp2/3 function in axon growth cones for

extension and termination (Figure 7C). During PLM axon

outgrowth, the growth cone is stimulated by an attractive cue

that results in the accumulation of UNC-34/Ena at the growth

cone. The result is a net forward movement due to the role of

UNC-34/Ena in inhibiting actin capping proteins, and allowing

filopodia elongation by polymerizing F-actin at the leading edge.

In addition, UNC-34/Ena binds to the NCK-1 SH3 domains to

prevent it from interacting with WSP-1 and participating in a

signaling pathway(s) that would otherwise inhibit axon extension.

It is also possible that the UNC-34/NCK-1 heterodimer could

function together for actin polymerization or that NCK-1 binding

could stabilize the UNC-34 protein. In this case NCK-1 acts

positively with UNC-34. However, since unc-34 and nck-1 mutants

have opposite PLM axon phenotypes, it suggests that nck-1’s

role in axon outgrowth is more dispensable or redundant than its

role in axon termination. Once the VAB-1/Eph RTK receives the

signal to inhibit axon extension, VAB-1 is autophosphorylated and

provides a docking site (Y673) for NCK-1. The NCK-1-SH2

domain binds the activated VAB-1 receptor and this disrupts

the interaction between NCK-1 and UNC-34 to release the

inhibitory effect of UNC-34 on NCK-1. Through an unknown

mechanism, we also show that VAB-1 negatively regulates

the UNC-34/Ena protein levels. VAB-1/NCK-1 can now

recruit and activate WSP-1 and all three proteins form a complex,

which results in high levels of Arp2/3 activation, ultimately

leading to a branched meshwork of actin filaments. The combined

actions of VAB-1/Eph blocking UNC-34/Ena activity, while

activating Arp2/3 through NCK-1/WSP-1 contributes to the

molecular events required to stop the growth cone forward

movement.

Materials and Methods

Strains
All C. elegans strains were manipulated as described by Brenner

[54]. All alleles were isolated in the standard wild type Bristol

strain N2. All experiments were performed at 20uC unless

otherwise indicated. The following strains were used in this study:

N2 (var. Bristol) [54]; LGI: zdIs5[mec-4::gfp]; LGII: vab-1(dx31),

quIs5[mec-4::myr-vab-1]; LG IV: wsp-1(gm324), LG V: unc-34(e566);

LGX:, quIs6[unc-34::unc-34::gfp]; Unmapped: quIs16[hs::myr-vab-1]

[55]; Extrachromosomal arrays (this study): quEx131[mec-4::nck-

1A], quEx190[nck-1::nck-1A-gfp] [12], quEx215[mec-4::unc-34::gfp],

quEx281[mec-4::unc-34], quEx283 [mec-4::nck-1A::gfp] [12],

quEx321[mec-4::vca], quEx338[mec-4::unc-34 RNAi] (see tissue spe-

cific RNAi). Unless noted otherwise, all C. elegans strains were

obtained from the C. elegans Genetics Stock Center, (U. of

Minnesota).

Tissue-specific RNAi
To produce double stranded RNA (dsRNA) only in the

mechanosensory neurons, we constructed a cloning vector

(pIC659) with head to head Pmec-4 promoters on each side of a

Multiple Cloning Site (MCS) such that the sense and antisense

strands of an inserted cDNA would be transcribed. The mec-4::unc-

34 RNAi construct (pIC727) was created by cloning an unc-34

cDNA fragment (ATG start to the first SalI site, 388 bp) into the

pIC659 dual Pmec-4 RNAi cloning vector.

Molecular biology
The mec-4::nck-1A construct (pIC313) was previously described

in Mohamed and Chin-Sang (2011). The mec-4::unc-34 construct

(pIC624) was generated by amplifying unc-34 cDNA and sub-

cloning behind the mec-4 promoter. The same procedure was

used to make the mec-4::unc-34::gfp (pIC540) construct, but

unc-34 was fused to gfp amplified from pPD95.75. To create the

mec-4::vca construct (pIC673), the VCA region of WSP-1 (9108–

9606 of the wsp-1 gene; C07G1.4a in Wormbase) was amplified

from genomic DNA and cloned behind the mec-4 promoter. The

unc-34::unc-34::gfp translation reporter was generated by a PCR

fusion approach [56] using the following pieces: 1. A ,5 kb

genomic region that includes 2 kb of 59UTR and the first

two exons of unc-34, 2. Exons 2–7 were amplified from RB2

cDNA library, and 3. a 868 bp GFP fragment amplified from

pPD95.75 (gift from Dr. Andrew Fire). The expression of the

UNC-34::GFP rescued the unc-34(e566) uncoordinated phenotype.

Details of plasmid/PCR constructs and primer sequences are

available upon request.

Transgenic animals
Transgenic animals were generated by germ-line transformation

as previously described [57]. The unc-34::unc-34::gfp translational

reporter was injected at a concentration of 20 ng/mL, and one of

the unc-34 rescuing lines (quEx61) was integrated to create quIs6.

