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Abstract

Retrotransposons,DNAsequencescapableofcreatingcopiesof themselves,composeabouthalfof thehumangenomeandplayeda

central role in the evolution of mammals. Their current position in the host genome is the result of the retrotranscription process and

of the following host genome evolution. We apply a model from statistical physics to show that the genomic distribution of the two

most populated classes of retrotransposons in human deviates from random placement, and that this deviation increases with time.

The time dependence suggests a major role of the host genome dynamics in shaping the current retrotransposon distributions.

Focusing on a neutral scenario, we show that a simple model based on random placement followed by genome expansion and

sequence duplications can reproduce the empirical retrotransposon distributions, even though more complex and possibly selective

mechanisms canhavecontributed. Besides the inherent interest inunderstanding theoriginof current retrotransposondistributions,

this work sets a general analytical framework to analyze quantitatively the effects of genome evolutionary dynamics on the distri-

bution of genomic elements.
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Introduction

Transposable elements (TEs or transposons) are sequences of

DNA able to move within a host genome. Transposons are a

crucial force driving genome evolution, they are found in all

the organisms, with very few exceptions, and compose nearly

half of the human genome (Lander 2001; Feschotte and

Pritham 2007; Cordaux and Batzer 2009; Huang et al. 2012).

A large number of TEs in human belongs to the class of

retrotransposable elements (REs) or retrotransposons, which

proliferates through a “copy-and-paste” mechanism. Indeed,

they are first transcribed into RNA intermediates, and then

reverse transcribed into the host genome at a new position

(Feschotte and Pritham 2007; Cordaux and Batzer 2009; Roy-
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Engel 2012). The two most abundant RE classes in human are

Short Interspersed Nuclear Elements and Long Interspersed

Nuclear Elements whose main representative members are

Alu and L1 families, respectively (Deininger and Batzer 2002;

Cordaux and Batzer 2009). These two families globally consist

of�2 millions elements and together account for nearly 30%

of our genome (Lander 2001; Konkel and Batzer 2010). Both

Alus and L1s can then be divided into subfamilies depending

on the nucleotide sequence of the active TE driving the sub-

family expansion (Cordaux and Batzer 2009; Roy-Engel 2012).

Throughout the paper, the term family refers to Alu and L1,

while the term subfamily refers to these subgroups.

The proliferation dynamics of these subfamilies has a rela-

tively short timescale. In fact, after a rapid burst of amplifica-

tions and insertions, during which every new element

becomes a potential source of retrotranspositions, the sub-

family turns silent or inactive (Deininger and Batzer 2002;

Wagstaff et al. 2013). Further rounds of transcription and

insertion of the REs are typically prevented by the accumula-

tion of sequence mutations, rearrangements, truncations or

specific methylations able to inactivate the process (Deininger

and Batzer 2002; Cordaux and Batzer 2009; Huang et al.

2012; Wagstaff et al. 2013). Thus, the REs that can be iden-

tified in the current genomes are generally a fossil track of the

history of subsequent birth-extinction cycles of different mo-

bile sequences, with few subfamilies still currently expanding

in the human genome, such as the L1H subfamily (Ewing and

Kazazian 2010; Huang et al. 2012).

Therefore, the genomic distributions of RE subfamilies re-

flect possible specific preferences or biases of the insertion

mechanism during the subfamily active period, but carry

also information about the most relevant evolutionary forces

driving the rearrangement of the host genome after the sub-

family expansion. For example, evolutionary moves such as

genome expansion or duplications of DNA segments should

alter the RE distributions in specific ways.

This work addresses the evolutionary mechanisms that

have shaped the current distributions of genomic distances

between REs of different subfamilies, focusing on members of

the abundant Alu and L1 families as relevant examples.

Despite the well-recognized importance of retrotransposons

in the evolution of genomes, several aspects of their prolifer-

ation dynamics are still obscure. The RE position on the ge-

nome is arguably the simplest observable that contains

information about this dynamics, and nonetheless has still

to be fully characterized and explained.

We will show, using analytical arguments and data analy-

sis, that these empirical distributions can be explained as a

result of a process of insertion in random genomic positions,

followed by sequence duplications and expansion of the host

genome. A model based on these mechanisms can not only

explain empirical RE distributions but it also naturally leads to

predictions (e.g., on the role of RE density) that were con-

firmed by data analysis.

Besides the interest that the still partial understanding of

the REs dynamics and its interactions with the host genome

has in itself (Kazazian 2004; Konkel and Batzer 2010; Levin

and Moran 2011; Jeck et al. 2013), the theoretical framework

developed in this paper is general and can be easily extended

to the study of spatial distributions of other functional geno-

mic elements along the genome.

Results

Retrotransposons Are Not Randomly Distributed along the
Genome

The first question we address in this section is how far the

empirical RE distributions are from the simplest assumption of

random genomic placement. An eventual deviation from ran-

dom placement can be due to biases in the insertion process

itself due to specific sequence preferences for insertion, as

well as subsequent neutral processes of the genome such

as rearrangements and duplications or selective processes

such as specific deletions of detrimental insertions. The pres-

ence of biases in the insertion mechanism is still debated.

While there is convincing evidence that the insertion process

of REs actually occurs at random positions along the genome

(Ovchinnikov et al. 2001; Cordaux and Batzer 2009; Ewing

and Kazazian 2010), specific sequence preferences for the

insertion sites have also been reported (Graham and

Boissinot 2006). However, several works highlighted nonran-

dom properties of the current RE positioning that could in

principle be ascribed to subsequent genomic processes. For

example, there is a density enrichment of specific subfamilies

in genomic regions with high or low GC content (Lander

2001; Pavl�ı�cek et al. 2001; Medstrand et al. 2002;

Hackenberg et al. 2005), and a signal of formation of clusters

of REs (Jurka et al. 2004). A recent comparison between the

distribution of newly inserted L1s and pre-existing elements

also suggests a predominant role for postintegrative processes

(Sultana et al. 2019). On a global scale, the distributions of

distances between REs of different families has been observed

to deviate from random positioning by visually comparing the

empirical distributions with randomly generated surrogate

data sets of RE positions (Sellis et al. 2007).

A mathematical model for random placement would allow

us to place the above observations in a well-defined quanti-

tative setting and to actually measure possible deviations from

a random placement assumption. This model can be easily

formulated by realizing an analogy between the positioning

of relatively small genomic elements and a well-studied pro-

cess in statistical physics, the stick-breaking (SB) process. The

SB process was originally formulated as a model of the sto-

chastic fragmentation of a polymer chain (Montroll and Simha

1940; Ziff and McGrady 1985; Massip and Arndt 2013; Arndt

2019) and it is described in the Materials and Methods sec-

tion. The SB provides an analytical expression for the expected
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distribution of fragment lengths that only depends on the

length of the polymer L and the number of breaks B (see

eq. 1 in the Materials and Methods section). The analogy

with the RE insertion process is based on the observation

that the REs can be safely considered point-like, since their

length is extremely small with respect to the genome itself

(Lander 2001; Kazazian 2004), and thus are equivalent to the

point breaks in the SB formulation. In fact, the average RE

sequence length is around 300 bp for the Alu class and 1 kbp

for the L1 elements (see supplementary fig. S1,

Supplementary Material online), which are negligible with re-

spect to the genome length in human (around 3.2 Gbp).

