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Abstract: Gastric cancer is the fifth most frequent cancer and the third major cause of mortality
worldwide. Helicobacter pylori, a bacterial infection linked with GC, injects the cytotoxin-associated
antigen A (CagA; an oncoprotein) into host cells. When the phosphorylated CagA protein enters the
cell, it attaches to other cellular components, interfering with normal cellular signaling pathways.
CagA plays an important role in the progression of GC by interacting with phosphatidylserine of
the host cell membrane. Therefore, disrupting the CagA–phosphatidylserine connection using small
molecules appears to be a promising therapeutic approach. In this report, we screened the natural
compounds from ZINC database against the CagA protein using the bioinformatics tools. Hits were
initially chosen based on their physicochemical, absorption, distribution, metabolism, excretion,
and toxicity (ADMET) characteristics, as well as other drug-like characteristics. To locate safe and
effective hits, the PAINS filter, binding affinities estimation, and interaction analysis were used. Three
compounds with high binding affinity and specificity for the CagA binding pocket were discovered.
The final hits, ZINC153731, ZINC69482055, and ZINC164387, were found to bind strongly with CagA
protein, with binding energies of −11.53, −10.67, and −9.21 kcal/mol, respectively, which were
higher than that of the control compound (−7.25 kcal/mol). Further, based on binding affinity and
interaction pattern, two leads (ZINC153731, ZINC69482055) were chosen for molecular dynamics
(MD) simulation analysis. MD results showed that they displayed stability in their vicinity at 100 ns.
This study suggested that these compounds could be used as possible inhibitors of CagA protein in
the fight against GC. However, additional benchwork tests are required to validate them as CagA
protein inhibitors.
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1. Introduction

Gastric cancer (GC) is the 5th most prevalent malignancy and the 3rd largest cause
of cancer mortality, accounting for about 0.8 million deaths globally in 2018. East Asian
nations such as Japan, China, and Korea account for more than half of all GC patients,
and the incidence of GC in these countries is about 10 times greater than in the United
States [1]. Helicobacter pylori, the causal agent of GC, is a Gram-negative microaerophilic
bacterium that infects the stomach epithelium [2,3] and has been shown to infect nearly half
of the world’s population, making it one of the most prevalent human infectious agents
globally [4,5].

Bacteria have evolved various methods for secreting proteins or injecting poisons into
target cells. H. pylori injects the cytotoxin-associated antigen A (CagA; an oncoprotein)
into host cells via the cag Type IV secretion system [6]. CagA is the only oncoprotein that
has been demonstrated to be transported by H. pylori. In terms of delivery, CagA acts as a
bacterium-derived scaffolding/adaptor protein inside the host cell, causing gastric mucosa
carcinogenesis [7]. Once within the cell, the phosphorylated CagA protein attaches to other
cellular molecules, interfering with normal cellular signaling pathways [8]. CagA is partic-
ularly effective in disrupting the processes that maintain normal epithelial differentiation,
such as cell adhesion, cell polarity, and cell migration inhibition [9]. Given that the contact
between the CagA protein and the membrane phosphatidylserine (PS) is essential for CagA
protein entrance into the host cell, blocking the interaction with small molecules looks to
be a viable therapeutic approach [7,10].

As part of a multidisciplinary drug discovery strategy, computer-aided drug design
(CADD) has achieved widespread acceptance among biologists and chemists [11]. CADD
is widely employed in the pharmaceutical industry to decrease cost and time and accelerate
the early-stage development of physiologically novel active compounds, and it plays an
important role in drug discovery, design, and analysis [12]. Phytochemicals are frequently
safer and more chemically diverse than synthetic medications derived from commercial
sources, and they often have important pharmacological properties such as antibacterial,
anticancer, antioxidative, and anti-inflammatory actions [13–15]. Hence, phytochemicals
are gaining popularity among clinical researchers and gastroenterologists as a means of
developing time-effective treatment alternatives for eliminating H. pylori infection with
negligible side effects [16]. Using bioinformatics approaches, this study aimed to find new
potential leads from the ZINC database that could be used to block the CagA-PS binding
interaction in order to fight GC.

2. Methodology
2.1. Protein Preparation

The crystal structure of CagA protein (PDB id: 4DVZ) was taken from the protein
data bank [17]. CagA has a structured N-terminal domain and an inherently disordered
C-terminal region that regulates a wide range of protein interactions. N-terminal CagA
fragment has three domains (Domain I, II, and III). Domain II is the PS binding domain
and transports the CagA protein to the host cell membrane. Leads were docked onto the
positively charged helix α18 active site (residues 610–639).