The mec-4::unc-34 construct was injected at a concentration of

30 ng/mL into mec-4::gfp(zdIs5); mec-4::myr-vab-1(quIs5). The mec-

4::unc-34::gfp construct was injected at a concentration of 30 ng/

mL into N2. mec-4::unc-34RNAi, mec-4::vca and mec-4::nck-1 were

injected into mec-4::gfp(zdIs5) at 30 ng/mL. mec-4::nck-1(quEx131)

was later crossed into unc-34(e566), and mec-4::unc-34RNAi

(quEx338) was crossed into vab-1(dx31) and wsp-1(gm324).

Transgenic animals were identified by the co-injection marker

pRF4/rol-6 (30 ng/ml), or odr-1::rfp (30 ng/ml) [57]. At least two

independent lines were isolated and analyzed. The data shown are

from one representative line.

Antibodies
Mixed stage animals were fixed and stained as described in

Chin-Sang et al. (1999) [58]. Rabbit anti-VAB-1 antibodies

(antigen VAB-1-HIS6) and chicken or mouse polyclonal

antibodies against GFP (Chemicon) were used at 1:100 dilutions.

Texas Red-conjugated goat anti-rabbit and FITC conjugated

goat anti-chicken or anti-mouse secondary anti bodies (Jackson’s

lab) were used at a 1:100 dilution. For Western blot analysis,

antibodies were used at the following dilutions: anti-NCK-1 at

1:500, anti-VAB-1 at 1:2500, anti-MBP-HRP at 1:8000, anti-

GST-HRP at 1:4000 and 4G10 (Upstate Inc.) at 1:2500. Goat-

anti-rabbit-HRP and goat-anti-mouse-HRP were used as at

1:10000 dilutions on western blots. Relative band intensities

in Figure 6B were quantified using at least two independent

blots and analyzed using the National Institutes of Health Image

J program.

Phenotypic analysis
The mechanosensory neurons were visualized using the mec-

4::gfp (zdIs5) reporter. Young adult animals were scored as having
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PLM axon overextension or premature termination as described

previously [6]. Outgrowth of the PLM axon happens during

embryogenesis and continues to grow after hatching and most of

its growth happens at the L1 stage. From L2 onwards to adulthood

PLM growth is maintained relative to its termination point along

the body [28]. To measure the L1 PLM axons, newly hatched L1s

were synchronized in the absence of food for up to 12 hours. We

found that although the worms were born in the absence of food

that the PLM was still able to grow and the PLM axon lengths

were equivalent to the length of animals developing for 2–3 hours

post hatching. This corresponds to the Phase 1 or fast growth PLM

growth phase [28]. Our wild-type reference strain (zdIs5) had L1

PLMs with an average PLM length of 108.5 (65.5) microns with a

PLM length/total body length (from head to tail) ratio of 0.48

(60.04). L1 PLM axons were scored as overgrown if they were

longer than 114 mm and had a PLM/total body length ratio of

greater than 0.52. L1 PLM axons were scored as under grown if

the PLMs were shorter than 103 mm and had a PLM length/total

body length ratio of length less than 0.44. The L1 PLM axons

were traced from photograph and measured in NIH Image J

software. The wild-type neuron morphology was defined by

analysis of neuronal GFP reporters and is consistent with the

electron microscopic reconstruction of the C. elegans nervous

system [59]. Animals were anesthetized using 0.2% tricaine and

0.02% tetramisole in M9, and mounted on 3% agarose pads.

Unless stated otherwise, fluorescent animals and images were

analyzed using a Zeiss Axioplan microscope, Axiocam and

Axiovision software.

Time-lapse imaging of PLM growth cones
PLM growth cones were visualized using a mec-4::gfp (zdIs5)

reporter. Eggs were allowed to hatch for 5 minutes, and the newly

hatched L1 animals were examined immediately on 3% agarose

pads with a drop of 0.2% tricaine and 0.02% tetramisole in M9.

PLM growth cones were imaged with a Zeiss LSM710 confocal

microscope at intervals of 20–30 s. Axons were scored positive for

filopodia if time-lapse movies revealed at least 2 protrusions, and

there were dynamic movements (eg. growth and collapse) of the

these structures within the 10–15 minutes of filming. See Videos

S1 and S2 for examples.

Yeast two-hybrid assays
Yeast cells were grown on standard and selective media as

required [60]. The desired plasmids were transformed into yeast

cells using the lithium acetate method [61]. For binding and

deletion analysis, the pGBKT7 vector was used as bait and the

pGADT7 vector (Clontech) as prey, and b-galactosidase activity

was measured qualitatively by X-GAL overlay assays [62]. To

identify interactions with VAB-1, the Kinase Region (669 aa-

985 aa) of vab-1 was cloned into pGBKT7 (pIC187) and used in a

screen against the RB2 cDNA library (gift from Dr. R. Barstead),

and about 600,000 colonies were screened and two independent

nck-1 cDNA clones were isolated. Site directed mutagenesis

(QuickChange, Stratagene) of pIC187 was used to change the

juxtamembrane tyrosine 673 changed to glutamic acid (Y673E).

