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The myoelectric prosthesis is a promising tool to restore the hand abilities of

amputees, but the classification accuracy of surface electromyography (sEMG)

is not high enough for real-time application. Researchers proposed integrating

sEMG signals with another feature that is not affected by amputation. The strong

coordination between vision and hand manipulation makes us consider

including visual information in prosthetic hand control. In this study, we

identified a sweet period during the early reaching phase in which the vision

data could yield a higher accuracy in classifying the grasp patterns. Moreover,

the visual classification results from the sweet period could be naturally

integrated with sEMG data collected during the grasp phase. After the

integration, the accuracy of grasp classification increased from 85.5% (only

sEMG) to 90.06% (integrated). Knowledge gained from this study encourages us

to further explore the methods for incorporating computer vision into

myoelectric data to enhance the movement control of prosthetic hands.
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1 Introduction

Hands are one of the essential tools for humans to achieve a wide variety of

manipulations. The loss of hands can be devastating to a person, depriving them of

their ability to study, work, or even live a daily life (Niedernhuber et al., 2018).

Amputation can lead to career shifts or even unemployment, possibly leading to more

severe problems such as social isolation (Burger and Marinček, 2007; Jang et al., 2011).

To restore the fundamental abilities and the level of independence of amputees, it is a

feasible option to wear non-invasive upper-limb prostheses. Compared to cosmetic and

body-powered hands, myoelectric prostheses can achieve a more realistic simulation of the

grasping process, providing a better user experience (Maat et al., 2018; Castellini and Smagt,

2009). In current days, an advanced myoelectric prosthesis is actuated by a classifier, which

converts muscular signals into corresponding grasp gestures. The muscular signals are
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collected by the surface electromyography (sEMG) sensors placed

on the upper limb. On one hand, the grasp classification by sEMG

is well studied, and satisfied recognition accuracy has been

produced by several studies (Chen et al., 2007a; Chen et al.,

2007b; Jiang et al., 2017). On the other hand, the satisfactory

accuracy was limited to the laboratory environment, and most

research on myoelectric prostheses did not provide enough

technical support for effective application improvement in the

clinical and real-life environment (Farina et al., 2014; Roche et al.,

2014; Resnik et al., 2018; Simon et al., 2019). The biggest obstacle of

myoelectric prosthetic hands is that sEMG signals are hard to be

decoded to an applicable level. In addition, its performance is also

affected by other factors, such as muscle flexibility, muscle fatigue,

and sweat. Therefore, the classification performance is hard to be

further improved by only relying on sEMG.

In humans, vision is critical in performing hand gestures

before the activity and guiding the activity itself. Humans use

visual information to understand and predict coming actions

(Johansson et al., 2001). Moreover, in the study by Hebert et al.

(2019), it has been found that the visual interaction of amputees

is more active than intact subjects. The strong relationship

between vision and action makes integrating vision and

muscle signals a promising prospect.

Some researchers have integrated visual information with

myoelectric prostheses to improve their performance (Hao et al.,

2013; Markovic et al., 2014; Markovic et al., 2015; Ghazaei et al.,

2017). In these experiments, the subjects often wore an eye-

tracking device, which can also record the first-person video

using the integrated camera. The main idea behind these studies

is to identify objects to be grasped in the video and then select the

corresponding grasp gestures. However, the subjects were asked

to stare at the object (Bouwsema, 2014; Sobuh et al., 2014; Hebert

et al., 2019), or manually take a photo (Ghazaei et al., 2017), until

it was recognized and then grasp it. In these cases, the visual

information is obtained by established rules that the subject must

follow, such as staring at the object for at least 3 s, which is not a

natural way to perform the grasp action.

This study investigates how the grasp classification accuracy

changes over the entire grasping process while identifying a period

that can achieve the best grasp classification outcome using visual

data. We call this interval the sweet period. The sweet period should

also be short and located in the early phases in order to speed up the

control process. Once the sweet period is identified, grasp

classification by the camera can be automatically conducted

during this interval without purposed confirmation. In our recent

publication (Wang et al., 2022), a similar sweet period (for sEMG)

right before the hand grasps the target object was identified for hand

grasp classification by sEMG. It will be interesting to explore the

vision sweet period again during the reach-and-grasp process and

utilize both of them for better prosthetic hand control.

