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Pseudomonas aeruginosa is a rod-shaped Gram-negative bacterium which is notably
known as a pathogen in humans, animals, and plants. Infections caused by
P. aeruginosa especially in hospitalized patients are often life-threatening and rapidly
increasing worldwide throughout the years. Recently, multidrug-resistant P. aeruginosa
has taken a toll on humans’ health due to the inefficiency of antimicrobial agents.
Therefore, the rapid and advanced diagnostic techniques to accurately detect this
bacterium particularly in clinical samples are indeed necessary to ensure timely and
effective treatments and to prevent outbreaks. This review aims to discuss most recent
of state-of-the-art molecular diagnostic techniques enabling fast and accurate detection
and identification of P. aeruginosa based on well-developed genotyping techniques,
e.g., polymerase chain reaction, pulse-field gel electrophoresis, and next generation
sequencing. The advantages and limitations of each of the methods are also reviewed.

Keywords: molecular diagnostics, Pseudomonas aeruginosa, polymerase chain reaction, pulse-field gel
electrophoresis, next generation sequencing

INTRODUCTION

Pseudomonas aeruginosa is a common environmental microorganism which is widespread
in nature. It is a ubiquitous Gram-negative bacterium which increasingly recognized as an
emerging opportunistic pathogen of clinical relevance due to its high morbidity and mortality
infection rate in healthcare settings especially among immunocompromised individuals and
other highly vulnerable patients. P. aeruginosa has been classified as an ESKAPE (Enterococcus
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, P. aeruginosa,
and Enterobacter species) pathogen; one of the six highly antibiotic resistant bacteria (Rice,
2008). It is also listed as a critical priority pathogen “for which new antibiotics are urgently
needed” by World Health Organization [WHO], 2017. The detection of P. aeruginosa at early
aggressive antibiotic treatment is significant in order to prevent or to postpone chronic lung
colonization for cystic fibrosis patients (Starner and McCray, 2005; Deschaght et al., 2011;
Douraghi et al., 2014) and burn infections which could lead to consequences like pneumonia,
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sepsis, and necrosis (De Vos et al., 1997; Edwards-Jones et al.,
2003; Mayhall, 2003). There is therefore a need for sensitive and
specific P. aeruginosa detection tests in clinical laboratory for
rapid triage and early aggressive targeted therapy.

Molecular diagnostics (MDx) has taken a prominent place
and has shown advantages in the clinical diagnostic laboratory
for routine detection, fingerprinting, and epidemiologic analysis
of infectious microorganisms. Firstly, MDx minimizes the
requirement for cultivation, which reduce the time required
for morphology and biochemistry diagnosis. Disadvantages of
cultivation include the selection of microbe-specific artificial
media, the ability of the microbe to propagate on the selected
media and long incubation period (Tang et al., 1997; Basu
et al., 2015). Secondly, MDx may be used to detect microbes
directly from clinical specimens. This reduces the exposure of
infection agents and decreases the health risk for the laboratory
personnel (Tang et al., 1997). Lastly, the quality and quantity of
nucleic acids can be maintained for a prolonged period of time
with appropriate storage temperature and specimen preservation
(Tang et al., 1997; Leal-Klevezas et al., 2000). This review aims to
discuss the advantages and limitations of some MDx techniques
for P. aeruginosa detection to allow the rapid implementation of
infection-control and intervention practices.