2.2. Virtual Screening

Virtual screening was utilized to identify ligands that interact with CagA protein. In
this study, natural compounds from a commercially accessible ZINC library were utilized
for virtual screening with the PyRx 0.8 program. PyRx was used to prepare the whole
ligands before molecular docking to obtain multiple binding conformations and the lowest
binding energy (BE).

2.3. Molecular Docking

The Autodock4.2 program [18] was used to clarify the binding conformations of hit
compounds with the CagA protein. Hits were docked onto the positively charged helix
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α18 active site (mainly on Arg624 amino acid). The grid center points X, Y, and Z were
set as −0.306, 38.831, and −4.786, respectively. Grid points were fixed as 78 × 50 × 97 Å
with the spacing of 0.375 Å. Other AutoDock parameters were set to be the default. The
conformation with the lowest BE was chosen as the best.

2.4. In Silico Physicochemical, Pharmacokinetics, Drug-Likeness and ADMET Prediction

By using molecular modeling techniques to discover innovative drug candidates,
the time required for drug development is significantly shortened and the success rate is
much enhanced. For the preliminary assessment of physicochemical, pharmacokinetic,
and drug-like characteristics in the drug development process, standard computational
pharmacokinetics parameters and drug-likeness were created. Three best scoring natu-
ral compounds were evaluated for their physicochemical, drug-likeness, and ADMET
properties using the pkCSM web server [19] and datawarrior [20] tools.

2.5. Molecular Dynamics Simulation

The use of molecular dynamics (MD) simulation to visualize macromolecule flex-
ibility [21] is a useful tool. Many unknown biological activities and complex dynamic
processes can be discovered by examining the internal movements of proteins [22–24].
GROMACS 5.1.2 [25] was used to perform MD simulations on CagA-free, CagA-ZINC153731,
and CagA-ZINC69482055 at 300 K, with the GROMOS96 43a1 force-field [26]. PRODRG
server [27] was employed for the generation of topology as well as force-field parameters
of the selected ligands.

CagA-free, CagA-ZINC153731, and CagA-ZINC69482055 were waterlogged in a ‘cubic
box’ with a primary diameter of 8 nm and retaining all the default parameters. The system
was then minimized using 1500 ‘steepest descent’ steps, and the temperature of all systems
was increased from 0 to 300 K over the course of their equilibration time (100 ps), while
maintaining a constant volume and periodic boundary conditions.

The equilibration process was divided into two stages: NVT ensemble and NPT
ensemble. The original structures’ C backbone atoms were restrained, while all other atoms
were free to move in both NVT and NPT. The MD was then performed at 300 K on a
time scale of 100 ns. GROMACS analysis modules were used to investigate the resulting
trajectories. All graphical representations were created using PyMOL and VMD [28].

3. Results and Discussion

CagA (an oncoprotein) plays a key role in the progression of GC and has been iden-
tified as a therapeutic target in GC prevention [29,30]. This study screened the natural
compounds from the ZINC database targeting the CagA protein of H. pylori. The selected
compounds (ZINC153731, ZINC69482055, and ZINC164387) preserve an acceptable range
of physicochemical, pharmacokinetics, drug-likeness, and ADMET attributes, as per com-
putational predictions (Tables 1 and 2). According to the datawarrior tool’s estimated
drug-likeness values, around 80% of marketed drugs do have positive value. However,
commercially available chemicals account for the vast majority of negative values. Positive
drug-likeness values were found for ZINC153731 and ZINC69482055, showing that these
compounds are more likely to be commercial drugs.
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Table 1. Physicochemical and drug-like properties analysis.

Descriptor/Properties
Value

ZINC153731 ZINC69482055 ZINC164387

Molecular Weight 178.187 358.434 267.275
Monoisotopic Mass 178.062995 358.178025 267.032953

Rotatable Bonds 2 1 0
Acceptors 3 5 2

Donors 1 1 1
cLogP 1.5561 3.0513 4.6289
cLogS −1.831 −3.355 −4.672

Total Surface Area 76.271 264.17 177.93
Relative PSA 0.24733 0.23553 0.1627

Polar Surface Area 46.53 80.67 37.33
Drug-likeness −4.3625 1.4711 −7.4682

Mutagenic none none high
Tumorigenic none none none

Irritant none none none
Drug Score 0.4833717 0.7209172 0.1100568

Table 2. ADMET prediction of the top-scored natural compounds.