In order to achieve the aforementioned analysis, we conducted an

experiment to analyze the vision performance and find the sweet

period with the best grasp type classification outcome. We first

extracted object photographs from the original dataset to build a

new dataset. Then, we fed a sequence of object images during the

reach-and-grasp process to a deep learning model and output

classified grasp types. The grasp classification accuracy and the

ratio of the number of images containing objects to the total

images are analyzed along the whole reach-and-grasp process to

identify the vision sweet period. Finally, we integrated sEMG and

vision classification outcomes to identify a better classification

strategy. We hypothesize that the sweet period is at the beginning

of the reaching phasewhen the target object has a higher probability of

being visible to the participant, and the integration can provide higher

accuracy of grasp classification.

2 Materials and methods

2.1 Dataset

The main dataset employed in this study is from Cognolato

et al. (2020), which contains sEMG signals and a simultaneous

first-person video. Ten grasp gestures were performed on

FIGURE 1
Data structure and processing steps.
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18 different objects in this data collection which was selected

based on the grasp taxonomies (Cutkosky, 1989; Crawford et al.,

2005; Sebelius et al., 2005; Feix et al., 2016) and grasp frequencies

in activities of daily living (Bullock et al., 2013). As shown in

Figure 1, the participant performed each gesture on three

different objects, and on each object, the same grasp gesture

were repeated four times. The list of gestures and objects is shown

in Table 1. In addition to sEMG signals and videos, simultaneous

eye-tracking data are also included in this dataset which we did

not utilize in our research.

Each subject performed 10 grasp gestures in the original video,

and each grasp was acting on three different objects. On each

object, the same grasp gesture was repeated four times. There were

30 subjects in the database. Therefore, there were 3,600 grasp trials

in total (120 trials x 30 subjects) in this dataset. Therefore, for each

subject, there were 120 (10 × 4 × 3) grasp trials in total. Each grasp

trial lasted approximately 4.5–5 s (Cognolato et al., 2020). To keep

all the trials to the same length, we removed the frames after 4.48 s.

Please be noted that the video was recorded with a frame rate of

25 Hz (one frame per 0.04 s), and there were 112 frames in each

trial of the video.

2.2 Object detection using a RetinaNet
model

We used RetinaNet to detect objects from the frames of the

video. RetinaNet is a one-stage convolutional neural network

model that has been widely used for object detection, which

utilizes a focal loss function to address class imbalance during

training (Lin et al., 2017). Considering the high volume of the

dataset and the heavy labeling work, in this study, we chose the

RetinaNet model pre-trained by the COCO dataset to reduce the

required size of the training dataset. The COCO dataset included

photographs of 91 object types that would be easily recognizable

by a 4-year-old, and it contained a total of 2.5 million labeled

instances in 328k images (Lin et al., 2014).

Because the object types in the dataset we used were not fully

covered by the COCO dataset, fine-tuning is required tomake it fit

our object types. We built a dataset by collecting and labeling

1,186 photographs from the videos of the 30 subjects. There are

3–6 objects in each photograph, and each object showed

approximately 200 times in these 1,186 photographs. Here, 80%

of this dataset was used for training, and 20% was used for

validation. Then, we created a new output layer to replace the

previous output layer in the pre-trained model and trained it using

the training and testing data mentioned earlier (these training and

testing data have no overlap with the data for classification training

and testing in the following work). Therefore, the final model we

obtained can be used to detect the object in each frame.

There could be multiple objects appearing in a frame of

the first-person video, but we only needed to detect the target

object that the participant was trying to grasp using the fine-

tuned RetinaNet model (as described in section 2.1), where

the target object was cropped using a bounding box. If the

target object was shown in the frame, we regarded this frame

valid. If the target object was not shown in the frame or

entirely blocked by the hands, we regarded it invalid. Setting

up the valid frame where the target object is shown within the

TABLE 1 Columns indicate the ID, the name of the grasp gestures, and
the name of the object involved in the grasping (Cognolato et al.,
2020).

ID Grasp gesture Object

1 Medium wrap Bottle

Can

Door handle

Mug

2 Lateral Key

Pencil case

Plate

3 Parallel extension Book

Drawer

Bottle

4 Tripod grasp Mug

Drawer

Ball

5 Power sphere Bulb

Key

Jar

6 Precision disk Bulb

Ball

clothespin

7 Prismatic pinch Key

Can

Remote

8 Index finger extension Knife

Fork

Screwdriver

9 Adducted thumb Remote

Wrench

Knife

10 Prismatic four finger Fork

Wrench
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frame was important for our further analysis because the

object and gesture recognition model we applied for only

worked under the condition where one object is presented in

the frame. Objects could be detected by the RetinaNet model

from approximately 90% of the frames. We reviewed and

manually detected the object on the rest of the frames.