The SH2 domains of NCK-1, MIG-10, SEM-5, ABL-1 and VAV-

1 were cloned into the activation domain of the pGADT7 vector.

Primer sequences and details of plasmid constructs are available

upon request.

Pull down and co-purification assays
The following constructs were created by cloning the desired

cDNA fragment into Glutathione-S-Transferase (pGEX4T-2,

Amersham): pIC282 – NCK-1 SH2 domain (298 aa–397 aa),

pIC297 – all three NCK-1 SH3 domains (1 aa–308 aa), pIC308 –

1st NCK-1 SH3 domain (1 aa–72 aa), pIC593 – 2nd NCK-1 SH3

domain (112 aa–186 aa), pIC309 – 3rd NCK-1 SH3 domain

(198 aa–308 aa), pIC324 – full length (F.L.) NCK-1 (1 aa–

397 aa), and pIC606 – F.L. UNC-34 (1 aa–454). The following

constructs were created by cloning the desired cDNA fragment

into Maltose Binding Protein (pMALtm-p2X, New England

Biolabs): pIC225 – F. L. intracellular region of wild-type VAB-1

(581 aa–1117 aa), pIC119 – F. L. intracellular kinase deficient

VAB-1 (G912E), pIC603 – UNC-34 RPO-EVH2 domain

(128 aa–454 aa), pIC605 – F.L. UNC-34 (1 aa–454 aa), pIC671

– UNC-34 PRO domain (128 aa–274), pIC674 – UNC-34 EVH2

domain (246 aa–454 aa), pIC670 – WSP-1 VCA domain (334 aa–

607 aa). pIC582 – His-6::VAB-1 (581 aa–1117 aa) was described

in Brisbin et al (2009). All fusion constructs were expressed in E.

coli Tuner (DE3). For Figure 4B, 4C, 4F, 4G and Figure 5A, a

GST ‘pull-down’ assay was used to confirm the VAB-1, NCK-1

and UNC-34 interactions. Soluble/purified (Load) MBP-VAB-1,

MBP-VAB-1(G912E), MBP-UNC-34 F.L., MBP-UNC-34-PRO-

EVH2, MBP-UNC-34-PRO or MBP-UNC-34-EVH2 were

incubated for 2–3 hrs at 4uC with soluble extracts containing

either GST, GST-NCK-1 F.L., GST-NCK-1-all SH3 domains,

GST-NCK-1(1stSH3), GST-NCK-1(2ndSH3), GST-NCK-

1(3rdSH3), GST-NCK-1(SH2), His-6::VAB-1(581 aa–1117 aa)

(pIC582) or GST-NCK-1 F.L. coexpressed with pIC582 bound

to 50 ml glutathione sepharose beads (GE healthcare). Unbound

fractions were collected, protein bound to GST beads were

washed four times (25 mM Hepes, 10% Glycerol, 0.1% Triton-X,

285 mM NaCl), and a proportional loading of each sample was

analyzed by standard SDS polyacrlyamide gel, followed by

western blotting. All loads fused to MBP were detected using

anti-MBP conjugated to HRP (New England Biolabs). His6-

VAB-1 was detected using Rabbit anti-VAB-1 antibodies

(antigen VAB-1-His6) (Figure 5A). GST and GST-NCK-1 F.L.,

and GST-NCK-1 deletion domains were detected either by

Ponceau S or anti-GST conjugated to HRP. For Figure 6, MBP

‘pull-down’ was used to confirm VAB-1, NCK-1, WSP-1 and

UNC-34 interactions. Soluble extracts (Load) of GST-NCK-1

F.L., His-VAB-1 (pIC582), GST-NCK-1 F. L. coexpressed with

pIC582, or GST-UNC-34 F.L. were incubated for 2–3 hours

at 4uC with soluble extracts containing either MBP or MBP-

WSP-1(334 aa–608 aa) bound to 100 ml amylose resin beads

(New England Biolabs). Unbound fractions were collected,

protein bound to amylose beads were washed four times

(20 mM Tris-Cl [pH 7.5], 200 mM NaCl, 1 mM EDTA, 1 mM

DTT), and a proportional loading of each sample was analyzed

by standard SDS polyacrylamide gel, followed by western

blotting. VAB-1 was detected by Rabbit anti-VAB-1, GST

fused proteins were detected by anti-GST conjugated to HRP,

MBP and MBP-WSP were detected by anti-MBP conjugated

to HRP.

Supporting Information

Video S1 PLM growth cone of wild-type animals. Time-lapse

confocal imaging of wild-type (N2) PLM growth cone. Images

were taken at 30 s intervals for 15 minutes.

(MOV)

Video S2 PLM growth cone of hyperactive VAB-1 (myr-vab-1)

transgenic animals. Time-lapse confocal imaging of myr-vab-1

transgenic animals. Images were taken at 30 s intervals for

10 minutes.

(MOV)
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