DETECTION AND IDENTIFICATION OF
Pseudomonas aeruginosa

Polymerase Chain Reaction (PCR)
Polymerase chain reaction (PCR) is one of the notable
methods for the detection and identification of P. aeruginosa
(Deschaght et al., 2011). This method applies primer mediated
enzymatic amplification of DNA to synthesize new strand of
DNA complementary to the targeted template strand. Different
targeted genes have been employed to detect P. aeruginosa on
clinical samples such as ecfX, oprL, and gyrB due to their high
sensitivity and specificity (De Vos et al., 1997; Qin et al., 2003;
Anuj et al., 2009). False-positive results (using 16S rRNA and
oprI genes) and false negative results (using algD and toxA
genes) have also been reported previously (Qin et al., 2003;
Cattoir et al., 2010). This may due to the extensive genomic
plasticity (Shen et al., 2006) and horizontal gene transfer of this
bacterium to other Enterobacteriaceae species (Anuj et al., 2009).
Furthermore, the comparative-genomics information and inter-
or intra-species sequence polymorphisms within the target region
are unknown (Qin et al., 2003). To improve aforementioned
issues, multiplex-PCR using parallel testing of more than one
targeted gene may be used. Multiplex-PCR is able to provide
internal controls, lower the reagent costs, preserve precious
samples and determine the quality and quantity of template more
effectively (Edwards and Gibbs, 1994; Elnifro et al., 2000). The
major drawback of this assay is primer designing. The primer–
primer competition and relative abundance of target in regard
to primer concentration need to be taken into consideration.
To date, no standard protocol for the detection of P. aeruginosa
using multiplex-PCR is available despite of the development and
continuous improvement of this approach (De Vos et al., 1997;

da Silva Filho et al., 2004; Anuj et al., 2009; Thong et al., 2011;
Salman et al., 2013; Aghamollaei et al., 2015).

In recent decades, the advert of the quantitative real-time
PCR (qPCR) is gaining popularity for detection of pathogens
in clinical microbiology (Klein, 2002; Mackay, 2004; Sails, 2004;
Kaltenboeck and Wang, 2005; Valasek and Repa, 2005; Espy
et al., 2006; Kubista, 2008; Bustin et al., 2009; Saeed and
Ahmad, 2013). This technology only requires less than 5 h, is
simple, reproducible, and improved quantitative capacity over
conventional PCR (Fournier et al., 2013). Such a powerful
tool could be applied for the detection of P. aeruginosa
directly from sputum samples of CF patients, positive blood
cultures, corneal samples, and chronic wounds. To simplify and
standardize the experimental design, commercially distributed
kits for the detection of P. aeruginosa are available in the market.
Unfortunately, the instrument for qPCR is expensive for extra
light sources and filters for fluorescence detection and may
require high cost of maintenance.

Isothermal Amplification Methods
Current advancement in PCR has led to the development
of isothermal amplification methods, including loop-mediated
isothermal amplification (LAMP) and polymerase spiral reaction
(PSR). The isothermal amplification method requires only basic
inexpensive equipment (i.e., standard heat block) with minimal
operator training (Diaz and Winchell, 2016) and is capable of
providing reliable results within 1 h. This method is useful for
clinical screening, especially under lack of resources or for point-
of-care testing.

LAMP is a unique nucleic acid amplification technique that
amplifies few copies of DNA into billion copies within an
hour under isothermal conditions with greater specificity. In
LAMP reaction, the gene was amplified when self-elongation
of templates from the stem loop structure formed at the 3′-
terminal plus the binding and elongation of new primers to
the loop region (Notomi et al., 2000). In a previous study,
the development and validation of LAMP assays for 426
clinical samples (including 252 P. aeruginosa and 174 non-
P. aeruginosa isolates) were performed (Zhao et al., 2011).
This study showed the detection limit of extracted DNA was
2.8 ng/µl, while sensitivity of LAMP and PCR assays was found
to be 97.6% (246/252 P. aeruginosa isolates) and 90.5% (228/252
P. aeruginosa isolates), respectively; with a 100% specificity for
both assay. Furthermore, LAMP enables direct detection of
P. aeruginosa from clinical patient plasma within 20 min without
the requirement for DNA purification (Yang et al., 2016). The
disadvantages of LAMP are proper primer designing required
and LAMP multiplexing approach is less developed compared
to PCR. On the other hand, PSR is a nucleic acid amplification
method based on the utilization of a DNA polymerase with strand
displacement activity under isothermal conditions. In China, PSR
was developed for rapid detection of P. aeruginosa by targeting
toxA gene within 60 min without an initial denaturation step as
required by LAMP. The detection limit of extracted DNA was
2.3 pg/µl and 10-fold more sensitive than conventional PCR,
where the reaction proceeds as soon as the temperature reaches
61◦C to 65◦C (Dong et al., 2015).
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MOLECULAR TYPING METHODS OF
Pseudomonas aeruginosa