2.3 Grasp classification using the dual-
channel CNN model

Zhang et al. (2022) proposed a dual-channel convolutional

neural network (DcnnGrasp), in which object category

information was adopted to improve the accuracy of grasp

pattern recognition. To maximize the collaborative learning of

object category classification and grasp pattern recognition, they

further proposed a loss function called Joint Cross-Entropy with

Adaptive Regularizer (JCEAR) derived from maximizing a

posterior. The regularization coefficient and trainable

parameters in the loss function JCEAR and DcnnGrasp were

updated by a developed training strategy. From the experiments

given in their study, it can be seen that, compared with SOTA

methods, DcnnGrasp achieved the best accuracy in most cases

(Zhang et al., 2022).

In this study, we trained the DcnnGrasp model by using the

object photographs from the first three repetitions and tested by

using the remaining one repetition. When applying this model to

testing data, the input photographs in the same grasp trial were

fed to the model chronologically, in which way we could obtain

the outcome also in a time sequence.

FIGURE 2
Example of grasp phases during a full grasp trial (Wang et al., 2022).

FIGURE 3
Workflow of this study. Object detection model training, frame extraction, and DcnnGrasp model are discussed in the Materials and methods
section. The remaining four parts are discussed in the Experiments and results section.
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2.4 Grasp phases

To better understand how the grasp classification models

behave during the grasping process, we divided the entire

grasping into three phases: the reaching phase, the early

grasping phase, and the firm grasping phase. According to

the research of Mason et al. (2002) and Supuk et al. (2011),

the reaching phase starts with hands lifting and ends at

touching the object, the early grasping phase starts with the

object touching and ends by firmly holding the object, in the

firm grasping phase, the force from hand remains steady to the

end of grasp. The details of these three phases were discussed in

our previous research (Wang et al., 2022). According to the

segmentation for this dataset in our previous research, the

reaching phase was from 0 to 1,020 ms, the early grasping

phase was from 1,020 ms to 1,604 ms, and the firm grasping

phase was from 1,604 ms to 4,480 ms. A phase example can be

found in Figure 2.

3 Experiments and results

The main workflow of this study is shown in Figure 3. In

addition to the RetinaNet model, DcnnGrasp model, and frame

extraction discussed in the previous section, another four steps

will be introduced in this section.

3.1 Data splitting

As is mentioned in the previous section, there were four

repetitions in each gesture performance process, allowing us to

split the data into training and testing sets. We used three

repetitions for training and one repetition for testing with

leave-one-repetition-out cross-validation, in which each of the

four repetitions has been regarded as the testing data once to

ensure the reliability of the experiment. The data organization

and processing steps can be easily understood from Figure 1.

FIGURE 4
Valid frame proportion at each time point during the entire grasping process. The percentage represents the average proportion of valid frames
in 900 trials from 30 subjects. The x-axis contains 112 points representing 112 frames in a grasp trial (40 ms for each frame, 4,480 ms in total). The
vision sweet period starts from 0 ms and ends at 320 ms. The sEMG sweet period starts at 1,100 ms and ends at 1,400 ms. The vertical dashed lines
are averaged starting times of the early grasping and firm grasping phases, which locate at 1,020 ms and 1,604 ms, respectively. The result is
calculated with leave-one-repetition-out cross-validation.
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3.2 Sweet period analysis

After extracting the frames from the first-person videos, we

calculated the proportion of valid frames and drew Figure 4 to

illustrate the changes during the entire grasp process. There are

900 trials in testing data (30 subjects x 10 grasp gestures x 1 test

repetition x 3 objects), which means that there are 900 frames at

each time point. The percentage in Figure 4 represents the

FIGURE 5
Mean accuracy for sEMG, object, and gesture classification at each time point during the entire grasping process. The object and gesture
recognition results are from the trained dual-channel CNN model with leave-one-repetition-out cross-validation among valid frames. The mean
accuracy represents the average accuracy of 900 trials from 30 subjects. The result is also calculatedwith leave-one-repetition-out cross-validation.

FIGURE 6
Mean classification accuracy of the object and gesture during the sweet period among 30 subjects. The sEMG result is from the best strategy we
achieved in our last research which also utilized the sweet period for sEMG signals. The values for sEMG, and object and gesture classification
accuracies are 85.50, 98.81, and 91.59%, respectively. The result is calculated with leave-one-repetition-out cross-validation.
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proportion of valid frames among these 900 frames at each time

point. The result is calculated with leave-one-repetition-out

cross-validation.