Therefore, the distribution of distances between REs should

be precisely equivalent to the length distribution of fragments

defined by the SB process, if the REs are randomly positioned.

The two parameters B and L that define the random posi-

tioning distribution for REs simply correspond to the number

of retrotransposons of a specific subfamily and to the genome

length considered. The Materials and Methods section reports

in detail our estimation of these two parameters.

Figure 1 and supplementary figures S2 and S3,

Supplementary Material online show the comparison be-

tween the SB parameter-free predictions and some illustra-

tive examples of empirical inter-RE distance distributions.

The statistical significance of the deviations between the

SB prediction and the empirical distributions can be assessed

with a Kolmogorov–Smirnov test. The results of this test are

reported in supplementary table 1, Supplementary Material

online for Alus, and confirm that the vast majority of RE

subfamilies are not placed in random positions. The empir-

ical deviations from a SB are due to an enrichment of both

short and long distances, suggesting that the mechanisms

that shaped current RE distance distributions must have

both increased the “clustering” of retrotransposons and

correspondingly fostered the presence of very distant ele-

ments. The same trend is observed if the inter-RE distribu-

tions are analyzed on single chromosomes rather than on

the whole genome (supplementary fig. S2, Supplementary

Material online). Even if the deviation from random place-

ment makes the empirical distribution more “long-tailed”

with respect to the null expectation, there is no clear evi-

dence of a power-law behaviour of these distributions as

was previously suggested (Sellis et al. 2007).

Several previous analysis reported that different families

can have specific preferences for genomic regions with dif-

ferent GC content at the level of initial insertions or because

of subsequent sequence-specific selection of RE elements

(Lander 2001; Pavl�ı�cek et al. 2001; Medstrand et al. 2002;

Jurka et al. 2004; Hackenberg et al. 2005). For example, both

Alus and L1s have been reported to have an insertion pref-

erence for AT-rich regions (Lander 2001; Pavl�ı�cek et al.

2001), even though current distributions can show an oppo-

site bias: high density of Alus in GC-rich regions, and vice

versa a high density of L1s in GC-poor regions (Pavl�ı�cek et al.

2001). To test if the deviations from random positioning we

observe are simply associated with the GC content, we di-

vided the genome in GC rich and GC poor regions, and an-

alyze the inter-RE distance distributions limited to these

regions for different subfamilies. The details of this proce-

dure are reported in the supplementary material. Even

though the density of REs is indeed dependent on the GC

content, the deviations of the inter-RE distance distributions

from the random expectation do not differ in genomic

regions with different GC content (supplementary fig. S4,

Supplementary Material online). The deviation from random

is still statistically significant if evaluated on GC rich or GC

poor regions for essentially all Alu subfamilies we tested (sup-

plementary table 3, Supplementary Material online).

Moreover deviation from random evaluated on single chro-

mosomes is comparable with the one estimated on the

whole genome, and it is not trivially determined by the chro-

mosome GC content (supplementary fig. S5, Supplementary

Material online). Therefore, the general trend reported in

figure 1 is robust, suggesting that it cannot be simply

explained by a random-positioning process with different

insertion probabilities depending on the GC content.

The Age of a Retrotransposon Subfamily Is Correlated with
Its Deviation from Random Placement on the Genome

The deviations from random positioning described in the pre-

vious section can be dominated by biases in the insertion

FIG. 1.—The genomic distribution of REs shows deviations from ran-

dom placement. Figure shows the empirical inter-REs distance distribution

(symbols) of two different Alu subfamilies in the human genome.

Specifically, (A) and (B) refer to genomic distribution of Alu Jr and Alu Y

subfamilies. The dashed black line represents the parameter-free analytical

expectation given by the null model based on a random-placement hy-

pothesis (eq. 1 in the Materials and Methods section). The parameter

values are set by the number of RE elements B and the sequence length

L, as discussed in the Materials and Methods section. The empirical values

for the different subfamilies are reported in supplementary tables 1 and 2,

Supplementary Material online. For the two depicted illustrative examples

B ’ 105 and L ’ 2:8 109. More examples supporting similar deviations

from random placement can be found in supplementary figures S2 and

S3, Supplementary Material online.
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process or by subsequent genome evolutionary mechanisms.

In the latter case, the deviations from random placement

should be time dependent. In fact, the inter-RE distributions

of young or currently active subfamilies would be mainly de-

termined by the choice of retrotranscription sites, while the

positioning of old subfamilies would be dominated by subse-

quent genomic processes. To test this, we introduce a mea-

sure that quantifies the deviations of empirical inter-RE

distance distributions from the corresponding distributions

predicted by the SB process. This measure is analogous to

the Cram�er-von Mises criterion (Cram�er 1928), and it is based

on the area between the two cumulative distributions (empir-

ical and theoretical), normalized by the RE density (eq. 2, see

Materials and Methods section). The normalization is neces-

sary to safely compare deviations for RE subfamilies that have

different global densities.

Figure 2A and B shows that this distance from random

positioning is well correlated with the age of the RE

subfamilies both for Alus (Pearson correlation P¼ 0.77) and

for L1s (P ¼ 0.56). The age of a subfamily can be estimated by

evaluating the number of mutations between the RE sequen-

ces and a reference consensus sequence (Kimura 1980). The

consensus sequences for each subfamily come from Repbase

(Bao et al. 2015) and the Kimura divergences are automati-

cally inferred by RepeatMasker (Smit et al. 2015). While fig-

ure 2 reports the Kimura divergence as the estimate of the

subfamily age, the trend is conserved if other estimates, such

as the Jukes–Cantor divergence, are used.

The fact that recent subfamilies are better described by the

null model supports the hypothesis that retrotransposition

sites are close to random, in agreement with previous obser-

vations (Ovchinnikov et al. 2001; Jurka et al. 2004; Beck et al.