Property Model Name Predicted Value Unit

ZINC164387 ZINC69482055 ZINC153731

Absorption

Water solubility −5.452 −3.955 −1.944 log mol/L
Caco2 permeability 1.527 1.292 1.189 log Papp in 10−6 cm/s

Intestinal absorption 88.982 98.872 95.107 % Absorbed
Skin permeability −2.544 −4.244 −2.503 log Kp

P-glycoprotein (P-gp) substrate No Yes No
P-gp I inhibitor No No No
P-gp II inhibitor No No No

Distribution

VDss (human) 0.504 0.004 −0.15 log L/kg
Fraction unbound 0.018 0.267 0.396 Fu

permeability BBB 0.588 −0.133 0.125 log BB
CNS −1.264 −2.807 −1.937 log PS

Metabolism

substrate
CYP2D6 No No No
CYP3A4 Yes No No

inhibitor

CYP1A2 Yes No Yes
CYP2C19 Yes No No
CYP2C9 Yes No No
CYP2D6 No No No
CYP3A4 No No No

Excretion
Total clearance 0.155 1.074 0.71 log mL/min/kg

Renal OCT2 substrate Yes No No

Toxicity

AMES toxicity No No No
Max. tolerated dose (human) 0.143 −0.361 0.931 log mg/kg/day

inhibitor
hERG I No No No
hERG II No No No

LD50 2.54 2.592 1.833 mol/kg
LOAEL 1.024 2.062 2.535 log mg/kg_bw/day

Hepatotoxicity No No No
Skin Sensitization No No No

T. Pyriformis toxicity 2.26 0.49 0.8 log mM
Minnow toxicity 0.033 1.667 1.168

The best scoring (−11.53 kcal/mol) compound, ZINC153731, also known as methyl
p-hydroxycinnamate, is a methyl ester of hydroxycinnamic acid and has been shown to
have anti-tumor, anti-oxidant, anti-adipogenic, and depigmenting properties. Numer-
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ous medicinal plants have been reported to contain it, including Clausena harmandiana,
Plumeria obtuse, Sorghum bicolor, and Idesia polycarpa [31,32].

Top lead compounds (ZINC153731, ZINC69482055, and ZINC164387) were found to
bind strongly with CagA protein. ZINC153731 was found to interact with Asp581, Ser584,
Ser585, Glu588, Lys625, Arg626, His628, and Leu629 amino acid residues of CagA protein
(Figure 1). Of these residues, Asp581, Ser584, Ser585, and Arg626 residues of CagA were
involved in van der Waals interaction with ZINC153731. BE and inhibition constant for
ZINC153731-CagA protein complex were observed to be −11.53 kcal/mol and 10.9 µM,
respectively (Table 3).

ZINC69482055 was observed to bind with five amino acid residues (Lys621, Arg624,
Lys625, His628, and Leu629) of CagA protein (Figure 2). Leu629 of CagA protein formed
van der Waals interaction with ZINC69482055. BE and inhibition constant for ZINC69482055-
CagA protein complex were observed to be −10.67 kcal/mol and 13.32 µM, respectively
(Table 3).

Further, ZINC164387 was found to bind with Lys621, Arg624, Lys625, Glu627, His628,
and Lys631 residues of CagA protein (Figure 3). Glu627 residue of CagA showed van der
Waals interaction with ZINC164387 (Figure 3). BE and inhibition constant for ZINC164387-
CagA protein complex were observed to be −9.21 kcal/mol and 18.56 µM, respectively
(Table 3).
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Table 3. BE of compounds with CagA protein.

S. No. Compounds 2D Structure Binding Energy
(kcal/mol)

Inhibition Constant
(µM)

1 ZINC153731
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Di-fluoromethylornithine (DFMO) was used as the control compound in this study
due to its previously reported inhibitory effect on CagA [33]. DFMO was observed to
bind with five amino acid residues (Arg624, Lys625, Leu627, His628, and Lys631) of CagA
protein (Figure 4). Lys625 and His628 residues of CagA form van der Waals interaction
with DFMO. BE and inhibition constant for DFMO-CagA protein complex were observed
to be −7.25 kcal/mol and 28.85 µM, respectively (Table 3).

When CagA is delivered to gastric epithelial cells, it interacts with numerous molecules
in the cells, causing them to become malignant. N-terminal (Domain II) of CagA comprises
a basic patch that is important for its inner cell membrane localization and interaction
with PS in the plasma membrane of the host cell [34]. Two arginine residues i.e., Arg624
and Arg626 in α-helix of the domain, are crucial for CagA-PS interaction. In addition, it
has been revealed that both the arginine residues form a basic amino acid cluster with
numerous lysine residues (613, 614, 617, 621, 631, and 635), providing a positive electrostatic
surface potential necessary for CagA binding to negatively charged phosphate groups of
PS [35]. Hence, inhibiting the CagA-PS interaction is a potential strategy for GC prevention.
Interestingly, this study showed that ZINC153731, ZINC69482055, and ZINC164387 interact
with the Arg624 residue of CagA, implying that these compounds can disrupt the binding
of CagA with the PS of the host cell membrane.