Pulsed-Field Gel Electrophoresis (PFGE)
Pulse-field gel electrophoresis (PFGE) is for separation of large
DNA molecules ranging from 10 kb to 10 Mb on a solid
matrix by applying an electric field that periodically changes
direction (Kaufmann, 1998). It is a popular method for large-
scale epidemiological investigations due to its discriminatory
powers (DIs) (Selim et al., 2015; Tang et al., 2017). The DIs
expresses the homogeneity of distribution between types and
valuable for defining the best typing strategy and interpreting
data (Grundmann et al., 1995). The combination of PFGE and
restriction endonuclease digestion from genomic DNA isolated
from bacterial isolates has proved to be a useful epidemiological
tool. For instance, PFGE-SpeI of P. aeruginosa was found to
have extremely high DIs between 0.98 and 0.998 (Grundmann
et al., 1995). Besides, PFGE is a relatively inexpensive approach
with excellent typeability, high sensitivity (Abu-Taleb et al.,
2013), intra-laboratory reproducibility and easy interpretation
(Römling and Tümmler, 2000; Ballarini et al., 2012). PFGE-SpeI
approach is the recommended method for P. aeruginosa genomes
study (Morales et al., 2004; Libisch, 2013). Macrorestriction
patterns generated by restriction enzyme SpeI showed 100%
reproducibility and the typeability was in between 95 and 100%
(Grundmann et al., 1995). One major drawback of PFGE for
P. aeruginosa typing is the lack of standardized protocols,
causing limited intra- and inter-laboratory reproducibility. As
improvement, the development of standardized PFGE protocol
(culture to gel image) is recommended. Another notable
disadvantage of PFGE typing is its labor-intensive method
which requires few days to obtain results and involves technical
expertise to handle it.

Multiple Locus Variable-Number Tandem
Repeat Analysis (MLVA)
Multiple locus variable-number tandem repeat analysis (MLVA)
is a PCR-based method to subtype microbial strains on the
analysis of variable copy numbers of tandem repeats (VNTR).
MLVA utilizes the naturally occurring variation in the number
of tandem repeated DNA sequences found in multiple loci or
regions in a bacterial genome detected by PCR using flanking
primers (Sabat et al., 2003; de Filippis and McKee, 2012; Sobral
et al., 2012). MLVA is more favorable as it appears to contain
greater diversity and, hence, greater discriminatory capacity
when compared to other type of molecular typing system (Keim
et al., 2000). The MLVA scheme for P. aeruginosa was first
developed by Onteniente et al. (2003) and was subsequently
improved by adding new epidemiologically information markers
(de Filippis and McKee, 2012). It is a promising tool for
molecular surveillance of P. aeruginosa in the public health as
it is highly reproducible, easy to use and interpret (Onteniente
et al., 2003; de Filippis and McKee, 2012; Maâtallah et al.,
2013). Besides, MLVA is also a rapid approach with high
resolution, thus is beneficial for resolving large and complex
outbreak situations. This method is also suitable to apply

on commercial kits and large-scale automated platforms (e.g.,
pipetting robots and automated sequencers) which are already
available at the markets (Llanes et al., 2013). Almost 100
isolates could be genotyped in less than 4 days, starting
from bacterial colonies using the genotyping kit TYPPSEUDO
ceeramTools R© (Ceeram, La Chapelle-sur-Erdre, France) and
automated capillary-based MLVA system (Sobral et al., 2012).
A potential drawback of MLVA method is that inter-laboratory
comparison studies cannot be conducted directly. This is
mainly due to the fact that the generated amplicons are
monitored as banding patterns by conventional electrophoresis
on agarose gels, causing difficulty to determine which band
in a pattern corresponds to which PCR target. Besides, this
approach is also high assay-specific for different organisms
and lacks standardization for the majority of published assays
(Sabat et al., 2013).