2010; Costantini et al. 2012). The Kolmogorov–Smirnov test

reported in supplementary table 1, Supplementary Material

online quantitatively confirms this result since the few subfa-

milies for which the P value is not highly significant

FIG. 2.—The deviation from random placement increases with the RE subfamily age. The deviations (estimated with eq. 2) between the empirical inter-

RE distance distributions and the corresponding expectation for random placement are shown as a function of the age of retrotransposon subfamilies for

Alus (A) and L1 (B). The correlation is supported by the correlation coefficients reported in the figures while the dashed lines are linear fits. The age of different

subfamilies is estimated by the Kimura divergence corrected for CpG hypermutability (more detail in the supplementary material). Panel C shows that very

recently inserted retrotransposons are distributed along the genome in perfect agreement with the model based on random insertion. Specifically, we

considered 367 L1 elements detected in a sample of 25 individual human genomes [data from (Ewing and Kazazian 2010)] and not included in the reference

genome.
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(i.e., AluYb8 and AluYk4) are relatively recent. As a further

test, we analyzed the inter-RE distances for 367 L1H elements

detected in a sample of 25 individual human genomes (data

from (Ewing and Kazazian 2010)). These insertions are not

fixed in the human population since they are not present in

the reference genome. Therefore, we can confidently assume

that this set of L1s is originated by very recent retrotranspo-

sition events, and thus genomic rearrangements did not have

the time to reshape the RE positions. Figure 2C shows that

indeed their relative distances are perfectly compatible with

the random expectation.

We tested that the trend is consistent if GC-rich or GC-

poor genomic regions are considered separately (supplemen-

tary fig. S6, Supplementary Material online). The regions with

different GC content can also be reshaped by genomic rear-

rangements over long evolutionary time scales (Figuet et al.

2015). However, the current GC content still significantly cor-

relate with the density of REs even for old subfamilies (sup-

plementary fig. S5, Supplementary Material online). This

could suggest that at this large scale of observation the GC

content was not dramatically changed. However, we cannot

exclude that the complex remixing pattern of the GC iso-

chores (Romiguier et al. 2010) played a role in shaping the

distributions of REs.

Genome Expansion and Sequence Mutations Cannot
Explain Current Retrotransposon Position Distributions

The previous section strongly supports a scenario in which

random insertion of REs has been followed by rearrange-

ments of the host genome that reshaped their positions.

Now, the question is which specific genomic events may ex-

plain the features of current RE distributions. A previous anal-

ysis suggested that genome expansion due to random

insertions of new genomic elements coupled with progressive

elimination of REs (e.g., by mutation-induced “degradation”

of their sequences) could explain current spatial RE distribu-

tions (Sellis et al. 2007). However, this section will show that a

model based on these two simple mechanisms, called

insertion-elimination model (IE) by the authors (Sellis et al.

2007), cannot actually fully explain the empirical RE

distributions.

First, most of the insertions driving genome expansion are

actually due to TEs themselves. As we discussed previously,

the length of these elements is less than�1 kbp (supplemen-

tary fig. S1, Supplementary Material online), thus typically

much shorter than the inter-RE distances. If we consider a

genome expansion driven by the insertion of small elements,

we can show analytically that the shape of the RE inter-

distance distribution does not change. The only effect of ge-

nome expansion is to rescale all distances by the same factor

as they simply expand with the same rate of the genome

itself. The analytical proof of this intuitive behavior is reported

in the Materials and Methods section. The master equation in

equation (3) is a good approximation of the process for inser-

tion lengths k�L=B and the solution of this equation is still the

solution of a SB process but on a longer support (eq. 4).

In presence of a large number of inserted sequences that

are longer than existing inter-RE distances we can observe a

deviation from a random distribution (fig. 3 and the Materials

and Methods section). In this case, the “preferential-

attachment” mechanism suggested by Sellis et al. (2007)

can take place. Distances shorter than insertion length k can-

not be created by expansion and they are progressively less

likely to be hit by a new insertion since the insertion probability

is proportional to the segment length. The overall effect is that

the final distribution is an overlap of two distributions corre-

sponding to two different rates of expansion. Simulations

suggest that this effect becomes relevant only after an ex-

tremely high number of insertion events (e.g., at least dou-

bling the initial genome size) as reported in figure 3. This large

number of insertions of very long sequences sounds very un-

likely as an explanation of the empirical deviations from ran-

dom placement of REs. As a further test we simulated, for a

couple of illustrative RE subfamilies, a realistic genome expan-

sion by considering the insertion of other REs from younger

subfamilies and sequence duplications (not involving the REs

under analysis) directly estimated from the human genome

sequence (supplementary fig. S7, Supplementary Material on-

line). Also in this case, the empirical deviations from random

placement cannot be explained by the model.

The addition of elimination of REs in the process does not

change the results. Intuitively, random elimination of breaks

(e.g., due to mutations) simply decreases the parameter B0 in

the SB process without affecting the shape of the distribution.

Therefore, the combination of genome expansion and RE

elimination would still lead to a distribution equivalent to

the one obtained by considering genome expansion alone.

We tested this result with numerical simulations (fig. 3B).

A Simple Neutral Model Including Genomic Duplications
Can Explain the Observed Distributions of
Retrotransposons

A main evolutionary force of genome evolution that we have

not considered so far is sequence duplication. Segmental du-

plication is a major source of genomic rearrangements and it

is quite common across the whole phylogenetic tree (Bailey

and Eichler 2006; Gao and Miller 2011) and can eventually

contain REs. If the duplicated segment does not contain any

of the REs under study, we are back to the model of the

previous section. In fact, no additional “break” is added,

and the net effect of the duplication is just a sequence inser-

tion in a given position that expands a certain inter-RE dis-

tance. However, if the duplicated segment does contain some

REs, the relative distances between the duplicated REs will add

to the distance distribution. This can be modeled by assuming

that duplications effectively represent a source of new REs

Quantitative Analysis of Retrotransposon Distributions GBE
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and thus of new distances, as detailed more formally in the

Materials and Methods section. This source term essentially

captures the probability of adding an inter-RE distance of

given length as a result of a duplication event, thus in general

could depend in a nontrivial way on the sizes of duplicated

segments. This phenomenological description greatly simpli-

fies the model and it is amenable of analytic calculations.

However, we also performed explicit simulations of the pro-

cess of segmental duplication with different lengths of the

duplicated segments to test that our simplified model cor-

rectly capture the emergent dynamics and to directly observe

the functional form of the source terms (supplementary fig.

S13, Supplementary Material online). The resulting effective

functional forms can be intuitively understood with the fol-

lowing simple arguments.