We can see that the valid frame proportion increases at the

beginning of the reaching phase (Figure 4), reaching the peak at

160 ms. The valid frame starts to decrease until the late early

grasping phase, keeping a stable low level during the entire firm

grasping phase. The high percentage of the valid frame at the early

reaching phase allowed us to define the location of the sweet period.

In searching for the sweet period, we defined several windows

with different lengths and calculated the average percentage of valid

frames in these windows. Since we wanted the sweet period to locate

as early as possible and the percentage is high enough at the start of

the reaching phase (0 ms in Figure 4), wemade all the windows start

from 0ms and end at different times. After calculation, the window

with the second highest average accuracy was chosen as the sweet

period shown in the blue zone, which was from 0 to 320 ms

(Figure 4). The window with the highest average accuracy (from

0 to 160 ms) was dropped because it only contained four frames

which were not enough to make it reliable.

In our previous research (Wang et al., 2022), we achieved the

best grasp classification outcome using the sEMG sweet period

between 1,100 ms and 1,400 ms in the early grasping phase (pink

zone in Figure 3). The sEMG sweet period was 800 ms behind the

vision sweet period. The time gap between these two sweet periods

makes it possible for us to integrate the classification outcome by

vision and sEMG in real-life situation. Although the definition of a

sweet period for sEMG and vision was the same, the methods to

determine the sweet period were different. The sEMG sweet period

was identified by analyzing classification accuracy, while the vision

sweet period was found by analyzing the percentage of a valid frame.

3.3 Comparison of grasp classification
performance

Figure 5 shows mean accuracy rates for grasp classification by

three different methods (object recognition, gesture recognition,

and sEMG) over the entire grasping phases. The value at each

time point is averaged across all 900 trials from 30 participants.

From Figure 5, we can see that object and gesture recognition

accuracy remain relatively stable, fluctuating slightly between

97 and 91%, and are both higher than sEMG recognition

accuracy in most circumstances. The object classification

yields a higher accuracy than the gesture classification during

the entire grasp process and only reverses once at 3,200 ms. The

accuracy determined by the gesture classification only goes below

the classification by sEMG on three occasions during the firm

grasping phase. Overall, the gesture classification accuracy is

much higher than sEMG recognition in most time.

Our last comparison of grasp classification over three methods

focused on the sweet periods. Specifically, we calculated the mean

accuracy of object and gesture recognition using data collected in

their sweet periods and compared it to classification by sEMG

from the best strategy we have achieved in the previous report

(Wang et al., 2022). The results are shown in Figure 6, in which the

object and gesture classification accuracy was calculated from valid

frames in the sweet period. The mean accuracy reaches 98.81 and

91.59% for the object and gesture classification, respectively. Both

were higher than the classification by sEMG (85.50%).

3.4 Integration of classification outcomes
by vision and sEMG

Satisfied grasp classification outcomes from visual data

encouraged us to integrate the gesture data from the vision

sweet period with the sEMG data from the sEMG sweet period

(Wang et al., 2022). The simplest and most effective method to

integrate these two outcomes was comparing the plurality vote

probabilities during their respective sweet period. For the visual

part, the probability was calculated from the plurality vote results

of the gesture recognition outcome only for the valid frames during

the sweet periods. For the sEMG part, the probability was also

calculated from the plurality vote results during the sweet period,

but each time point in the sweet period was valid. Both

probabilities illustrated the confidence of the grasp recognition

results classified from sweet periods. We calculated and compared

the probabilities for each grasp trial in the testing dataset and chose

the outcome with the higher probability as the final classification

result. After calculating the mean accuracy of all the 900 grasp

trials in the testing dataset with leave-one-repetition-out cross-

validation, we obtained the results, as shown in Table 2. After the

integration, the grasp classification accuracy was increased from

85.50 to 90.06%, as shown in Table 2; however, the result was 1.5%

lower than the visual gesture classification.

The vision sweet period lasts for 320 ms, which means there are

eight frames in this period. Because the valid frame proportion is

approximately 53%, around half of the frames are invalid. For the

circumstance that the number of valid frames is less than five and at

least one frame failed the recognition, the probability would be equal

to or less than 75%, in which sEMG would dominate this result

because the probabilities of sEMG are stable and higher than 75% in

most circumstances, according to our previous research (Wang et al.,

2022). In the circumstance that no frame failed the recognition, the

vision with 91.59% probability would dominate the result.