Multilocus Sequencing Typing (MLST)
Multilocus sequencing typing (MLST) analysis is an electronically
portable, universal, and definitive bacterial typing method
that focuses solely on conserved housekeeping genes and the
combination of each allele (Wendt and Heo, 2016). This is
aim to define the sequence type for each isolate and provide
information in the relatedness of bacterial isolates at the core
genome level. This method has become a very well-known (or
popular) tool for molecular evolution studies of pathogens and
global epidemiological studies. MLST scheme has been first
developed for P. aeruginosa by Curran et al. (2004). The study
revealed that P. aeruginosa is best described as non-clonal but has
highly successful epidemic clones or clonal complexes population
(Curran et al., 2004). One of the great advantages of MLST is the
accessibility of online-based MLST reference databases, allowing
this method to gain widespread popularity as an epidemiological
tool for bacterial typing. Currently, the MLST databases can be
open accessed at http://pubmlst.org/databases and http://www.
mlst.net/databases/. The standardization of MLST data allows
users to investigate the molecular evolution of pathogens over
time in different geographic regions. For outbreaks surveillance
and management, MLST being able to rapidly keep track of
infectious diseases is of paramount importance (Chui and Li,
2015). MLST is also a technically straightforward typing tool

FIGURE 1 | Number of Pseudomonas aeruginosa genomes available in NCBI
database from year 2000 to 2017.
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and provides unambiguous data that is highly reproducible
between laboratories (Pérez-Losada et al., 2011). Unfortunately,
the great disadvantage of MLST is its high cost and insufficiently
discerning for routine use in local surveillance and outbreaks.

Additionally, the MLST depends on housekeeping genes which
are relatively conserved to establish genetic relatedness between
isolates as it may lack the discriminatory power to differentiate
certain bacteria (Noller et al., 2003; Pérez-Losada et al., 2011).

TABLE 1 | Comparison table of selected molecular techniques.

Molecular techniques Advantages Limitations Reference

PCR • High sensitivity
• High specificity

• False-positive results
• Negative results

Qin et al., 2003; Cattoir et al., 2010

Multiplex PCR • Provide internal controls
• Low reagent costs
• Able to preserve precious samples
• Able to determine the quality and quantity

of template more effectively

• Primer designing
• No standard protocol

De Vos et al., 1997; da Silva Filho et al.,
2004; Anuj et al., 2009; Thong et al.,
2011; Salman et al., 2013; Aghamollaei
et al., 2015

qPCR • Reproducible methods (less than 5 h)
• Direct detection from sputum samples
• Availability of commercial kits in the

market

• Expensive instrument
• High cost of maintenance

Deschaght et al., 2009; Cattoir et al.,
2010; Clifford et al., 2012; Carlesse
et al., 2016

LAMP • Low detection limit with high sensitivity
• Rapid detection (∼20 min) without DNA

purification
• Only required basic inexpensive

equipment with minimal operator training

• Primer designing
• Less develop multiplexing approach

Zhao et al., 2011

PSR • Low detection limit with high sensitivity
• Rapid detection (∼60 min) without an

initial denaturation
• Only required basic inexpensive

equipment with minimal operator training

• Still in the progress on method
development

Dong et al., 2015

PFGE • Inexpensive
• Excellent typeability
• High sensitivity
• Easy interpretation

• Lack of standardized protocols
• Limited reproducibility
• Labor-intensive method
• Technical expertise required

Grundmann et al., 1995; Morales et al.,
2004; Libisch, 2013

MLVA • Highly reproducible and easy
interpretation
• Rapid approach with high resolution
• Suitable for large-scale automated

platforms

• Assay-specific for different organisms
• Lacks standardization of assay

Onteniente et al., 2003; Sobral et al.,
2012; Maâtallah et al., 2013

MLST • Accessibility of online-based MLST
reference databases
• Standardization of MLST data
• Highly reproducible