If the REs are initially inserted at random on the genome,

the distribution of the REs on a sequence that is duplicated is

expected to be still a random distribution described by the SB

process (eq. 4) but on a support of size given by the length of

the duplicated region. Therefore, a duplication event adds to

the initial random distribution another random distribution

but defined on a segment of much smaller length. This means

that the probability of adding an inter-RE distance of length x

by a duplication event is well approximated by an exponen-

tially decreasing function of x (eq. 1). Therefore, as long as the

process has not yet significantly changed the initial RE distri-

bution, the source term should be well described by an expo-

nential function. This intuitive argument is well supported by

explicit simulations of the duplication process (supplementary

fig. S13, Supplementary Material online). The analytical

solution of our model with this specific source term (reported

in the Materials and Methods section eq. 9) can fit very well

the empirical distributions of relatively young subfamilies. An

illustrative example is reported in figure 4A. However, if the

dynamics had a sufficiently long time to alter the initial ran-

dom distribution through duplications, the inter-RE distances

that are added by a duplication event will not be well de-

scribed by an exponential function anymore. After several

duplication events, a duplicated segment will contain inter-

RE distances following a distribution that already has an in-

creased number of relatively short distances, thus generating

a positive feedback that drives an effective strong clustering of

REs. As a consequence, the source term should be better

described by a decay faster than exponential. Again, this ef-

fect can be observed in long simulations of the duplication

dynamics (supplementary fig. S13, Supplementary Material

online) and can explain the observed position distributions

for older subfamilies. In fact, the model with a faster-than-

exponential functional form for the source term is able to fit

much better these distributions as figure 4B shows for one

illustrative example using a double exponential.

In any case, duplications are expected to generate an ex-

cess of short distances (or more clustering) with respect to

random placement. Therefore, the right tail of the inter-RE

distance distribution should not be significantly affected by

the duplication process. This observation allows us to devise a

simple method for estimating the source term directly from

data. The hypothesis is that the right part of the distribution

should be well described by random placement of a number

of REs B0 smaller than the one currently observed B. This

FIG. 3.—Genome expansion and loss of REs cannot affect the shape of the inter-RE distribution. (A) The simulated distribution of distances between

B0 ¼ 104 points randomly placed on a segment of length L0 ¼ 109 (dots, T¼0) and the effect of an expansion process due to insertions of segments of

different lengths k (different symbols as in legend). The final genome size is Lf ¼ 3 � 109 for all the distributions. (B) We added in the simulations the random

elimination of “break” points. The initial distribution of distances (dots, T¼0) is given by B0 ¼ 5 � 104 points randomly placed on a segment of length

L0 ¼ 109. After genome expansion (with k ¼ 5000) and RE random elimination at different rates (different symbols as in legend), we report the inter-RE

distance distributions when the final number of REs has reached Bf ¼ 104. Black dashed lines correspond to the SB distribution with the correct number of

REs B and genome size L as in equation (4). Continuous lines represent the solution for x < k in equation (5). Only for large genome expansion driven by

large insertions a small deviation from random placement can be observed.
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corresponds to the initial distribution of the REs of the sub-

family we are studying. The subsequent duplications are

expected to increase the number of REs (from B0 to the ob-

served value B) and only change significantly the left part of

the distribution. Therefore, we can assume that current dis-

tributions are a superposition of a SB process which domi-

nates for large distances and of a term defined by the source

that defines the short-distance part of the distribution (sup-

plementary fig. S8, Supplementary Material online). As

explained more formally in the Materials and Methods sec-

tion, under this assumptions we can directly estimate the

source term and the initial number of REs B0 with a simple

fitting procedure. The results of this direct estimate of the

source terms confirm the above considerations and are in

line with the results of simulations of the process: an expo-

nential source term is enough to explain the distance distri-

butions of most subfamilies while for the older Alu subfamilies

a steeper function, such as a double exponential, better

explains the data (supplementary fig. S9, Supplementary

Material online).

Moreover, the fraction of duplicated REs ðB� B0Þ=B is cor-

related with the age of the RE subfamily as expected in a

scenario of subsequent duplications after a random retrotran-

scription process (supplementary fig. S10, Supplementary

Material online). The estimated percentage of REs that were

duplicated can be as high as �85% for the older Alu J sub-

families, while for the youngest Alu Ya5 is approximately the

8% (supplementary table 1 and fig. S10, Supplementary

Material online). It is important to notice that the fitting pro-

cedure assumes that the distribution tail is a perfectly con-

served SB distribution. Any possible deviation from this

behavior will limit the part of the distribution that is fitted

by the SB distribution and will increase the estimate of the

number of duplicated sequences. Therefore, the estimated

FIG. 4.—(A) model including local duplications and genome expansion reproduces the empirical distances between REs. (A) and (B) The inter-Alu

distance distributions (dots) for two subfamilies of different age. The best fit with a superposition of a SB solution and a source term capturing the effect of

duplications (eq. 9) is plotted as a continuous line. The expectation for random positioning (eq. 1) is also reported as dashed black line for reference. The insets

show that the estimated source terms (dots, see Materials and Methods section) can be well approximated by an exponential function for the relatively young

AluY subfamily (A) and by a double exponential function for the older AluJr subfamily (B). Panel C reports the correlation between the average length of the

added distances by the duplication process (average of the source term in eq. 11) and the average distance between REs of the different subfamilies. (D) The

deviation from random positioning is dependent on the subfamily density and on the subfamily age. In fact, the deviation from the linear dependence on age

reported in figure 2A can be, at least partially, explained by the differences in subfamily densities.
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fractions of duplicated REs should be taken as indicative upper

bounds, proportional to the actual fraction of duplicated REs.

The main goal of the procedure is to extract the empirical

form of the source terms and the relative importance of dupli-

cations for subfamilies of different age.

A natural consequence of the considerations above is an

expected correlation between the average inter-RE distance

added by a duplication event (i.e., the average of the source

term) and the density of a subfamily. In fact, a duplicated

segment simply contains a smaller part of the RE distribution

of a given subfamily that is well approximated by a SB at the

beginning. The more elements are present, the shorter is their

typical distance and thus the shorter will also be the typical RE

distances duplicated in the evolutionary process. Figure 4C

shows that this prediction is confirmed by empirical data.

The average inter-RE distance is well correlated with the av-

erage distances added by the source term.

A more subtle prediction of our model concerns the role of

RE density. We have shown that the deviation from random

placement is correlated with the time elapsed from the birth

of a subfamily. However, if this deviation is mainly driven by

duplications, subfamilies of similar age but with different den-

sities on the genome should display different degrees of devi-

ations. A random duplication event is likely to include a

number REs of a subfamily that depends on their density on

the genome. Therefore, the variability that can be observed in

figure 2A and B should be explained by a variability in sub-

families densities. We tested this prediction by measuring the

deviation from the linear fit in figure 2 as a function of RE

density for the different subfamilies. The results are reported

in figure 4D and confirms the presence of a correlation. In

other words, the deviation from random placement depends

on the age of a subfamily but also on its density on the ge-

nome, further supporting the hypothesis that random dupli-

cations were a main evolutionary force in shaping current

inter-RE distance distributions.