The root mean square deviation (RMSD) is a vital fundamental parameter for identify-
ing whether a protein is stable and adheres to its experimental structure [36]. The RMSD
average values for CagA-free, CagA-ZINC153731, and CagA-ZINC69482055 were 0.81,
0.84, and 0.62 nm, respectively. The RMSD plot showed that ZINC69482055 binding more
effectively stabilized the CagA and resulted in smaller structural deviations from its normal
conformation. The CagA-ZINC153731 complex showed a high deviation in the bound
structure (Figure 5a). The ligand RMSD also showed that ZINC69482055 binds better than
ZINC153731 and is more stable (Figure 5b).
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region observed between 340–360 and 790–820 residues (Figure 5c). The vibrations around
the equilibrium are not random, but rather depend on the local structure’s flexibility.
The root mean square fluctuation (RMSF) of CagA upon binding with ZINC153731 and
ZINC69482055 was exhibited as a function of residue numbers to CagA, as well as the aver-
age fluctuation of all residues during the simulation. The RMSF plot indicated that CagA
had residual variations in multiple protein domain areas. ZINC69482055 and ZINC153731
have been demonstrated to minimize the residual fluctuations.

Radius of gyration (Rg) was employed to investigate the stability of the protein in a
biological system. Because of less-compact packing, a protein should have a wider radius
of gyration. CagA-free, CagA-ZINC153731, and CagA-ZINC69482055 had average Rg
values of 2.75, 2.70, and 2.85 nm, respectively. The Rg plot showed that CagA achieved
tighter packing without the hits and less packing with complex in CagA-ZINC153731, and
CagA-ZINC69482055 (Figure 6a).

Solvent accessible surface area (SASA) refers to the region of a protein’s surface that
interacts with its solvent molecules [37]. Average SASA values for CagA-free, CagA-
ZINC153731, and CagA-ZINC69482055 complexes were observed throughout the 100 ns
scale simulation. CagA-free, CagA-ZINC153731, and CagA-ZINC69482055 complexes had
average SASA values of 255.01, 280.61, and 265.21 nm2, respectively (Figure 6b,c).

The secondary structural assignments in proteins such as -helix, -sheet, and turn were
fragmented into specific residues at each time step. Because of enhancement in the fraction
of coils and a decrease in -sheet, the average number of residues involved in secondary
structure formation in complexes was lowered. In the case of CagA-ZINC69482055, the
proportion of -sheet and -helix was observed to be considerably lower, and composition
was changed upon binding with ZINC69482055 (Figure 7a).
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Hydrogen bonds are vital to the stability of the ligand–protein complex [38]. The hy-
drogen bonds paired were within 0.35 nm between protein and ligand. CagA-ZINC153731
and CagA-ZINC69482055 were estimated in a solvent environment during the 100 ns
simulations to test the stability of docked complexes. CagA-ZINC69482055 strongly binds
to the CagA pocket with 3–4 hydrogen bonds, whereas CagA-ZINC153731 binds to the
CagA pocket with 1.5–2 hydrogen bonds and the least fluctuations (Figure 7c,d).

Principal component analysis depicts the overall expansion of a protein throughout
simulations [39]. The sum of the eigenvalues is a measurement of the system’s overall motil-
ity, and it may be used to assess the flexibility of a protein under different conditions [40].
In 2D projections of trajectories on eigenvectors, the CagA-free and CagA- ZINC69482055
complexes showed overlap. The findings also showed that complexes binding to CagA
cause a variation in atom positions (Figure 8a).
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Gibbs’ free energy (GFE) landscape was also computed with Gromacs analysis com-
mands and projections of their respective first (PC1) and second (PC2) eigenvectors. The
comparable GFE contour map showed darker blue shades representing less energy. The
global minima of CagA fluctuated during the simulations due to the complexes bind-
ing to CagA. CagA-free and CagA-ZINC153731 showed similar projections and CagA-
ZINC69482055 showed different global minima, indicating that the ZINC69482055 com-
pound formed a more stable complex in protein proximity (Figure 9).
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4. Conclusions

CagA inhibition is a novel approach for preventing the development of GC. For a
long time, natural compounds have been the most important source of medicines for the
treatment of many ailments. This study found that ZINC153731, ZINC69482055, and
ZINC164387 efficiently bind to CagA protein and interact with the crucial CagA protein
residue (Arg624). The study suggested that these compounds could be used as possible
inhibitors of CagA protein in the fight against GC.
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