• High cost
• Insufficiently discerning for routine use

in local surveillance and outbreaks
• Lack the discriminatory power to

differentiate certain bacteria

Curran et al., 2004

DL rep-PCR • Standardization of assay
• Improved reproducibility
• User-friendly internet-based

computer-assisted data analysis

• Validation for each bacterial species is
necessary
• Lack of a suitable cutoff values from

the manufacturer
• High cost of reagents and kits
• Necessity to use different fingerprint

kits for each bacterial species
• High instrument installation and

maintenance costs

Fluit et al., 2010; Deplano et al., 2011;
Brossier et al., 2015

NGS • Requires less amount of DNA
• High quality, robustness and lower noise

background sequence data
• Reproducible
• Analytically sensitive, and accurate

assessment of the identity and relative
abundance of organisms present in
polymicrobial samples

• Technical expertise required to
perform the wet lab, analyze, and
interpret the data
• Computational infrastructures and

software need to be upgraded in
order to store and analyze large
bioinformatics datasets

Quick et al., 2014; Blanc et al., 2016

PCR, polymerase chain reaction; qPCR, quantitative real-time PCR, LAMP, loop-mediated isothermal amplification; PSR, polymerase spiral reaction; PFGE, pulsed-field gel
electrophoresis; MLVA, multiple locus variable-number tandem repeat analysis; MLST, multilocus sequencing typing; DL rep-PCR, DiversiLab repetitive-sequence-based
PCR; NGS, next generation sequencing.
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DiversiLab Repetitive-Sequence-Based
PCR (DL rep-PCR)
DiversiLab (DL), an automated repetitive-sequence-based PCR
(rep-PCR) bacterial typing system (bioMérieux), comes with a
high level of standardization, particularly at the electrophoresis
step by using the Bioanalyzer (Agilent Technologies, Inc., Santa
Clara, CA, United States) (Healy et al., 2005; Deplano et al.,
2011). In comparison to traditional gel electrophoresis, DL
system makes use of microfluidic capillary electrophoresis to
overcome the low reproducibility of the previous rep-PCR
approaches (Sabat et al., 2013). Besides, DL system also provides
a user-friendly internet-based computer-assisted data analysis
(Fluit et al., 2010; Brossier et al., 2015). The reliability of the
data obtained from the system is species dependent. Hence, a
validation for each bacterial species is necessary prior to its use
in a routine clinical laboratory (Harrington et al., 2007; Doleans-
Jordheim et al., 2009). Another major drawback of DL system
for P. aeruginosa is the lack of a suitable cutoff values from
the manufacturer. The classification of the closely related DL
rep-PCR profiles as identical genotypes may be influenced by
the number of different fragments obtained due to deletions,
insertions, inversion of DNA, or mutation of the restriction. For
outbreaks or routine clinical laboratory bacterial typing practices,
the high cost of reagents and kits as well as the necessity to use
different fingerprint kits for each bacterial species are among
the disadvantages of DL system which need to be overcome.
Moreover, the initial instrument installation and maintenance
costs also need to be taken into consideration.

THE NEW ERA OF MOLECULAR
DIAGNOSTICS: NEXT GENERATION
SEQUENCING (NGS) TECHNOLOGY

Over the years, next generation sequencing (NGS) technology
has gradually been replacing the first generation sequencing,
the Sanger sequencing (Sboner et al., 2011; Muir et al., 2016).
The NGS technology is evolving into a molecular microscope,
which manages to provide a broad investigations of the
bacterial genomes (e.g., transcription, translation, replication,
methylation, and nuclear DNA folding) and are readily applied
in clinical microbiology to replace conventional characterization
studies of pathogens (Didelot et al., 2012; Gargis et al., 2012, 2016;
Behjati and Tarpey, 2013; Deurenberg et al., 2017; Tagini and
Greub, 2017).