To provide further and model-free evidence that several

REs have been indeed duplicated, we analyzed their flanking

regions. Flanking regions of a significant fraction of REs should

align better than expected by chance if the corresponding REs

have actually been duplicated. Supplementary figure S8,

Supplementary Material online shows that this is indeed the

case. The scores for the alignment of flanking regions of 50

and 120 bp of REs belonging to different Alu subfamilies are

compared with the scores obtained using random sequences

of the same length or the flanking regions in the reverse ori-

entation with respect the Alu orientation (to avoid potential

biases due to local sequence composition). The two “null

models” actually give very similar results. For young families,

the fraction of putatively duplicated transposons is also well

correlated with the subfamily age as expected from our de-

scription (fig. S8D Supplementary Material online). However,

the time dependence is not detectable for older families, and

generally the fractions of duplicated elements estimated from

the flanking regions are smaller than the ones estimated with

our model-based fitting procedure. Different technical rea-

sons could be at the basis of this discrepancy (detailed discus-

sion in the supplementary material). Basically, RepeatMasker

is a powerful tool capable to identify Alus even when they are

highly divergent from consensus sequence, thus it is possible

that even if the transposons can still be identified, their flank-

ing regions cannot be well aligned anymore due to mutation

accumulation. This effect will be more dramatic for old fam-

ilies. Moreover, as previously discussed, our model-based fit-

ting procedure is prone to an overestimation of the fraction of

duplicated transposons. Finally, we cannot exclude that selec-

tive forces also played a role in the clustering of TEs, and this

could also explain the overestimation of the number of dupli-

cated transposons when a model essentially based on a purely

neutral scenario is used. We focused on a neutral scenario and

showed that a simple model including duplications has the

correct ingredients to explain several empirical observations,

but selection could have played an additional role (see the

Discussion section).

Discussion

REs, and in particular L1s and Alus, compose a large fraction

of the human genome and their role in genome evolution has

been increasingly recognized (Babcock et al. 2003; Bailey and

Eichler 2006; Bourque 2009; Ade et al. 2013). TEs impact the

genome in a variety of ways since they can promote structural

rearrangements, contain regulatory elements, harbor tran-

scription and splicing sites, and are involved in the production

of noncoding RNAs (Kazazian 2004; Konkel and Batzer 2010;

Oliver and Greene 2011; Testori et al. 2012; Jeck et al. 2013;

Chuong et al. 2017). A large number of genetic diseases and

cancers have been linked to mobile elements (Kazazian et al.

1988; Hassoun et al. 1994; Kobayashi et al. 1998; Roy-Engel

2012), although the causal relation is still unclear (Lin et al.

1988; Solyom et al. 2012; Ch�enais 2013; Tubio et al. 2014).

Despite their importance, a clear understanding of their dy-

namics in the genome is still elusive.

This work focuses on the position distribution of retrotrans-

posons at the genome scale, and on the role of the host

genome dynamics in shaping their relative genomic distances.

To this aim, we introduced a formal analogy between the

retrotransposition process and the well-studied process in sta-

tistical physics of random insertion of breaks in a polymer

chain (Barrow 1981; Ziff and McGrady 1985; Cheng and

Redner 1990; Massip and Arndt 2013). Leveraging on this

analogy, we could rephrase in a quantitative setting several

longstanding questions. First, we provided evidence that cur-

rent positions of most RE subfamilies are not randomly dis-

tributed along the genome. While previous studies made this

observation (Sellis et al. 2007), we could assessed it quantita-

tively and, more importantly, define a natural measure of the

extent of the deviation from random placement of empirical
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distributions. This measure indicated that the degree of non-

randomness of RE positions is strongly correlated with the age

of the subfamily in analysis. More specifically, the position of

REs of very recent or still active subfamilies is well described by

random placement, while this description becomes progres-

sively less accurate as the age of the subfamily increases. REs

tend to become more clustered over time than expected from

the random model.

The analysis of recent or active subfamilies further confirms

that retrotranscription occurs approximately at random sites

in the genome (at least at this large observation scale), giving

a quantitative support to previous empirical observations

(Ovchinnikov et al. 2001; Cordaux and Batzer 2009; Ewing

and Kazazian 2010). Note that “local constraints” for fixation

of retrotransposition events could be present and induce spe-

cific biases in the insertion sites. For example, sequence pref-

erences linked to GC content were suggested for L1s

(Graham and Boissinot 2006). In this regard, we analyzed in

detail the role of GC content to show that the phenomenol-

ogy of RE progressive clustering here described do not change

qualitatively in regions with different GC content.

Analogously, insertions in coding genes or in regulatory

regions can be detrimental, and thus under strong negative

selection. For example, the proximity with genes seems to bias

the probability of observing different RE families (Medstrand

et al. 2002). While at a local scale these constraints can be

relevant, our analysis suggests that they do not play a major

role in the RE positioning at the genomic or at the chromo-

somal level. Indeed, only a small fraction of our genome is

actually coding, and a recent estimate based on mutational

load considerations of the functional fraction of our genome

leads to a conservative upper bound of 25% (Graur 2017). As

previously suggested, most transposon insertions seem in-

deed to be neutral or only mildly deleterious and thus simply

subjected to genetic drift (Arkhipova 2018).

Several recent works provide evidence of an interplay be-

tween the retrotransposition mechanism and the cell-cycle

dynamics (Mita et al. 2018; Flasch et al. 2019; Sultana et al.

2019). As a consequence, at the genomic level the integra-

tion of L1 elements seems to be influenced by the replication

timing of the target sequences. While our analysis suggests

that generally recent insertions are compatible with a ran-

dom model, chromosome-specific biases in the origin posi-

tioning could generate specific biases in L1 integration sites

that could explain the large variability of position distribu-

tions across chromosomes we observe (supplementary fig.

S4 Supplementary Material online). Our analytical frame-

work would actually be well suited for a quantitative study

of the position distribution of replication origins.

However, the inter-RE distance distribution for most sub-

families is far from random. As the time dependence of this

nonrandomness suggests, the progressive evolution of the

host genome must have reshaped the RE positioning in a

specific way. While the genome evolves and rearrange, the

RE already present will be passively moved and repositioned in

the genome. Thus, we tried to pinpoint the possible evolu-

tionary mechanisms responsible for the specific nonrandom

features of current RE distributions by testing different simple

evolutionary models. We first analyzed a model based on

genome expansion and RE elimination that was previously

proposed as a candidate to explain RE positions (Sellis et al.

2007). However, analytical calculations and extensive simula-

tions showed that these mechanisms are not sufficient to

quantitatively explain the empirical distributions. Therefore,

we added genomic duplications in the model, and the result-

ing effect on the distribution of inter-RE distance was precisely

the one empirically observed: a time-dependent increase in

the REs at short distances that could well match the data

relative to different subfamilies. Several tests of the model,

such as the effect of RE density on the typical distance be-

tween duplicated REs or on the deviation from random posi-

tion, further confirmed that genomic duplications and

genome expansion are in principle sufficient ingredients to

reproduce current retrotransposon positions in human.