TABLE 2 Gesture classification comparison. The result is calculated
during the sweet period among 900 grasp trials from 30 subjects
with leave-one-repetition-out cross-validation.

Gesture classification basis Mean accuracy

sEMG 85.50%

Visual information 91.59%

Integration of sEMG and visual information 90.06%
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4 Discussion

Our hypothesis is supported by the results that there is a

sweet period at the beginning of the reach phase where visual

information can be used to classify grasp gestures by computer

vision. Moving one step forward, visual information can be

integrated with sEMG to further improve the performance of

robotic hand implementation in real-life applications. This is

important as the visual input can be used to improve the accuracy

in predicting grasp patterns compared to only using sEMG

signals. Furthermore, the sweet period of visual data is in the

early reaching phase, which enables early grasp classification

without a pause in the grasping action. This would make the

prosthetic hand control more natural.

We found that the valid frame proportion reaches the peak at

the start of the reaching phase, as shown in Figure 4. This is

because, before the grasp manipulation, the subject would look at

the object before executing the grasp action, making it possible for

us to identify handmovement using the visual signal at this period.

After reaching the peak, the proportion quickly decreases to

approximately 10% at the end of the reaching phase. This is

because, once the hand touches the object, some object starts to

be fully covered by the hand, which blocks the object from showing

in the subjects’ vision. Therefore, the RetinaNet model cannot

detect the objects, and the classifier cannot process the recognition.

Since the hand starts to touch the object during the reaching phase,

the most dramatic proportion decline occurs in this period. During

the firm grasping phase, hand occlusion happened frequently; only

a few objects with considerable volume can be recognized, thus

making the proportion retain a low level of less than 10%.

Although the proportion is the highest during the sweet period,

it is only 53%. This is because the value for each time point is

calculated across the 900 grasp trials (from 30 subjects), in which

the objects are not shown in the subjects’ vision at the current time

point, or the objects are blocked by hand, making this frame

invalid at this time point. For this proportion level, we can find that

it is impossible to implement recognition at a particular time point

for different subjects and objects. However, it is feasible to expand

the time point to a period to implement the recognition. In this

research, we call this period the sweet period and find it located

between 0 and 320 ms. In this period, the probability of obtaining

the valid frames is the highest compared to any other period, which

means that this period can provide a stable input to the classifier

when performing a grasp action naturally.

From Figure 5, we can find that the visual recognition accuracy is

much more stable than sEMG recognition accuracy in the reaching

phase. This is because sEMG signals change very much with muscle

contraction, but visual information changes are rare, with only some

minor changes of the visual angle. Therefore, as long as the visual

information input is enough, the classification outcome would be

stable.

As we mentioned in the previous section, there is

approximately 800 ms time difference between the sweet

periods of sEMG and visual information. Therefore, in real-life

applications, we can obtain the vision recognition result before

processing classification by sEMG and integrate these two

classification outcomes without causing a delay in

myoprosthetic hand control the real-life applications. After the

integration, the accuracy increases from 85.50 to 90.06%, from

which we can find that, as a second role, visual information can

effectively increase the overall gesture classification accuracy, thus

increasing the performance of the sEMG prosthetic hand.

This study has some limitations. First, only one target object

was chosen by the RetinaNet model to simplify the experiment.

In the future, we could use gaze tracking technology to identify

the target object in prosthetic hand control. Second, we only used

one head-mounted camera for capturing the visual information.

With the fast developing ubiquitous computing technology,

multiple cameras will be available on the prosthetic hand or

the ambient environment. Thus, we will collect more data

including real-time tasks, to further improve and validate the

system, such as using multiple channels’ visual information to

enhance prosthesis control and exploring the corresponding

sweet period/periods. Last, considering the fact that this study

focuses on finding the best duration for vision grasp classification

and its integration strategies with sEMG, we have not validated

our results on the unseen objects in our study. The recognition

accuracy might be affected when dealing with unseen objects.

5 Conclusion

In order to increase the performance of myoprosthetic hand

control in real-life situation by integrating visual information to

sEMG, we investigated the object and gesture recognition

performance during the entire natural grasp process to

identify the sweet period for grasp classification. We found

that the sweet period is between 0 s and 320 ms from the

start of the hand grasping, which happens in the reaching

phase. Furthermore, we found that using visual information

can yield higher classification accuracy. When integrating

gesture recognition and classification by sEMG, we achieved

an improved performance of myoprosthetic hand control.
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