Since first introduced to the market in 2005, NGS is widely
accepted, allowing decentralized laboratories to conduct their
own internal genome sequencing projects at a lower cost (Quail
et al., 2012; Liao et al., 2015). Besides, NGS also relatively
requires less amount of DNA to produce accurate and reliable
data. This technology has greater advantages in producing high
quality, robustness and lower noise background sequence data.
Unfortunately, a successful NGS project requires expertise to
perform the wet lab, analyze, and interpret the data (Buermans
and den Dunnen, 2014; Ari and Arikan, 2016). In addition, users
need to face technical challenges where the current available

computational infrastructures and software need to be upgraded
in order to store and analyze large bioinformatics datasets. This
will be a constant challenge for users as sequencing technology
continues to evolve and develop new computational strategies
(Tang et al., 2017).

NGS Applications of Clinical
Pseudomonas aeruginosa
The applications of NGS for clinical P. aeruginosa are wide-
ranging and include 16S rRNA gene sequence, whole genome
sequencing (WGS), transcriptome profiling, exome sequencing,
virtual resistance testing, and public health surveillance.
This eventually increases the number of publicly available
P. aeruginosa genomes (Figure 1). Hitherto, there are a total
of 2678 assembled genomes deposited in NCBI database1 and
among them 106 are completed genomes (retrieved in January,
2018). Knowledge on the bacterial genomes helps to harbor
information about the genomes evolution, niche adaptation,
infectious potential (Bowlin et al., 2014; Dubern et al., 2015;
Bartell et al., 2017) and the molecular basis of antimicrobial
resistance (Ramanathan et al., 2017; Sherrard et al., 2017).
Throughout the years, this technology has facilitated to reveal
the pathogenesis of this bacterium. For examples, it is opined
that NGS can be used not only to study the bacteria genome, but
it can also be used to study the antimicrobial resistance (Chan,
2016). Also, the studies by Kos et al. (2015) and Ramanathan
et al. (2017) demonstrated the utility of NGS to define relevant
resistance elements as well as highlight the diversity of resistance
determinants within P. aeruginosa. This information is especially
valuable for diagnostics, therapeutics, and preventions of
P. aeruginosa infections.

Studies on the bacterial genomes also can provide information
about the relationship of different pathogens which can be used
as source tracking during infection outbreaks. In recent years,
NGS coupled with WGS can be used for source tracking of
P. aeruginosa in a hospital setting, and that acquisitions can be
traced to a specific source within a hospital ward (Quick et al.,
2014). Besides, WGS could also be applied for epidemiological
investigation of P. aeruginosa in intensive care units (ICU)
(Blanc et al., 2016). Recent years, NGS has been adapted for
16S rRNA gene based metagenomics study to rapidly catalog
the bacterial species in mixed clinical specimens, without need
for prior culture (Lim et al., 2014). Cummings et al. (2016)
demonstrated that NGS 16S rRNA gene sequencing has generated
a reproducible, analytically sensitive, and accurate assessment
of the identity and relative abundance of organisms present in
polymicrobial samples, outperforming standard culture.

CONCLUSION

Over the last decades, several molecular methods have been
developed for genotypically detecting and identifying pathogens
in clinical diagnostic laboratories. All the methods discussed
here have both advantages and drawbacks or rather limitations

1http://www.ncbi.nlm.nih.gov
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(Table 1). Another trend for microbial identification which
relies on microbial physiological or biochemical characteristics
including antibiotic-resistance has been fast developed from well-
established analytical profile index (API) to mass spectrometry
(MS)-based methodologies. Nevertheless, the enrichment of
bacterial cells and metabolites for detection and lack of biomarker
database are still the major challenges (Cheng et al., 2016).
Coupling with genetic and non-genetic methods have also
been developed such as PCR-MS for determining nucleotide
compositions of strain-specific PCR products (Ecker et al., 2005).
Further studies of both genotypic and phenotypic methodologies
will certainly facilitate the development of perfect diagnostic,
which is rapid, specific, sensitive, easy to perform and interpret,
cost-effective, and high-throughput.
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