A major role for genomic duplication in molding current

genomes has been widely recognized since the pioneering

work of Ohno (1970). Therefore, it should not be surprising

that RE distributions could have been influenced by duplica-

tions. While this paper shows that a simple neutral model

based on duplications can reproduce several features of RE

distributions, we cannot exclude the presence of more com-

plex, and possibly selective, evolutionary mechanisms. The

rough estimates that our method provides for the fraction of

duplicated REs range from few percent for recent families, to

more than half for older ones. The fact that such a large frac-

tion of old TEs is likely to come from duplications rather than

direct retrotransposition is puzzling. This is probably due to an

overestimation of our method of inference when the distribu-

tions are far from random, and indeed the estimates based on

the alignment of flanking regions are smaller. It should be also

noted that duplications due to nonallelic homologous recom-

bination, such as large segmental duplications (Bailey et al.

2002; Bailey and Eichler 2006), can be promoted by the pres-

ence of repeated sequences such as transposons. For example,

Alus are often found at the border of a particular class of

segmental duplications called tandem duplication (Bailey and

Eichler 2006; Colnaghi et al. 2011). Therefore, the presence of

retrotransposons can enhance the duplication probability. This

interplay would establish a positive feedback between dupli-

cation and retrotransposon density that may indeed drive the

inter-RE distance distribution toward the “clustering” we ob-

serve, and could partially explain the large fraction of dupli-

cated RE we estimate for old subfamilies.

In this paper, we focused on an essentially neutral scenario

where transposons are mainly subjected to genetic drift

(Arkhipova 2018). However, the realistic situation can be

much more complex. Insertions can be neutral but also dele-

terious and, in few cases, beneficial and involved in genome
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adaptation (Barrn et al. 2014). In presence of selection forces

that do not have location asymmetries, the picture would not

drastically change since elimination of REs in random positions

could not drive the clustering effect we observe. However,

purifying selection can easily be region-specific. For example,

transposons inserted in euchromatic regions could be tran-

scribed and/or translated with a cost for the host organism or

could be involved in deleterious ectopic recombination events.

The presence of regions with different recombination rates

have been shown theoretically (Dolgin and Charlesworth

2008) and empirically (Campos-S�anchez et al. 2016) to play

a role in the fixation of transposons. Analogously, methyla-

tion, histon placement and regions with different DNA con-

formations have specific position patterns and influence the

fitness of a transposon insertion (Campos-S�anchez et al.

2016). All these factors can be relevant in shaping the position

distribution of REs and thus can concur in explaining the em-

pirical observations we reported. Building a quantitative

model that encompasses all these possible factors and disen-

tangles the relative contribution of neutral and alternative

selection-based explanations is a nontrivial task. One qualita-

tive argument might slightly favor the neutral scenario based

on duplications as the main driver of RE positions at a large

observation scale. The argument is based on the time depen-

dence that we observe. Many of the subfamilies analyzed

have been in the genome for a rather large amount of

time. Rough estimate indicates that we are looking at families

that can be tens to hundreds million years old. Thus, one

could hypothesized that selection could have removed all

the (even slightly) deleterious insertions in this time scale,

thus eliminating also the time-dependence of the deviation

for random placement that can instead be clearly observed

even for old families. A simple model based on the continuous

process of segmental duplications instead naturally leads to a

time dependence without any fine-tuning of the parameters.

Finally, the analytical framework developed here thanks to

the analogy with the SB process can be a powerful tool. In fact,

it gives analytic and parameter-free predictions for random

positioning of small genomic elements that can be directly

compared with the empirical ones. In the same framework,

we introduced a measure of nonrandomness and developed

simple but tractable evolutionary models that can be used to

quantify and disentangle the different evolutionary contribu-

tions to the positioning of the genomic elements. Given its

generality, this approach can be naturally extended to the

study of other elements such as, for example, small regulatory

sequences or single nucleotide polymorphisms.

Materials and Methods

Genomic Data

The human genome sequence (Homo sapiens assembly

GRCh38/hg38) was downloaded from UCSC database (Kent

et al. 2002). We considered only sequences referred to chro-

mosomes 1-22, X, Y. The number and genomic positions of

TEs in hg38 were downloaded from RepeatMasker official

website (Smit et al. 2015) (RepeatMaskeropen� 4:0:5—

Repeat Library 20140131). The analysis was performed on

Alu and L1 subfamilies with more than 1,000 elements, to

guarantee sufficient statistics. We included in the analysis a

total of 32 Alu subfamilies and 107 L1 subfamilies. The num-

ber RE elements and their genomic density are reported for all

Alu subfamilies in supplementary tables 1 and 2,

Supplementary Material online for L1s. We verified that the

typical size of Alu elements is around 300 bp, while of L1s is

less than 1 kbp (see supplementary fig. S1, Supplementary

Material online) (Lander 2001; Kazazian 2004). Several L1 ele-

ments detected by RepeatMasker are smaller than 1 kbp, and

thus much smaller than the typical active version of L1 sequen-

ces which is around 6 kbp. This result is however in agreement

with an empirical evidence pointing out that L1 elements in

the human genome are not typically full length but rather

truncated (Penzkofer et al. 2017). The full length version of

L1 is however represented in the analyzed sequences as shown

in supplementary figure S1, Supplementary Material online.

The distance between successive REs of each subfamily

was calculated as the difference between the start genomic

coordinate of an element and the stop coordinate of the pre-

vious one. We verified that an alternative definition of the

inter-REs distance using half-length coordinate of REs does

not alter our conclusions, as it was expected given that our

analysis is based on large scale observations.

The distances between the start (end) of each chromosome

and the first (last) RE of the considered subfamily have been

excluded. Distances falling in centromeric and pericentromeric

regions were also neglected since these regions are usually

highly repetitive, rich in copy number variations and difficult

to sequence properly. As a consequence, they contain few

extremely long inter-RE distances that show in the distribu-

tions as outliers of the order of few Mbp.

At the end of this filtering process less than 50 inter-RE

distances have been discarded for each subfamily and the

effective human genome length has been reduced to about

2.8 Gbp, depending on the subfamily. Moreover, also REs

inserted in the middle of pre-existing elements of the same

subfamily were discarded from the analysis to avoid an excess

of zeros in the distance distribution. This procedure is neces-

sary to ensure the validity of our assumption of point-like REs

and affects only about 3% of L1 elements while is completely

negligible (i.e., < 0:01%) for the Alu family.

Stick-Breaking Process as a Null Model for Random
Positioning of Small Genomic Elements

We consider a set of B genomic elements whose length is

small enough relatively to the genome or chromosome size L

of interest. In this case, we can introduce a formal analogy
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with the SB process or the fragmentation process well studied

in statistical physics (Montroll and Simha 1940; Ziff and

McGrady 1985; Cheng and Redner 1990; Gherardi et al.

2016). This process considers point-like fractures randomly

positioned on a stick or polymer of fixed length. The length

distribution of the fragments after B breaks are positioned can

be analyzed analytically. To make the analogy exact, the ge-

nomic elements of interest have to be well approximated by

point-like elements, as it is the case for REs given their short

length with respect to the genome or to chromosomes

(Lander 2001; Kazazian 2004).

The analytical solution of the SB process can be used to test

if the genomic elements of interest are indeed randomly

placed along a genomic sequence. According to Ziff and

McGrady (1985) and Arndt (2019), the expected number of

inter-break distances equal to x after the random placement

of B breaks on a support of length L is

SB x; B; Lð Þ ¼ 2
B

L
þ B

L

� �2

L� xð Þ
" #

e
�

B

L
x

for0 < x < L

SBðx; B; LÞ ¼ e�B forx ¼ L

8>>><
>>>:

(1)

The probability distribution pSBðx; B; LÞ is simply obtained by

normalizing SBðx; B; LÞ with the total number of distances

Bþ 1. An alternative parametrization of the process has

been recently proposed (Arndt 2019), but for large values

of B (as it is the case here) the two descriptions are essentially

equivalent. This is clearly shown in figure S14, Supplementary

Material online. Therefore, we can safely use the description

in equation 1 that will make the subsequent calculations eas-

ier without loss of generality.

The position distribution of a subfamily with B elements

can be compared with the SB prediction using B as the num-

ber of breaks and L as the length of the sequence on which

the distribution is evaluated (e.g., the whole genome or a

single chromosome). To make the RE point-like as in the

model, we actually used as L the sequence length minus

the sum of the lengths of the REs in analysis. However, the

results are not particularly sensitive to this choice since the

length of REs is relatively small with respect to the genome

or chromosome lengths. The parameter values estimated for

the different subfamilies are reported in supplementary tables

1–3, Supplementary Material online.

A Measure of Deviation from Random Placement

We developed a measure of the deviation of an empirical

distribution of inter-element distances from the parameter-

free distribution expected for random placement and de-

scribed by equation 1. This measure is proportional to the

area between the empirical and null model distributions, in

analogy with the Cram�er-von Mises criterion (Cram�er 1928).

More specifically, it is the integral between the two cumula-

tive distributions. However, since the mean and standard de-

viation of a SB depend on the density of elements (r � B=L

for large B), we normalized this integral by the density of each

subfamily to make the deviations comparable for sets with a

different number of elements. As discussed in more detail in

the supplementary material, distributions relative to random

placement for different values of B and L collapse to a single

functional form thanks to the normalization. Thus, the dis-

tance from the expected SB in equation 1 for a given subfam-

ily i can be defined as

Di ¼
ðLi

0

Bi

Li
jFiðxÞ � F0ðx; Bi; LiÞjdx; (2)

where Fi and F0 are the empirical and theoretical cumulative

distributions. The normalization factor Bi=Li is the density of

subfamily i and allows the comparison of Di for subfamilies of

different abundances.

The measure here introduced is also analogous to the dis-

tance between cumulative distributions on which the

Kolmogorov–Smirnov test is based. The high correlation be-

tween the two measures is reported in figure S11,

Supplementary Material online.

The Insertion-Elimination Model

This section formalizes a model describing the dynamics of

distances between a set of point-like elements (REs in our

case) on a genome under the hypothesis that the two main

evolutionary forces are genome expansion due to insertion of

other genomic elements, and random deletions of the point-

like elements under consideration, which effectively leads to

the “fusion” of two existing distances. The simplest assump-

tion is that the probability of insertion of new sequences is

uniform over the whole genome and that all elements have

the same probability of being deleted. These are precisely the

assumptions considered in Sellis et al. (2007). In this case, the

probability that a new insertion event expands the distance x

between two existing REs is proportional to x. If we introduce

a typical length scale k of the inserted sequences and the rate

c at which on average an insertion happens, we can describe

the process as

@pðx; tÞ
@t

¼ �c
x

LðtÞ pðx; tÞ þ c
x � k
LðtÞ pðx � k; tÞ: (3)

The equation (3) describes the time evolution of the distribu-

tion p(x, t) of distances of length x while the support L(t) is

expanding. It assumes that the probability of inserting a se-

quence of length k into an existing inter-element distance of

length x is simply proportional to its length (i.e., to x=LðtÞ),

Quantitative Analysis of Retrotransposon Distributions GBE

Genome Biol. Evol. 12(11):2045–2059 doi:10.1093/gbe/evaa201 Advance Access publication 28 September 2020 2055



and that there is a constant rate c of new insertions. As de-

scribed in the supplementary material, equation 3 can be

solved in the continuous limit that is valid as long as the dis-

tances are long enough as it is always the case for REs. The

solution is simply pðx; tÞ ¼ pðxð0Þ;0Þe
ck
Ð t

0

�
dt0=Lðt0Þ

�
, where p

ðxð0Þ;0Þ is the distance distribution before the dynamics

starts.

The initial condition is given by the SB process with B0

breaks described in the previous section since we are assum-

ing an initial random placement. In other words, pðxð0Þ;0Þ
¼ pSBðxð0Þ; B0; Lð0ÞÞ from equation 1. As shown in more

detail in the supplementary material, the factor multiplying

the SB initial condition in the solution is just a rescaling of

the support. In fact, the evolved inter-RE distances at time t

is simply described by

pðx; tÞ ¼ pSBðx; B0; LðtÞÞ; (4)

where LðtÞ ¼ Lð0Þ þ ckt. In conclusion, the shape and the

functional form of the initial SB distribution are not modified

by the expansion dynamics, and the distribution can be still

described by a SB on an expanded genome L(t). The model

can be generalized by assuming that there is a distribution q
ðkÞ of the lengths of insertions, but the result does not change

qualitatively. Analogously, deletions of genomic segments can

be considered, but also in this case the distribution would not

change its shape as long as the deletions are randomly placed.

So far we implicitly assumed that the inserted sequences

have a length k smaller than existing inter-RE distances. If this

is not always the case (i.e., if there are x0 < k), the last term

in equation 3 is not relevant for these short distances, and the

solution has an additional term of the form

p x; tð Þ ¼ pSB x; B0; L 0ð Þð Þ Lð0Þ
LðtÞ

� �x=k

: (5)

Therefore, the complete solution has two terms: for short

distances (x < k) there is an exponential behavior that

deviates from the SB distribution, while for long distances

the process is described by an expanded SB. This behavior

is confirmed by simulations as explained in detail in the

Results section. The introduction of RE elimination, for

example due to sequence mutations, would not alter

the picture above. In fact, if we take the solution of the

SB process with B breaks in equation 1 and we randomly

eliminate a certain number n of breaks, the resulting dis-

tribution would still be a solution of a SB process with B –

n breaks. This intuitive result is confirmed by numerical

simulations in figure 3.

A Model Including Genomic Duplications

The model presented in the previous section can be effectively

extended to take into account the result of genomic

duplications. The extension is based on the observation that a

duplication event that also duplicates some of REs of interest

adds to the distance distribution precisely the distances between

the duplicated elements. Specifically, the distribution p(x, t) of

inter-RE distances will have some new distances of a certain

length x that depends on the relative position of the REs that

have been duplicated. This effect can be phenomenologically

captured in the model by assuming that there is an external

source of new distances described by a term q(x). This term

represents the probability of adding a distance of size x as a result

of a duplication event and its form should depend on the existing

distance distribution at the moment the duplication occurs. We

can also introduce a parameter l for the rate of duplications.

Therefore, a model that includes both genome expansion

and duplication of genome portions can be formalized by the

equation

@pðx; tÞ
@t

¼ �c
x

LðtÞ p x; tð Þ þ c
x � k
LðtÞ p x � k; tð Þ þ lq xð Þ �

� � ck
LðtÞ

@

@x
xpðx; tÞÞ þ lqðxð Þ;

(6)

which simply extends equation 3 by adding the source term

lqðxÞ. In the continuous limit, the method of characteristic

leads to the following system of equations

dx

dt
¼ c

k
LðtÞ x

1

x

d
�

xpðx; tÞ
�

dt
¼ lq xð Þ

8>>>>>><
>>>>>>:

(7)

Rewriting equation (7) and assuming a linear increase in the

genome size LðtÞ ¼ Lð0Þ þ ut (where u is the combined

growth of the genome given by expansion and insertions)

we can derive

x tð Þ ¼ x 0ð Þ LðtÞ
Lð0Þ

� �ck=u

! f tð Þ ¼ xðtÞ
xð0Þ ¼

LðtÞ
Lð0Þ

� �ck=u

; (8)

p x; tð Þ ¼ 1

f ðtÞ p
xðtÞ
f ðtÞ ; 0
� �

þ l
fðtÞ

ðt

0

q x t�ð Þð Þf t�ð Þdt�: (9)

The solution (9) is composed of two terms: the first one

describes the expansion of the original SB while the sec-

ond represent the source expansion over time. f(t) is a

monotonic and increasing function of time, as defined

in (8), that weights the initial condition relative to the

source at a specified time t. It is obtained from the first

equation in (7). Note that ck=u < 1, since u includes

both expansion (c) and source (l). By substituting

pSBðx; B0; Lð0ÞÞ as initial condition for the first term on

the right in equation 9, we still find a SB
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p x 0ð Þ;0ð Þ ¼ 1

fðtÞ pSB x 0ð Þ ¼ xðtÞ
f ðtÞ ; B0; L 0ð Þ

� �
¼

¼ 2
B0

LEðtÞ
þ B0

LEðtÞ

� �2�
LEðtÞ � xðtÞ

� !
e�B0xðtÞ=LEðtÞ

B0 þ 1
:

(10)

The expanded genome is now LEðtÞ ¼ Lð0ÞfðtÞ, since the

whole genome L(t) contains also the contribution of the (ex-

panded) source. In the limit u! ck we recover the result of

the former section. To fully solve the expansion-insertion

model we have to choose an explicit form for the source

function q(x). While its precise functional form is in principle

unknown, several considerations (see Results section), point

to a fast decreasing function of x (such as an exponential

decay).

Direct Estimate of the Effect of Duplications on inter-RE

Distances

If the source term q(x) is a fastly decreasing function of x, such

as an exponential decay, the probability of adding long dis-

tances to the inter-break distribution is extremely small.

Therefore, the presence of a source term in our dynamical

model is not expected to alter significantly the shape of the

right tail of the initial inter-break distribution. In our case, the

initial distribution is supposed to be the SB solution in equa-

tion (1). Moreover, we have previously shown that the expan-

sion of the support by random sequence insertion cannot

change the functional form of the initial random distribution,

equations (9) and (10). Relying on these considerations, the

right-tail of the inter-RE distribution should be well approxi-

mated by random placement of a smaller number of elements

with the correct normalization and length of the support,

respectively B0 and LEðtÞ in equation (10). More formally, nor-

malizing equation (9) by the total number of breaks and tak-

ing into account the relation in equation (10), the current

distribution can decompose as follow

pðx;B; LÞ ¼ hpSBðx; B0; LEÞ þ ð1� hÞ ~qðxÞ; (11)

where h is the fraction of RE distances that are still distributed

according to the initial SB solution. The effective source ~qðxÞ is

proportional to the source q(x) weighted over the time with

f(t), that is, the initial source expanded and averaged over f(t).

Within the assumption that the source q(x) of new seg-

ments only affects the short scale distances, we can assume

that the long-distance tail of the distribution of B breaks on a

genome L can be well explained by a SB solution with a

smaller initial number of breaks B0, while the short-distance

region of the distribution is a superposition of this SB process

with the contribution of duplications captured by the fastly

decaying source term ~qðxÞ. This also implies the existence of a

minimum distance xmin, above which the effect of the external

source is negligible (supplementary fig. S9, Supplementary

Material online). In other words, for x > xmin the observed

distances should be well fitted by a SB solution with an initial

number of breaks B0 (smaller than the empirical subfamily

size), while for x < xmin we have a superposition of the SB

solution and of the source term ~qðxÞ. Following the same idea

from Clauset et al. (2009), we identify xmin, B and L for each

subfamily using a maximum likelihood approach to find the

best possible fit of equation (11). With this approach we can

directly estimate both the initial number of breaks B0, and the

fraction of duplicated REs 1� h. Finally, the source term ~qðxÞ
can be deduced as the difference between the empirical dis-

tribution and the best estimate of pSBðx; B0; LEÞ.
The procedure has been applied to all Alu subfamilies. The

estimated thresholds xmin are of the order of 105 bp. The

resulting source terms ~qðxÞ can be generally well fitted by

an exponentially decreasing function (supplementary fig.

S10, Supplementary Material online) and their averages cor-

relate with the density B/L of the subfamily as discussed in the

Results section and shown in detail in the supplementary ma-

terial. For the older Alu subfamilies, ~qðxÞ can be better ap-

proximated with a steeper function (fig. 4B, where a double

exponential has been used).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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